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Abstract: Existing building stock represents potential for energy saving renovations. Energy savings
and indoor climate comfort are key demands for sustainable building refurbishment. Especially in
schools, indoor comfort is an extremely important issue. A case study of energy consumption in
selected school buildings in temperate climatic conditions of Central Europe region was performed.
The studied buildings are representatives of various school premises constructed throughout the
last century. The evaluation was based on data analysis of energy audits. The goal was aimed at
assessment of the school building envelopes and their influence on energy consumption. One of the
studied schools was selected for detailed evaluation. The school classroom was monitored for indoor
thermal and visual environments. The monitoring was performed to compare the current state and
renovation scenarios. Results of the evaluation show that the school buildings are highly inefficient
even if renovated. Indoor climate in classrooms is largely influenced by windows. Solar gains affect
interior thermal stability and daylighting. Thermal insulation quality of building envelopes and
efficient solar shading systems appear to be fundamental tasks of school renovation strategies.
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1. Introduction

Current trends are aimed at the improvement in building energy performance and
sustainability [1,2]. Modern construction methods facilitate more energy conscious buildings
compared to old building stocks [2–4]. Newly designed buildings comply with top-level energy
efficiency [5,6]. Nevertheless, building refurbishment represents a rational approach towards sustainable
development [7,8]. Energy conscious renovation became one of the promising ways to reduce carbon
dioxide emissions from buildings [9,10]. Existing buildings in the EU region represent massive
potentials for energy savings [1,2]. Energy renovation has utmost importance for the residential and
public buildings sectors. These buildings exert high energy consumption for heating and ventilation or
cooling systems as well as artificial lighting.

Especially school buildings have been objects of energy saving interests. Considerable numbers
of programs are focused on school buildings performance [11–13]. Zero emissions and high quality of
indoor environment were topical tasks of the project “School of the Future”, within the frame of the
EU programme [14]. The aim of the project was to communicate examples of efficient buildings under
different European climates.

Strategies for energy consumption [15–21] and thermal comfort assessments [22–26] were
developed for educational buildings.

Energy efficiency, together with indoor climate comfort, are key features of good practice school
performances in accordance with sustainable architecture principles [27,28]. Building envelopes play a
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substantial role in the built environment [29,30]. Particularly windows influence indoor thermal and
visual comfort [31–33].

The abovementioned overview shows the importance of energy efficiency and indoor climate
conscious attitudes [34] towards educational buildings. A study focused on the assessment of selected
representatives of school buildings in temperate climatic conditions was performed to evaluate their
energy saving potentials in accordance with recent trends of highly energy efficient schools in Central
Europe [35].

2. Materials and Methods

A case study aimed at an analysis of energy consumption in selected school buildings in the
Central Europe region was performed. The studied buildings are representatives of various school
premises. The evaluation was based on the analysis of data from energy audits for specification of
current state of building envelopes and their influence on energy consumption. One of the studied
schools was selected for detailed evaluation. The school classroom was monitored for indoor thermal
and visual climate.

2.1. Analysis of Energy Audits

The selected schools [36] were studied for their energy consumption. They are representatives
of an existing school building stock of construction styles throughout the last century. Many schools
are very old and some of them are listed as historically protected premises. Most of them are energy
inefficient. Thermal insulation improvements and windows retrofit are required for upgraded efficiency.
The case study is focused on analysis of the buildings’ energy performance and renovation potentials.

The school buildings were selected in accordance with the building site locality and climatic
conditions, (Figure 1 and Table 1). The buildings’ construction is commonly represented by solid
brick (70%) and ceramic block (18%) masonry systems or reinforced concrete prefabricated technology
(12%). Central gas heating is widely used in the schools, while electric heating has minor application.
The school buildings’ energy consumption is spent on heating and hot water services (80%), artificial
lighting and electric appliances (12%) and auxiliary energy demands (8%).
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Table 1. Buildings location, geometry and heat losses.

