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Abstract: Households equipped with distributed energy resources, such as storage units and
renewables, open the possibility of self-consumption of on-site generation, sell energy to the grid,
or do both according to the context of operation. In this paper, a model for optimizing the energy
resources of households by an energy service provider is developed. We consider houses equipped with
technologies that support the actual reduction of energy bills and therefore perform demand response
actions. A mathematical formulation is developed to obtain the optimal scheduling of household
devices that minimizes energy bill and demand response curtailment actions. In addition to the
scheduling model, the innovative approach in this paper includes evolutionary algorithms used to
solve the problem under two optimization approaches: (a) the non-parallel approach combine the
variables of all households at once; (b) the parallel-based approach takes advantage of the independence
of variables between households using a multi-population mechanism and independent optimizations.
Results show that the parallel-based approach can improve the performance of the tested evolutionary
algorithms for larger instances of the problem. Thus, while increasing the size of the problem, namely
increasing the number of households, the proposed methodology will be more advantageous. Overall,
vortex search overcomes all other tested algorithms (including the well-known differential evolution and
particle swarm optimization) achieving around 30% better fitness value in all the cases, demonstrating
its effectiveness in solving the proposed problem.

Keywords: demand response; energy service provider; energy storage system; evolutionary
algorithms; optimization; photovoltaic generation

1. Introduction

In the current environmental world scenario, countries are adopting a series of counter measures
in what regards to the use of energy, renewable sources and DG (Distributed generator) [1]. In fact, the
European Union, according to the EU (European Union) renewable energy directive (2009/28/EC),
is pushing to their country members to achieve strict targets such as the of penetration of 20% of
renewables into the energy mix by 2020, and increase the quantity up to by 100% by 2050. Thus, in order
to achieve such ambitious targets, it is expected a systematic and elaborated transformation of the
electrical grid, in line with the ambitions of the EU [2].

In this scenario, new technologies such as PV (Photovoltaic) panels and battery systems emerge
as a viable solution to promote the penetration of renewables at the local level of the distribution
networks. Households equipped with PV generation and storage units became small producers
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(the so-called prosumers due to their condition of consumer and producer at the local level) and
provide a new source of flexibility to the systems [3]. Also, prosumers allow the implementation of
innovative energy management mechanisms to take advantage of DR (Demand Response) and on-site
generation. The correct coordination and use of such devices, through effective management and
optimization approaches, promises several benefits such as the reduction of energy bills for households
and the reduction of carbon-emission footprints in general.

Different approaches have been proposed to address the optimization of households equipped
with PV-battery systems. For instance, a MILP (Mixed-integer Linear Programming) problem was
formulated in [4] for the management of a residential community grid with renewables, batteries,
electric vehicles, and DR capabilities. This formulation searched for the minimization of purchased
energy cost. In [5], a similar approach was used to minimize operation cost of a smart building
considering DR and day-ahead energy resource management. In [6], the capabilities of MILP
were tested again under a similar problem formulation, showing that DR can be very effective in
different scenarios when a high penetration of renewables is available. On the other hand, some
MINLP (Mixed-integer Non-linear Programming) have extended the mathematical formulation to
include non-linearities and make the models close to real-world situations. For instance, in [7] a unit
commitment problem of a microgrid is formulated to optimize the amount of load reduction and
incentives given due to DR at different time intervals. Also, in [8], gas and electricity are included into
the energy mix model, and the day-ahead energy scheduling is optimized for energy hubs. Some other
approaches have explored the idea of an aggregator that works as an energy service provider. In this
case, households can apply DR actions following incentives or responding to a direct control signals
dictated by the aggregator. For instance, in [9], an aggregation of air conditioning loads is considered
to perform DR actions. The study in [10] is not only limited to DR actions but also considers storage
units to participate in energy and regulation markets. Also, in [11], a demand response simulator
to study actions and schemes of users in distribution networks was proposed. The study took into
account the technical validation of solutions including load reduction using a consumer-based price
elasticity approach supported by real time pricing.

Finally, due to the complexity of the problem, EA (Evolutionary Algorithms) has been proposed
in the literature trying to face issues such as scalability, memory requirements, time constraints,
and other related problems that arise in the context of demand response and hybrid PV-battery
systems. For instance, in [12], a bi-level formulation for optimal day-ahead price-based DR is proposed
and solved by a hybrid approach in which a multi-population genetic algorithm is used for the upper
level and distributed individual optimization algorithm for the lower level. Another hybrid genetic
algorithm is used in [13] to consider the interaction of electricity retailers and DR. More recently,
in [14] a PSO (Particle Swarm Optimization) algorithm is used for load shifting of appliances and
the scheduling of PV and storage equipment using a home energy management system. In [15],
the performance of evolutionary algorithms is compared solving a flexibility management model in
which home appliances can perform DR actions. In addition, evolutionary algorithms have been used
not only to optimize hybrid renewable energy systems [16] but also to coordinate the scheduling of
PV-storage systems [17–19].

In this paper, we extend the model proposed in [20], for optimization of households equipped
with PV-battery systems and DR capabilities. Different EAs, including DE (Differential Evolution, PSO,
VS (Vortex Search, and other variants, are implemented to solve the optimization problem (MILP),
and their performance and results are compared under two novel frameworks (one following the
typical framework of EAs and another taking advantage of parallel computing). Households are
provided with an independent management of resources minimizing energy bills and optimizing
DR curtailment. With the objective of improving the minimization of electricity costs for households,
with the support of an energy service provider, the contributions of this paper are as follows:

• An optimization framework for the optimization of PV-battery system of households minimizing
energy bills and DR actions.
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• A MILP formulation to optimize the resources of several households.
• Implementation of different EAs under two optimization approaches, one based on standard

evolutionary computation and a second one taking advantage of parallel computing.
• Assessment of the effectiveness of EAs and the optimization framework under a case study

considering up to 20 households.

The paper is organized as follows: after the introduction in Section 1; the proposed methodology
and the mathematical formulation is presented in in Section 2; Evolutionary algorithms applied in
this work are introduced in Section 3; Section 4 presents the two proposed optimization approaches
employed with the use of EAs to make use of parallel computing; the case study and results are provided
in Sections 5 and 6 respectively; and finally, the conclusions of this work are presented in Section 7.

2. Households Demand Response Optimization

In this section, is provided the description of the proposed optimization model, which aims to
minimize the energy bill and the user discomfort. The change in the consumption pattern is considered
to be a way of user discomfort. Since it is a rather complex problem to be computed at house level,
the proposed methodology considers an Energy Service Provider that performs the optimization for a
large set of households, and makes the results available for each one.

In each house, distributed energy resources are available, like PV generation, storage, and DR.
Accordingly, each household is a prosumer (a consumer able to produce electricity), equipped with a
PV and an energy storage system. Three appliances can be controlled by the optimization algorithm
to reduce the consumption in periods when the electricity price is higher. For this, it is assumed that
the household owns the needed control devices (e.g., plc). The PLC (Programmable Logic Controller)
controller unit manages the consumption and generation resources in the houses according to the
schedule received from the Energy Service Provider.

The mathematical formulation of the problem is an extension of [20] to consider up to I households
(unlike the original model designed to target only one household). Thus, the formulation corresponds
to a MILP model having as OF (Objective Function) Equation (1):

Minimize OF = Energy Bill + DR Curtailment Weight , (1)

where Energy Bill represents the costs of buying and selling electricity, while DR Curtailment Weight
quantifies the weight of the curtailment of loads due to DR. Thus, Equation (2) represents the energy
bill that households must pay due to the flow of energy exchanged with the main grid:

Energy Bill =
I

∑
i=1

(
T

∑
t=1

(
PGrid In

i,t × CGrid In
i,t − PGrid Out

i,t × CGrid Out
i,t

)
× 1

∆t

)
+ Fix Costi , (2)

where PGrid In
i,t represents the energy flow from the grid to the household, CGrid In

i,t represents the cost of
buying energy, PGrid Out

i,t is the energy flow from household to the grid, CGrid Out
i,t corresponds to the

revenue of selling energy to the grid, 1
∆t is a term that considers the modification of hourly values

to another time interval (e.g., 15 min in this article), Fix Costi represents the fixed tariff costs pay
by each household. i = {1, ...I} is used to identify households, and t = {1, ..., T} for the periods.
Notice that Equation (2) includes the sum of energy bill over all households. Therefore, minimizing
this overall value corresponds to reduce the bill for each particular household. Moreover, the energy
consumption/generation from households is independent, and thus, finding the minimum value for
Equation (2) guarantees that the minimum possible bill for each household is obtained.

On the other hand, Equation (3) is used to calculate the weight of DR actions:

DR Curtailment Weight =
I

∑
i=1

(
T

∑
t=1

(
L

∑
l=1

(
PCut

i,t,l × XCut
i,t,l ×WCut

i,t,l

)))
, (3)
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where PCut
i,t,l represents the energy load cuts, XCut

i,t,l are binary decision variables indicating a DR action,
WCut

i,t,l represents the weight of energy cuts, l = {1, ..., L} is used to represent loads available for DR.
It is important to point out, as explained in [20] that the energy bill (first term) and DR curtailment

(second term) can be seen as opposite objectives in Equation (1). This is because the curtailment of
loads reduces energy bills, but at the same time affects user comfort in different ways depending on
user preferences. In this work, however, we decided to select the DR weights of energy cuts following
a trend contrary to the buy from grid tariff to promote the use of DR when the price of energy is higher.
Other assumptions and targets can be explored in future work.

Equation (4) represents the energy balance at each period:

PGrid
i,t = PLoad

i,t + PBat
i,t −

L

∑
l=1

(
PCut

i,t,l × XCut
i,t,l

)
− PPV

i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (4)

where PGrid
i,t represents the energy flow between grid and household, PLoad

i,t represents consumption
from non-controllable loads, PBat

i,t corresponds to energy charge/discharge of batteries (charge or
discharge) and PPV

i,t represents the energy generated by PV panels.
Equation (5) is applied to obtain the flow of energy between the grid to household:

PGrid In
i,t = PGrid

i,t ≥ 0, ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} . (5)

Equation (6) is applied to obtain the energy flow from households to the grid (exported energy):

PGrid Out
i,t = PGrid

i,t < 0, ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} . (6)

Equation (7) represents the balance of the batteries for all households at all periods:

EBat
i,t = EBat

i,t−1 + PBat
i,t ×

1
∆t

, ∀i ∈ {1, ..., I}, ∀t ∈ {2, ..., T} , (7)

where EBat
i,t is the state of the battery of household i at period t, and EBat

i,t−1 represents the previous state
of the battery of household i at period t− 1. Equation (7) is applied from the second to the last period
of optimization, while EBat

i,1 is an input parameter of the case study.
Equation (8) is used to represent the bounds of PGrid

i,t variable:

PGridmin
i,t ≤ PGrid

i,t ≤ PGridmax
i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (8)

where PGridmin
i,t corresponds to the lower bond and PGridmax

i,t to the upper bound values of PGrid
i,t .