Building
Year of

Construction
(Renovation)

Locality Building Geometry Building Envelope

Altitude
[m]

Latitude
Longitude

[◦]

Aver. Winter
Temperature

[◦C]

Building
Volume

[m3]

Gross Floor
Area/Heated

Volume [m−1]

Heat
Loss
[kW]

Average U
Value

[W m−2 K−1]

1 1900
(2000) 248 49.763969 N

17.180405 E 4.1 3264 0.63 90 0.907

2 1950 210 49.456479 N
17.450230 E 3.9 23,278 0.40 373.1 1.27

3 1994 272 49.038646 N
17.814872 E 3.9 19,255 0.4 303.6 1.136

4 1931 272 49.038646 N
17.814872 E 3.9 3448 0.47 61.1 0.954

5 1890 334 49.458565 N
18.056868 E 3.8 1938 0.574 50.1 0.97

6 1984 304 49.6819311 N
18.3673219 E 3.7 23,955 0.45 434 1.087

7 1949 336 49.712716 N
13.204605 E 3.6 3491 0.43 88.7 1.23

8 1978 387 49.443259 N
13.248114 E 3.7 1471 0.85 61.1 0.95

9 1937 520 49.7161561 N
13.9473069 E 3.5 7163 0.47 102 0.90

10 1930 440 49.4248869 N
13.8817589 E 3.7 11,427 0.503 276.5 1.05

11 1988 225 50.289161 N
14.824512 E 3.8 5288 0.40 99.4 0.82

12 1960 188 48.9.07468 N
16.775371 E 4.5 4140 0.48 82.6 1.18

13 1929 450 50.129276 N
16.499965 E 3.6 6670 0.40 160.6 1.21

14 1967 179 49.059797 N
17.495850 E 3.6 3326 0.46 78 1.33

15 1980 675 49.908449 N
17.211115 E 3.1 4131 0.68 130 1.02

16 1887
(1962) 378 49.303454 N

14.158029 E 3.7 21,777 0.37 380.6 1.1

17 1980 334 49.820923 N
18.262524 E 3.6 22,423 0.25 424.5 0.76

18 1894
(2014) 280 50.655668 N,

14.724856 E 2.9 17,244 0.24 396 0.72

2.2. School Classroom Thermal and Daylight Evaluation

One of the studied buildings was selected for detail evaluations—building 18 (Table 1). The main
goal was thermal and daylight assessment of the school classrooms. The school building constructed
in 1894 is listed as a historically protected premise (Figure 2) [37]. The three-storey building has a
solid brick masonry and roof truss load-bearing structures. The ground floor is dedicated to the main
entrance and school facilities as well as management and administrative departments. Educational
rooms are on the first and second floor.Energies 2020, 13, x FOR PEER REVIEW 4 of 18 
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The school building maintenance has been limited by design obstructions like many other
historical premises. The building was renovated in 2014 under an architectural preservation review.
The renovation was mainly aimed at the building envelope. Window and facade retrofit was completed.
It was not allowed to change the historical style of the facade and for this reason, external walls were
thermally insulated from the interior side.

The school has spacious side lit classrooms. One of them, located on the second floor, was selected
for the evaluation. Firstly, the classroom thermal assessment was performed for the current state
and compared with renovation scenarios. Secondly, the classroom daylight evaluation was carried
out. Daylight illuminance and luminance measurements were taken and completed with a daylight
simulation study.

2.2.1. Thermal Evaluation

The thermal study was focused on the building facade and its influence on indoor climate.
The external wall thermal transmittance and condensation risks were studied. The evaluation was
carried out for three variations:

• current state: wall with 8 cm of thermal insulation on the interior side;
• renovation scenario I: wall with 15 cm of thermal insulation on the interior side;
• renovation scenario II: wall with 15 cm of thermal insulation on the exterior surface.