Equation (9) represents the upper bound (maximum cut capacity) for the variable PCut
i,t,l :

PCut
i,t,l = PCutmax

i,t,l , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T}, ∀l ∈ {1, ..., L} . (9)

Equation (10) presents the bonds for the variable EBat
i,t .

0 ≤ EBat
i,t ≥ EBatmax

i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (10)

where EBatmax
i,t are the upper bound of variables EBatmax

i,t .
Equation (11) presents the bound for the variable PBat

i,t :

− PBatdch
i,t ≤ PBat

i,t ≥ PBatch
i,t , ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T} , (11)

where −PBatdch
i,t and PBatch

i,t are the lower and upper bounds of the variable PBat
i,t .



Energies 2020, 13, 2466 5 of 18

Equation (12) represents the bounds for the variable XCut
i,t,l .

XCut
i,t,l =

{
1
0

, ∀i ∈ {1, ..., I}, ∀t ∈ {1, ..., T}, ∀l ∈ {1, ..., L} , (12)

where variable XCut
i,t,l can takes the value of ‘1’ when the cut is active and the ‘0’ when the cut is

not active.

3. Evolutionary Computation

EC (Evolutionary Computation) is one of the three pillars of computational intelligence (along with
artificial neural networks and fuzzy systems). EC includes a set of algorithms for optimization inspired
in biological and evolutionary processes [21]. In fact, there are in the literature now a huge set of
algorithms available for optimization, but in general, they can be grouped in some popular categories
such as EA, SI (Swarm Intelligence), nature-inspired algorithms, natural computation, etc.

In this paper, we focus our attention in a class of algorithms that share some common mechanisms.
This choice eases the experimental analysis since a fair comparison can be performed between the
algorithms. Figure 1 illustrates the evolutionary mechanism employed by the selected EAs. Thus,
in a first stage, an encoding of solutions and a fitness function are defined for a particular problem.
The EAs act over an initial set of candidate solutions encoded as vectors (i.e., a population) that is
iteratively updated through generations. The way in which new solutions are created from the initial
population is what distinguish each EAs (i.e., each of the selected EAs has its own variation operator).
Solutions’ performance is measured by the fitness function, and at each generation, solutions with
inferior performance are replaced by the new solutions with better performance. It is empirically
proved that by the principles of natural selection (or artificial selection in this case), the population
will gradually evolve towards an optimal fitness value.

Evolutionary

cycle

Best solution

Scheduling

Stop

?

Variation 

operators

New 

solutions

Current

solutions

Evaluation

Replacement

Initialization

Evaluation

(fitness)

Selection

Yes

No

Different for 

each EA

Algorithm:

Encoding

Fitness function

Parameters

Case Study Input:

Initial battery SoC

PV and load forecast

Energy tariffs

DR weights

For each household:

Batteries’ state

Load curtailment

Figure 1. Typical optimization scheme of evolutionary algorithms. All the evolutionary algorithms
used in this work follow this scheme.

We describe the solution encoding and fitness function shared by the selected EAs in Section 3.1.
After that, a brief description of the chosen algorithms is provided in Section 3.2.
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3.1. Solution Encoding and Fitness

The optimization problem searches for the optimal scheduling of charging and discharging cycles
of batteries and the choice of which loads are used for DR curtailment, for each user (as stated in
Section 2).

Therefore, the selected encoding should include all the information to validate a solution, and it
is very similar to that used in [20], but generalized for I users. Figure 2 shows the structure of a
given solution in our framework. The solution first include continues variables representing the
charging/discharging state (positive for charging, and negative for discharging) of the users’ battery,
at all periods t, for each user i. Therefore, this set includes T× I variables Then, a second set of binary
variables is used to indicate a cut action in all load l (‘1’ if load l is curtailed, and ‘0’ if not), at all
periods t, for each user i. Therefore, this second set includes L× T × I binary variables. In general,
a complete given solution to the problem is of dimension D = T × I × (1 + L). The variables are
bounded by:

~xlb = {−Pdchmax
i,t , Xcutmin

i,l,t }, i = {1, ..., I}, t = {1, ..., T}, l = {1, ..., L} , (13)

~xub = {Pchmax
i,t , Xcutmax

i,l,t }, i = {1, ..., I}, t = {1, ..., T}, l = {1, ..., L} . (14)

Thus, the EAs can generate initial populations with random candidate solutions between those
bounds using a random function such as:

~xj = rand( ~xlb, ~xub), j = {1, ..., Nsol} , (15)

where rand( ~xlb, ~xub) generates a random solution between the bounds defined in Equations (13) and (14),
and Nsol is the size of the population defined by the user.

Since the formulation includes constraints that can be difficult to optimize by the algorithms, we
apply some direct repair techniques to ease the generation of feasible solutions. Equation (16) presents
the direct repair mechanism employed to keep variables EBat

i,t into the allowed limits:

EBat
i,t =


0, i f EBat

i,t < 0
EBatmax

i,t , i f EBat
i,t > EBatmax

i,t
PBat

i,t , otherwise
, ∀i ∈ {1, ..., I}, ∀t ∈ {2, ..., T} , (16)

where variable EBat
i,t represent the energy state of charge of the battery. EBat

i,t < 0 represents a discharge state
greater than the allowed one, so that the variable is fixed to its minimum value. When EBat

i,t > EBatmax
i,t ,

the battery has charged more energy than the allowed, thus, the value of maximum energy in the
battery is fixed the maximum allowed value. After repairing the state of charge, variables PBat

i,t should
also being repaired as:

PBat
i,t =


EBat

i,t − EBat
i,t−1, i f EBat

i,t < 0
EBat

i,t − EBat
i,t−1, i f EBat

i,t > EBatmax
i,t

PBat
i,t , otherwise

, ∀i ∈ {1, ..., I}, ∀t ∈ {2, ..., T} . (17)

Notice that variable PBat
i,t is repaired following the same conditions of Equation (16).