The software Teplo [38] was used for the evaluation. The software is intended for fundamental
analyses of building constructions like thermal resistance R (m2KW−1) and U-value (W m−2 K−1)
calculations, temperature profiles, interstitial condensation analysis and specification of annual balance
of condensed and evaporated amount within building constructions in accordance with standard
methodology of ISO 6946 and ISO 13788 [39,40] and other standard requirements [41].

Boundary conditions for the thermal evaluation according to [41] are following:

• design outdoor temperature −13.0 ◦C, locality—GPS: 50.655668 N, 14.724856 E;
• design indoor air temperature 21.0 ◦C (classroom);
• design relative humidity of outdoor air 84.0%;
• design relative humidity of indoor air 55%.

Two-dimensional temperature distribution of the wall details at window jambs in the current
state and design variations with internal and external thermal insulation were simulated using the
software Area [38]. The software is dedicated to complex thermal analyses of building construction
details for specification of potential thermal bridges in two dimensional stationary heat transfer and
water vapour diffusion simulations in accordance with standard methodology of ISO 10211 [42].

A study of the influence of the renovated facade on indoor thermal stability was performed [41,43].
The thermal stability was selected as an indicator of indoor thermal climate. Thermal stability of the
classroom was simulated for winter and summer season conditions using the software Stabilita [38].
The internal temperature drop during a heating lapse in winter and summer indoor temperature
rise were calculated. The goal of the evaluation is to compare influence of windows on the indoor
thermal environment.

2.2.2. Daylight Evaluation

Natural light influences indoor climate and wellbeing. Especially in educational buildings, visual
comfort is crucial. Daylight positively affects students’ alertness and health [44]. Reviews of the
importance of daylighting in schools [45,46] show relationships between the occupants’ responses and
natural lighting. The positive impact of daylight in classrooms was proven [47,48]. Daylighting in
educational buildings has been a topical task of professional projects [49–51]. Extensive surveys of US
schools in different climate conditions were performed [52]. The EU programme [53] promotes daylight
integration for high performance indoor environment in schools. These activities are in agreement
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with the main principles of sustainable development [54,55] and architectural design strategies [56–59]
as well as standard recommendations [60–62].

Daylight Measurements

Daylight illuminance was monitored in the classroom. The intention was to study the
classroom visual environment under the most characteristic daylight conditions throughout the
year. The measurement time was limited due to the accessibility schedule into the classroom.
Measurements were performed without pupils’ occupancy over weekends in March 2017.

The classroom is a spacious place of floor area 11.9 × 7.63 m and clearance height 4 m. It has three
big windows, of width about 2 m and height 2.5 m (Figures 3 and 4). The daylight measurements were
taken for a set of sixty points on a working plane. The plane is located 0.85 m over the classroom
floor level (Figure 4). The set of points is positioned in distance of 1 m around the room perimeter.
Spacing of the points is 1.10 m by 1.126 m. Simultaneously with the interior measurements, the external
illuminance was monitored on unshaded horizontal plane outdoors. Sky luminance was also studied.
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The daylight illuminance was measured using two calibrated illuminance meters Testo 545
(calibration 2017). One illuminance meter was taken for interior measurements and the second device
measured external horizontal illuminance. Laser rangefinder Bosch GLM 50 C Professional was used
to set points on the working plane. Tripods were also used to stabilize the illuminance meter at
the required height. The external illuminance sensor was positioned on the roof. The measuring
instruments were synchronized. Outdoor and indoor illuminance values were measured at the same
time. The illuminance data processing was carried out in MS Excel and Statistica software [63].

Furthermore, monitoring of the surface luminance was taken in the classroom visual field.
Luminance Meter LS-100 Konica Minolta is used for measurements.

Daylight Simulations

The classroom visual environment was also studied on the basis of daylight simulations.
The current state daylighting is compared with designed variations. The design state is represented by
renovation scenario II with two variations of window glazing (double or triple glass units). Daylight
simulations were run in software Daylight Visualizer [64] for the following parameters:

• light reflectance ρ [-] of the classroom surfaces in current state (resp. designed state): floor finishing
0.35 (resp. 0.5), wall surfaces 0.7 (resp. 0.9), ceiling 0.84 (resp. 0.9).

• window glass light transmittance τ [-]: double glazed units 0.81, triple glazed units 0.73.
• the south-east orientation of the classroom windows (Figure 5).

Daylight simulations were run for an annual balance of internal horizontal illuminance under
two sky models [65]:

• CIE clear sky model to simulate sunlight conditions.
• CIE overcast sky model for consideration of the most unfavourable daylight situation.

The balance was simulated for the 21st day of every month and daytime 12:00.
Finally, the classroom daylighting was also simulated for designed variations and compared with

standard requirements according to EN 17037 [61] as follows:

• Daylight illuminance simulated for the clear sky model on 21st June, at 12:00 was compared with
target illuminance 300 lux.

• Daylight factor simulation for the overcast sky model was compared with target daylight factor
DT = 2%.
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3. Results

The above mentioned energy auditing evaluation achieved notable results for the analysis of
the school buildings efficiency. Outputs of indoor thermal and daylight evaluations in the selected
representative of school classrooms show potential problems in the current state and give an overview
about some renovation scenarios.

3.1. Results of the Energy Audits Analysis

The analysis of selected school buildings energy audits gives an overview about their envelopes
and their influence on heat losses. Total heat transmission and ventilation losses of buildings vary
from 61.1 kW to 424.5 kW. Total annual energy consumption in the schools is between 265 and 3305 GJ
per year. Percentage of heat transmission losses of their building envelopes are following:

• 23.6% to 57.0% of external walls (U = 0.57 to 1.83 W m−2 K−1).
• 18.3% to 36.0% of roofs (U = 0.36 to 1.50 W m−2 K−1).
• 17.4% to 55.3% of windows (U = 2.30 to 3.50 W m−2 K−1), external doors (U = 3.50 to 6.50 W m−2 K−1).

The annual consumption of energy in dependence of the building volume is between 23.7 and
64.7 kWh.m−3 per year and consumption of energy for heating and domestic hot water vary from
19.8 to 61.7 kWh.m−3 per year. The heating energy consumption is quite high in the school buildings
compared to demands for low energy buildings (less than 50 kWh/m2 per year) and passive houses
(less than 15 kWh/m2 per year) [5] (Figure 6).
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3.2. Results of the Thermal Evaluation

Results of the external wall hygro-thermal evaluation are presented in Figure 7. The current wall
(U = 0.43 W m−2 K−1) and renovation scenarios (U = 0.29 W m−2 K−1) with internal and external
thermal insulation were studied. The figure shows schemes of vapour pressure distribution within the
wall and specification of potential condensation regions. An annual balance of condensed/evaporated
amount inside of the wall is summarized in graphs. It is clear that the interstitial condensation is fully
eliminated in the wall with external thermal insulation (renovation scenario II).
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Simulation outputs of two-dimensional temperature distribution of the window jamb details in
the current state and in the two renovation scenarios are shown in Figure 8. It is obvious that the
variation of the wall with external thermal insulation represents better temperature distribution and
more convenient design solution.
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Thermal stability of the classroom was evaluated for winter and summer season conditions.
The indoor temperature drop during a 24 h heating lapse in winter does not vary significantly when
comparing the existing state and two renovation scenarios (Figure 9). It is because of the relatively
small facade area compared to the big volume of the classroom. Three large windows of southeast
orientation represent massive solar gains and indoor temperature rise in summer seasons (Table 2).
It could bring about overheating problems during intensive solar shining periods. Solar gains can
affect indoor visual discomfort. For this reason, daylighting in the classroom was also evaluated for
clear sky conditions.
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Table 2. Results of assessment of the classroom thermal stability in summer.