This procedure guarantees feasible solutions, helping in the iterative process of the EAs.
Since the encoding has been designed to include all information needed to evaluate the

mathematical model from Section 2, the fitness function is taken directly from Equation (1) including
penalties due to the possibility of generate infeasible solutions. Therefore, the fitness value includes
the energy bill (costs and revenues), fixed costs, and DR curtailment weight off all users plus penalties:

Fitness(~xj) = f (~xj) + pfunction(~xj) , (18)
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where f (~xj) is equivalent to Equation (1), and pfunction(~xj) is a function that returns a penalty value
associated with the violation of the limits of variable PGrid

i,t for each user i at each time t, defined as:

pfunction(~xj) =
I

∑
i=1

T

∑
t=1

ρi,t , (19)

ρi,t =


0− PGrid

i,t , if (PGrid
i,t < 0)

PGrid
i,t − PGridmax

i,t , if (PGrid
i,t > PGrid min

i,t )

0 otherwise
, (20)

where ρi,t is a penalty factor related to the limits of variable PGrid
i,t . Notice that direct repair methods

are used to avoid as much as possible violations of constraints (see direct repair methods in [20]), yet,
due to the stochastic nature of EAs, infeasible solutions may arise for large instances (as the result
section shows).

{𝑃1,1
bat … 𝑃1,𝑇

bat} … {𝑃𝐼,1
bat … 𝑃𝐼,𝑇

bat}

Batteries of all households

Ԧ𝑥1=

Ԧ𝑥2=

…

Ԧ𝑥𝑁sol
=

{𝑋1,1,1
cut 𝑋1,1,2

cut … 𝑋1,𝐿,𝑇
cut } … 𝐷 = 𝑇 ∗ 𝐼 ∗ (1 + 𝐿){𝑋𝐼,1,1

cut 𝑋𝐼,1,2
cut … 𝑋𝐼,𝐿,𝑇

cut }

Loads for DR of all households
𝑇 ∗ 𝐼 𝐿 ∗ 𝑇 ∗ 𝐼

Total dimension

of each individual

Subsequent

households

Subsequent

households

Figure 2. Solution encoding. The individual structure used by the EAs include all information needed
to evaluate a solution.

3.2. EAs used for DR of Households

Now that we defined the encoding of individuals and the fitness function, we apply EAs following
the scheme from Figure 1 to solve the problem. In this paper, we apply DE and two of its variants
hyde and HyDE (Hybrid Differential Evolution) (due to its success in many applications and easy
implementation [22]), an improved version of the well-known PSO, and the vs [23]. In the following
subsections, we provide a brief description of the algorithms, and their variation operators that
distinguish each of them.

3.2.1. Differential Evolution

DE uses a Pop (Population) of individuals ~xj,i,G = [x1,i,G, ..., xD,i,G], where G is the number of
iterations, i = [1, ..., NP] is the index of individuals in the population, and j = [1, ..., D] is the index
for the variables to optimize. In the initialization stage, NP solutions are generated randomly within
lower and upper ranges ~xlb and ~xub. In the standard form of DE, the so-called DE/rand/1 algorithm,
new solutions are created applying a mutation and recombination operator defined by:

~mi,G = ~xr1,G + F(~xr2,G −~xr3,G) , (21)

~tj,i,G =

{
~mi,G if (randi,j[0, 1] < Cr) ∨ (j = Rnd)
~xj,i,G otherwise

, (22)

where ~xr1,G,~xr2,G,~xr3,G ∈ Pop are three random individuals from the Pop, mutually different from
each other. F and Cr are the mutation and recombination parameters of DE, usually set in the range
[0, 1]. The fitness function, (i.e., Equation (18)), is used to evaluate the performance of new individuals.
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An elitist selection procedure is applied in DE by replacing solution with worse performance than the
new generated ones. A detailed explanation of DE can be found in [24,25].

3.2.2. Hybrid Adaptive DE

HyDE is a new self-adaptive version of DE proposed in [25]. The distinguish HyDE variation operator,
known as “DE/target-to-perturbedbest/1”, modifies the well-known DE/target-to-best/1 strategy [22]
perturbing the best individual (similar to the evolutionary PSO [26]). HyDE also integrate a self-adaptive
parameter mechanism (taken from the jDE (Self-Adaptive Differential Evolution algorithmm [27]).
The main operator of HyDE is defined as follows:

~mi,G = ~xi,G + F1
i (ε ·~xbest −~xi,G) + F2

i (~xr1,G −~xr2,G) , (23)

where F1
i and F2

i , are scale factors in the range [0, 1] independent for each individual i, and ε = N (F3
i , 1)

is a random perturbation factor following a normal distribution with mean F3
i (random number in the

range [0, 1]) and standard deviation 1. F1
i , F2

i and F3
i are updated at each iteration with the same rule

of jDE algorithm (see Section III.B of [25]).