Current State Renovated Scenario I, II

Total solar transmittance of window g = 0.65 Total solar transmittance of window g = 0.53
Solar gains 2141.64 W Solar gains 1746.26 W

Heat gain through facade 4857.30 W Heat gain through façade 3961.7
Heat ventilation loss Heat ventilation loss

(for ventilation rate 0.5 h−1) −32.78 W (for ventilation rate 0.5 h−1) −32.78 W
Total heat gain 6966.16 W Total heat gain 5675.24 W

Max. indoor temperature rise per day 16.5 ◦C Max. indoor temperature rise per day 14.7 ◦C

3.3. Daylight Study Resultss

The classroom daylighting was analysed for illuminance and luminance measured data and
daylight simulation outputs.

3.3.1. Measured Data Analysis

Data from illuminance measurements on the horizontal working plane in the classroom (from
Figure 4) are summarized in Figures 10 and 11. The daylight level is reduced with the distance from
windows. It is obvious that big differences in illuminance are in Row i close to the window line.
The illuminance differences are minimized in the room depth. Higher illuminance values in positions
of Line A and B at Row i are influenced due to the glossy whiteboard surface located near the big
window (Figure 3). It is also obvious from Figure 11, where illuminance is intensified at points 8, 9 and
10 of Row i. Illuminance at points 2, 6 and 10 is increased because of windows positions. Illuminance
difference between window/wall positions is reduced in the room depth—Rows iii to vi.
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The internal daylight illuminance measurement was carried out for simultaneous external
horizontal illuminance monitoring (Figure 12). Sky luminance was also controlled during the



Energies 2020, 13, 2489 11 of 17

illuminance measurement time. The luminance data recorded for four different directions (1 to 4) and
elevation angles 0◦, 15◦, 45◦ and 90◦ are summarized in Table 3.
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Figure 12. External horizontal illuminance measurements.

Table 3. Sky luminance data (4th March 2017).

Luminance [cd/m2] Lhorizon L15◦ L45◦ Lzenith

time Elevation Angle 0◦ 15◦ 45◦ 90◦

11:45

direction 1 1923 890 8337 1716
direction 2 961 4906 3393 1727
direction 3 1897 1634 1143 2065
direction 4 5437 2978 2148 1880

12:50

direction 1 4883 7204 1422 1514
direction 2 1081 2066 1070 1333
direction 3 824 2309 1752 1244
direction 4 1187 257 811 1299

Results of the luminance distribution monitored in the classroom are shown in Figure 13. Sunny
sky conditions were selected for the monitoring. The classroom windows are often affected by intensive
solar radiation. It is clear that surfaces with significantly different luminance in the visual field
of the classroom desks cause visual discomfort. Luminance distribution varies from 50 cd/m2 of
the blackboard to window glass luminance 9534 cd/m2. The ratio of minimal/maximal luminance
values is then 1:191, which is not in agreement with visual comfort recommendation for max 1:10
ratio [62]. Extremely high luminance ratio results in glare problems. Shading blinds must be activated
on the classroom windows (Figure 3). However full shading activation could minimise indoor
daylighting. An installation of efficient shading systems is recommended for dynamic reduction in
solar transmittance during intensive solar shining periods.
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3.3.2. Daylight Simulation Outputs

The annual balance of the classroom illuminance on the working plane shows monthly mean,
median, minimum and maximum values calculated for 21st day of every month and daytime 12:00
under clear and overcast sky conditions (Figure 14). Illuminance can be increased more than 300 lux in
the case of clear sky compared to cloudy sky conditions.
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Figure 14. Annual balance of the classroom illuminance for clear and overcast sky conditions.

Illuminance [lux] level on the horizontal working plane is shown in colour iso-lines in Figure 15
for the clear sky simulation on 21st June at 12:00. Mean, median, minimum and maximum illuminance
and uniformity values in the current and designed state of the classroom (renovated scenario II with
two variations of window glazing transmittance) are compared with standard target values [61,62] for
desks min 500 lux and desk surroundings min 300 lux. Despite high illuminance levels, a part of the
classroom does not comply with target illuminances.
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Figure 15. Working plane daylight illuminance, CIE clear sky (21st June, 12:00).