3.2.3. Hybrid Adaptive DE with Decay Function

HyDE-DF is an improved version of HyDE used for function optimization [28]. The main different
in its operation is the incorporation of a decay function that allows a transition in the iterative process
from the main operator of HyDE (Equation (23)) to the basic operator of DE (Equation (21)):

~mi,G = ~xi,G + δG · [F1
i (ε ·~xbest −~xi,G)] + F2

i (~xr1,G −~xr2,G) , (24)

where δG is a decreasing function (from 1→ 0) that gradually mitigates the influence towards xbest,
and takes advantage of the inherent DE exploitation capabilities in later stages of the evolutionary
process. The decay factor at each generation G is calculated as:

δG = e1−1/a2
; with a = (GEN − G)/GEN . (25)

δG factor alleviate the premature convergence effect towards the best individual in the population
(i.e., due to the term F1

i (ε ·~xbest −~xi,G)). Such transition also allows an enhance exploration phase in
the early stages of evolution, and improves exploitation in later stages of the optimization. HyDE-DF
achieved third place (out of 36 algorithms) in the 100-digit challenge at CEC/GECCO 2019 [29].

3.2.4. PSO-LVS

PSO [20] belongs to the class of SI, in which particles (solutions to the problem) coordinate their
actions by modifying their position towards the optimum value. Particles are evaluated in the fitness
function and improve their position in each iteration using the following variation operator:

~xj,i,G = ~xj,i,G−1 + ~vj,i,G , (26)

~vj,i,G = wG · ~vj,i,G−1 + c1G · rand() · (Pbest
i − ~xj,i,G−1) + c2G · rand() · (Gbest − ~xj,i,G−1) , (27)

where ~vj,i,G represents the velocity vector, wG is the inertia weight, c1G and c2G are the are acceleration
coefficients for personal and global component, rand() is a uniformly distributed random number,
Pbest

i is the historical best position obtained by particle i while Gbest is the population historical best
position obtained by the swarm.
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PSO-LVS (PSO with Local Vortex Search) (Equation (28)) is a variant of PSO developed by the
authors that includes a local search based on the VS algorithm. The movement of PSO-LVS is therefore
obtained by following equation:

~xj,i,G =

 ~xj,i,G = ~xj,i,G−1 + ~vj,i,G i f , rand() ≤ PPSOG

p(~m/µ, Σ) = 1√
(2π)d |Σ|

exp
{
− 1

2 (~x− µ)GΣ−1(~x− µ)
}

otherwise, (28)

where PPSOG is a probability factor that switch between PSO standard equation and VS. Another difference
is that µ in Equation (29) is replaced by Gbest. In addition, PPSOG = 0.9

G
8 is a probability that decreases in

function of the number of generations. With this method, it is expected the execution of LVS (Local
Vortex Search) in later stages of the iterative process.

3.2.5. Vortex Search

VS is classified as a single-solution-based metaheuristic, although it has an analogous framework
to the EAs selected for this study. In each iteration, N given number of neighbor solutions are generated
using a multivariate Gaussian distribution around the initial solution using:

p(~m/µ, Σ) =
1√

(2π)d|Σ|
exp

{
−1

2
(~x− µ)GΣ−1(~x− µ)

}
, (29)

where d represents the dimension, ~x is the d× 1 vector of a random variable, µ is the d× 1 vector of
sample mean (center), and Σ is the covariance matrix. The N solutions generated with this function are
evaluated in the fitness function, and the best solution replaces the initial single-solution. The radius
of search is gradually reduced during the iterative process, favoring exploitation capabilities in the
final iterations. This process is iterative repeated until a stop criterion is achieved [23].

4. Non-Parallel and Parallel-Based Approaches

In this paper, given the nature of the mathematical formulation, and the independence of
variables between households, we propose two approaches to use the EAs. In the first approach
illustrated in Figure 3, so-called non-parallel approach, all variables are combined in a single encoding
(explained in Section 3.1). Thus, the EAs use their variation operators over the whole set of variables,
until a stop criterion is achieved. This is the typical form in which an EA is applied to solve a
given problem.

Single population 

with all information

Household 1

.

.

.
Household I

Household 2

EA Solution

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

In the non-parallel approach, the EA optimizes 

all households at once

Figure 3. The non-parallel approach optimizes all variables in one population. This is in line with the
typical mechanism of EAs.

However, the problem formulation assume that each household scheduling is independent
from each other, since their resources are individual and not shared among them. Thus, in the
second approach illustrated in Figure 4, variables are divided in groups corresponding to each
household. After that, multi-populations are generated and optimized independently by a chosen EA.
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The independent solutions are combined in a post-optimization stage, to calculate the total costs of all
households. While the solution returned by both approaches is equivalent, results show that breaking
the groups of variables into sets corresponding to each household in fact improves the performance of
the EAs. In addition, the parallel-based approach can make use of distributed computing, running in
parallel different EAs and improving convergence times.

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

In the parallel-based approach, the EAs 

optimize each households independently

Household 1

.

.

.
Household I

Household 2

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

Ԧ𝑥1

…

Ԧ𝑥𝑁𝑠𝑜𝑙

EA

EA Solution 1

Solution 2

Solution I

Solution

Multi-population

(one for each household)
Solutions are 

combined

EA

Figure 4. The proposed parallel-based approach breaks the solution into parts corresponding to the
variables of each household. After that, each EA optimizes the variables and a post-optimization
procedure combines the solutions into a single solution.

5. Case Study

We design a case study to evaluate our framework considering households representing
prosumers complying with actual Portuguese legislation, which allows small producers (consumers
with local generation) to use their energy to satisfy their own load needs, and inject excess of energy to
the grid. We assume that households are equipped with PV panels with a maximum power capacity of
7.5 kW and a battery unit belonging to one of the four models showed in Table 1 (distributed randomly
within the households). In addition, households equipped with controllable loads can reduce 10% on
average of their total consumption.

Table 1. Battery models used for the case study, taken from [30].

PchmaxPchmaxPchmax −Pdchmax−Pdchmax−Pdchmax EBatmaxEBatmaxEBatmax

Laboratory battery used in [20] 1.5 kW −1.5 kW 12 kWh
Tesla Powerwall 5 kW −5 kW 13.5 kWh
Alpha Smile 2.87 kW −2.87 kW 14.5 kWh
Sonnen 3.3 kW −3.3 kW 15 kWh

For consumption and PV generation, two sample power profiles were used to generate data of
residential households. The profiles were built using real open datasets available at PES ISS website
[31]. With these base profiles, up to 20 households’ data was generated using a randomized function
with a uniform distribution, ±25% around the base profiles.

Figure 5 shows the retail tariffs and PV generation of the base profiles. We assume that households
have a power supply contract with a given retailer of 11 kW characterized by three different periods:
peak (0.33 EUR/kWh), intermediate (0.16 EUR/kWh), and off-peak (0.093 EUR/kWh). We also consider
a feed-in tariff of 0.095 EUR/kWh and a DR weight with a trend contrary to the buy from grid tariff,
i.e., promoting the use of dr when the price of energy is higher (these weights are applied to the second
term of Equation (1)). Tariffs are based on real values of a Portuguese retailer.

Figures 6 shows the aggregated consumption profiles of 20 households. Notice that the aggregated
profile correspond to a typical profile since data from households is generated following base profiles,
which in practice might not be the case. However, this paper is focused on the performance of
EAs rather than the impact in the diversity of consumers. Further studies can be done considering
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households with diverse characteristics and their impact in costs and DR curtailment. Figure 7 the
total aggregated consumption and generation of 20 households. Finally, input values of variables for
each household are summarized in Table 2

Table 2. Input variables of the problem. Values are applied to each household.

Parameter Variable Value Units

Maximum power injected to the grid PGridmax
i,t 5.1 kW

Maximum power required from grid PGridmin
i,t 1000 kW

Maximum battery capacity EBatmax
i,t 12, 13.5, 14.5, 15 kW

Battery charge/discharge rate BBatch
i,t /BBatdch

i,t 1.5, 5, 2.87, 3.3 kWh
Initial state of charge of batteries EBatmax

i,1 0 kWh
PV maximum generation capacity PPV

i,t 7.5 kW
Total Periods T 96 -
Total of controllable loads L 3 -
Total of batteries B 1 -
Total of PV units - 1 -
Adjust parameter * ∆t 4 -

* 1The factor of 4 is used since there are four 15-min periods in an hour.
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Figure 5. Considered tariffs and PV generation base profile.
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Figure 7. Aggregated consumption and production.

6. Results

We present the results of our methodology applied to the case study of Section 5. The experiments
were implemented using MATLAB2018a, in a computer with Intel Xeon(R) E5-2620v2@2.1 GHz
processor with 16GB of RAM running Windows 10. All the algorithms were run for 30 times (given the
stochastic nature of eas), so the reported results correspond to the average of those runs.

We perform four different experiments based on the number of households and the ea
optimization approach. Table 3 show the four cases, identified by the letter C1-C4, related to the
experiments. C1 is designed to assess the selected eas under the non-parallel approach considering two
households. C2 also considers two households but under the parallel-based approach. C3 and C4 assess
eas under non-parallel and parallel-based approaches respectively, but considering 20 households.

Table 3. Available equipment in houses for analyzing the impact of storage and dr.

Case Two Households 20 Households Non-Parallel Parallel-Based

C1
C2
C3
C4

The parameters for each tested ea were selected following the recommendation of previous
studies. Therefore, for de, the mutation factor and recombination constant (F and Cr) were set to
0.5 and 0.9 respectively [32]. hyde and HydE-DF [25] are a self-adaptive parameter versions but
initial values for Fi and Cr where set to 0.5. For PSO-LVS the wG inertia weight is linearly decreasing
with the number of iterations between 0.9 and 0.4 [33]. The constants c1G is set 0.5 and c2G set 1.8.
For variables boundary control Bounce Back method is used. VS algorithm does not have any parameter
to configure [23]. To make a fair comparison, all the algorithms used a population of 20 initial solutions
and run for 4e3 iterations.

Figure 8 shows the convergence of the tested algorithms considering the two players and the
non-parallel and parallel-based approaches (C1 and C2 cases). It can seem that VS presents the best
convergence performance in both cases. HyDE-DF and HyDE show similar performance (in fact,
convergence lines are overlapped in Figure 8b, which indicates that the improvements incorporated in
HyDE-DF (that showed remarkable performance in the 100-digit challenge [29]) have almost no impact
solving the proposed problem. Overall, the parallel-based approach seems to slightly improve the
performance of all algorithms, without modifying the overall ranking of them. In fact, VS algorithm
obtains a similar final valor.
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Figure 8. Average convergence of the tested EA considering two players under: (a) non-parallel
approach (case C1); (b) parallel-based approach (case C2).