Daylight factor DF [%] distribution on the working plane was also simulated for the CIE overcast
sky conditions. The daylight factor was controlled with a target daylight factor in accordance with EN
17037 [61]. The target daylight factor DT = 2% is specified for target indoor illuminance 300 lux and
external diffuse horizontal illuminance 14,900 lux (locality Prague, Czech Republic). Minimum 50%
of the classroom working plane should have daylight level at least adequate to the target daylight
factor [61]. However, the daylight factor simulations show that the side lit classroom is too large to
comply with the mentioned standard requirements (Figure 16).
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4. Discussion

The analysis of heating energy demands in existing old school buildings shows the importance of
renovations for their energy efficiency. Indoor comfort demands are fundamental for schools and they
have even priority over energy saving requirements. The thermal and daylight evaluation results show
that renovation improvements could be sometimes counter-productive from the indoor comfort point
of view. The facade renovation with additional thermal insulation system and new windows reduces
heat transmission losses but also solar gains and daylighting. Building envelopes can be affected by
interstitial condensation, particularly constructions that are insulated from the interior side (Figure 6).
The renovation scenario of the brick wall with external thermal insulation appears to be the most
convenient design solution (Figures 7 and 8).

Simulation outputs of the temperature drop during the winter heating lapse show that the part
of the insulated facade has not desired effect on indoor thermal stability of the such voluminous
classroom (Figure 9). Results display that better thermal insulation quality of windows have not
significant influence on the winter thermal stability. Solar gains through big glazed areas cause
potential overheating problems during intensive solar shining periods, especially in summer seasons
(Table 2).

Windows are key elements influencing indoor climate comfort. The simulations show that the
classroom windows are not of great importance for heating energy reduction. However, they are
relevant to cooling needs, which is in agreement with design principles [32,33]. It indicates priority of
design optimisation of window glazing/shading parameters in dependence on their size, position and
orientation with regards to the indoor environment [59].

Window solar gains also influence indoor visual comfort. Daylight illuminance level was
controlled in the classroom (Figure 4). Daylight measurements display that the big southeast-oriented
glazed areas inflict uneven daylight distribution (Figures 10–12). It is also obvious from increased
luminance rates in the classroom visual field (Figure 13). Noticeable variations of interior luminance
cause visual discomfort. For example, surfaces in the visual field between the desk and the blackboard.
In addition, the positioning of the white glossy board near the window and next to the blackboard is
not convenient (Figures 3 and 13). Application of grey boards would be a more reasonable solution in
this case.

Daylight simulations show that despite big windows, the voluminous classroom is not properly
daylit. The design variation, with additional facade insulation and triple glazed windows, represents
daylight level reduction compared to the current room daylighting (Figures 15 and 16) (designed state,
τ = 0.73). Activation of shading blinds could also cause discomfort (Figure 3). Special shadings that
transmit diffusive skylight and reflect direct solar radiation [66] can be recommended for schools.
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Application of light guiding systems and anidolic ceilings [67] could bring better daylight uniformity
in large classrooms.

5. Conclusions

Existing school premises represent massive potentials for energy savings. The studied school
buildings were renovated in several stages and time periods. However, in many cases, they do
not perform the desired energy efficiency. Renovations of old buildings are often limited to partial
improvements. Nevertheless, the holistic approach towards a comfortable and energy efficient
indoor environment appears to be the most convenient strategy, especially for school buildings
renovation. This strategy is in agreement with temporary trends of sustainable buildings development.
Complex retrofits focused on building envelopes and their window/shading systems together with the
installation of efficient technical systems for heating, ventilation, cooling and artificial lighting could
bring desirable effects.
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