Figure 9 shows the results when increasing the number of players to 20 (C3 and C4 cases).
In this case, while the non-parallel approach degrades the convergence performance of all EAs,
the parallel-based approach keep the convergence performance and increasing only the final fitness
value related with the cost of more households (see for instance Figures 8b and 9b). In summary,
the parallel-based approach can help EAs in finding quality solutions for even large instances of
the problem. Also, notice that DErand and PSO-LVS, apart from showing the worse performance,
switch their convergence behavior when the non-parallel approach is used and the number of players
increases (see for instance Figures 8a and 9a). That result shows evidence of their lack of robustness,
since their performance should not be affected by the increase of the number of players
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Figure 9. Average convergence of the tested EA considering 20 players under: (a) non-parallel approach
(case C3); (b) parallel-based approach (case C4).

We also analyze the average fitness and associated costs/revenues obtained by the EAs in all the
cases. Tables 4–7 present the average values of fitness, time, daily bill and DR curtailment, as well
as the calculation of fitness percentage improvement, taking as reference the worst fitness value in
each case. Table 4 shows the average results obtained in the case C1. First thing to observe is that
VS presents the lower fitness value, but also the higher optimization time. However, all EAs present
similar optimization times (ranging from 1.15 to 1.5 min). Regarding costs/revenues, it is interesting
to note that despite VS obtains the best fitness value, its daily costs (Daily Bill column in the table)
is slightly higher than that obtained by DE. This is explained by column DR curtailment, which
shows that DE activates DR curtailment in a higher degree than the other algorithms. While this is
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beneficial for the energy bill, it also represents a higher number of interruption of loads during the day,
which can impact user comfort in some degree. Notice that DR curtailment in the formulation is not a
monetary cost, but rather a weight associated with the interruption of loads. Future work can study
the multi-objective nature of the formulation to optimize both terms in Equation (1) simultaneously.
Finally, VS achieved the best performance with an improvement of around 30 % compared to PSO
(worst algorithm for case C1).

Table 5 presents the results corresponding to case C2. It can seem that the general trends,
as reported in case C1 results, are followed by the EAs when low number of households are considered.
Mean Fitness and overall daily bills are slightly improved. Optimization times are equivalent, but
it should be taken into account that column Time reflects the sum of the independent optimization
of both households. Such optimizations can be done in parallel since are independent, reducing the
optimization time by half, while obtaining better results regarding fitness and daily bills. In case C2,
VS again achieved the best performance with an improvement of around 20 % compared to PSO (worst
algorithm for case C2).

Table 4. Case C1: Fitness value and associated costs considering two households and non-parallel EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 10.69 0.46 1.16 9.29 −2.75 1.02 7.56 226.94 1.68 4.52
PSO 11.19 0.44 1.14 10.29 −2.11 1.02 9.21 276.25 0.75 0.00
HyDE 9.94 0.78 1.43 10.13 −1.21 1.02 9.95 298.43 0.00 11.23
HyDE-DF 9.59 0.83 1.42 9.78 −1.18 1.02 9.62 288.74 0.00 14.35
VS 7.77 0.08 1.48 9.09 −2.43 1.02 7.69 230.65 0.08 30.57

* Daily bills are calculated as buy Costs − sell Revenues + fixed Costs. ** Monthly bill on average
considering 30 days.

Table 5. Case C2: Fitness value and associated costs considering two households and parallel-based EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 9.30 0.34 1.03 9.34 −2.80 1.02 7.56 226.84 0.54 2.03
PSO 9.49 0.22 1.05 9.79 −2.04 1.02 8.77 263.21 0.28 0.00
HyDE 8.64 0.41 1.31 9.66 −1.97 1.02 8.72 261.55 0.00 8.97
HyDE-DF 8.67 0.46 1.30 9.53 −1.67 1.02 8.88 266.46 0.00 8.68
VS 7.68 0.03 1.36 9.27 −2.62 1.02 7.67 230.18 0.00 19.06

* Daily bills are calculated as buy Costs − sell Revenues + fixed Costs. ** Monthly bill on average
considering 30 days.

When the number of households increases, different conclusions are achieved. Tables 6 and 7
present the results corresponding to cases C3 and C4. The first thing to remark are the high fitness value
reported by DE and PSO-LVS in case C3. Such high values are associated with the inability of both
algorithms to find feasible solutions (i.e., the solutions include penalties explained in Equation (19)).
Therefore, it is confirmed that these two algorithms are very sensitive to the increase in the number of
households when the non-parallel approach is used. Such situation is corrected by the parallel-based
approach, as Table 7 shows. In fact, the advantage of using this approach is stressed concerning fitness
and daily bill values when the number of households is increased. Notice that since optimization times
in the parallel-based approach correspond to the sum of independent optimizations, increasing the
number of households affect notably the optimization times (see column Time of Table 7). However,
such independent optimization can be performed in parallel reducing the time considerable depending
the available parallel computing capacity. For instance, in MATLAB using four workers in the parallel
pool (four parallel optimizations), the optimization time can be reduced by a factor of 5. Overall, VS
achieved the best performance in both cases, with an improvement of around 22% compared to HyDE
in case 3 (worst algorithm without considering DE and PSO due to reported infeasible solutions) and
around 25% in case C4 compared to PSO.
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Table 6. Case C3: Fitness value and associated costs considering 20 households and non-parallel EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 4672.93 2362.42 3.98 104.67 −35.33 10.24 79.57 2387.22 4.31 -
PSO 626.70 602.42 3.70 147.50 −19.79 10.24 137.94 4138.31 2.03 -
HyDE 149.45 3.86 4.93 150.40 −11.17 10.24 149.47 4484.04 0.02 0.00
HyDE-DF 148.58 4.26 4.93 150.59 −11.99 10.24 148.84 4465.34 0.03 0.58
VS 115.69 3.95 5.51 83.17 −33.48 10.24 59.93 1797.81 2.57 22.59

* Daily bills are calculated as Buy costs − Sell Revenues + Fixed Costs. ** Monthly bill on average
considering 30 days.

Table 7. Case C4: Fitness value and associated costs considering 20 households and parallel-based EAs.

Fitness Time Costs Revenues Fixed Daily Monthly DR Imp
mean std (min) ( e) (e) Costs ( e) Bill * ( e) Bill ** ( e) (%)

DE 82.72 2.24 9.69 86.54 −31.95 10.24 64.83 1944.86 0.82 2.36
PSO 84.72 0.90 9.60 92.32 −25.01 10.24 77.55 2326.41 0.39 0.00
HyDE 77.83 2.40 11.87 89.79 −21.38 10.24 78.65 2359.42 0.02 8.13
HyDE-DF 76.77 2.24 11.77 89.21 −20.02 10.24 79.43 2382.86 0.00 9.38
VS 63.19 0.26 12.31 84.29 −31.53 10.24 63.00 1889.92 0.01 25.41

* Daily bills are calculated as Buy costs − Sell Revenues + Fixed Costs. ** Monthly bill on average considering
30 days.

7. Conclusions

In this paper, a different EAs are used to solve an optimization problem considering
households with PV-battery systems and DR. Taking advantage of the independence of variables
between households, two optimization approaches, non-parallel and parallel-based, are proposed.
Results showed that EAs using the parallel-based approach provide solutions with better fitness value
when the number of households increases. It was demonstrated that the direct application of an
EA to larger instances of the problem (the non-parallel approach) has poor convergence capabilities
(despite being very efficient when applied to one or two households). On the other hand, the proposed
parallel-based approach showed excelled performance even when increasing the number of households.
It is important to notice that the parallel-based approach is only valid for a framework as the one
assumed in this work (which is actually a very likely real scenario due to the possible resistance of
households to share data or equipment between peers), so changing such conditions might require a
hybrid non-parallel and parallel approach. Overall, VS algorithm overcomes other tested EAs when
using both optimization approaches. In fact, improvements of 30.57 % for case C1, 19.06 % for case C2,
22.59 % for case C3, and 25.41 % for case C4, were achieved with VS (best performance) compared to
PSO (worst performance). Another advantage of the parallel-based approach is related to the possibility
of using parallel computing to reduce optimization times while obtaining solutions with good quality.
From the practical point of view, in this work we have envisaged the involvement of an Energy Service
Provider that performs the optimization of households equipped with distributed energy resources
(like PV generation, storage, and demand response) and the needed control devices. In this way, several
business models can be explored by the Energy Service Provider within this framework. For instance,
the service provider can charge a fee or commission from the total bill reduction achieved by the
households, or receive incentives from upper level actors (such as the DSO) for the reduction of peak
demand through DR. These two options, and other business model possibilities exploring the use
of available infrastructure for practical implementations can be explored in future work. Another
line of research for future work is related to the mathematical model. In this work, energy bill and
DRdr curtailment are combined into a single objective formulation despite being terms that can be
optimized in function of user preferences. Thus, multi-objective optimization versions of EAs can
be employed to find Pareto optimal solutions. Moreover, a relation between DR curtailment and
user comfort was not explicitly defined in this study, so another line of research can be followed
concerning the modelling of user comfort. Finally, the practical implementation of EAs is also worth
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to be explored in future works. The parallel-based approach uses a multi-population similar to that
used by coevolutionary algorithms, so testing those kinds of algorithms and their performance in this
problem since a good research avenue. In addition, in this study the parallel-based approach was
implemented sequentially, so optimization times reflect the sum of all independent optimizations.
In a future study, the implementation of an actual parallel platform can be proposed to handle larger
instances of the problem and assess the reaches and scalability of the approach.
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Abbreviations

The following abbreviations are used in this manuscript:

DE Differential Evolution
DG Distributed generator
DR Demand Response
EA Evolutionary Algorithms
EC Evolutionary Computation
EU European Union
HyDE Hybrid Differential Evolution
HyDE-DF HyDE with Decay function
jDE Self-Adaptive Differential Evolution
LVS Local Vortex Search
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Non-linear Programming
OF Objective Function
PLC Programmable Logic Controller
Pop Population
PSO Particle Swarm Optimization
PSO-LVS PSO with Local Vortex Search
PV Photovoltaic
SI Swarm Intelligence
VS Vortex Search

Nomenclature

Indices
l Controllable load
i Household
t Period
Parameters
PLoad

i,t Consumption from non-controllable loads
CGrid In

i,t Cost of buying energy
PPV

i,t Energy generated by PV panels.
PCut

i,t,l Energy load cuts
Fix Costi Fixed tariff costs
PGridmin

i,t Lower bond for buying energy
PBatdch

i,t Lower bound for discharge the battery
CGrid Out

i,t Revenue of selling energy
PGridmin

i,t Lower bond for buying energy
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PBatdch
i,t Lower bound for discharge the battery

CGrid Out
i,t Revenue of selling energy

∆t Time adjust parameter
L Total of controllable loads
I Total of households
T Total of periods
EBatmax

i,t Upper bound battery energy level
PBatch

i,t Upper bound for charge the battery
PGridmax

i,t Upper bound for selling energy
WCut

i,t,l Weight of energy cuts

Variables
XCut

i,t,l Binary decision variables for DR action
PBat

i,t Energy charge/discharge of batteries
PGrid

i,t Energy flow
PGrid Out

i,t Energy flow from household to the grid
PGrid In

i,t Energy flow from grid to the household
EBat

i,t State of the battery
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