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Abstract: Reliable energy models are needed to determine building energy performance. Relatively
detailed energy models can be auto-generated based on 3D shape representations of existing buildings.
However, parameters describing thermal performance of the building fabric, the technical systems,
and occupant behavior are usually not readily available. Calibration with on-site measurements
is needed to obtain reliable energy models that can offer insight into buildings’ actual energy
performances. Here, we present an energy model that is suitable for district-heated multifamily
buildings, based on a 14-node thermal network implementation of the ISO 52016-1:2017 standard.
To better account for modeling approximations and noisy inputs, the model is converted to a stochastic
state-space model and augmented with four additional disturbance state variables. Uncertainty
models are developed for the inputs solar heat gains, internal heat gains, and domestic hot water use.
An iterated extended Kalman filtering algorithm is employed to enable nonlinear state estimation.
A Bayesian calibration procedure is employed to enable assessment of parameter uncertainty and
incorporation of regulating prior knowledge. A case study is presented to evaluate the performance
of the developed framework: parameter estimation with both dynamic Hamiltonian Monte Carlo
sampling and penalized maximum likelihood estimation, the behavior of the filtering algorithm, the
impact of different commonly occurring data sources for domestic hot water use, and the impact of
indoor air temperature readings.

Keywords: building energy performance; energy models; Bayesian calibration; augmented stochastic
state-space modeling; Iterated Extended Kalman Filtering; uncertainty

1. Introduction

Reliable energy models are needed to determine flexibility in energy demand of buildings and
to estimate energy savings resulting from energy conservation measures. Senave et al. [1] defined
three key elements for which thorough insight is required to asses energy performance of existing
buildings: (i) the thermal performance of the building fabric, (ii) the efficiency of the technical systems,
and (iii) the behavior of the users. Energy modeling of urban buildings seeks to expand conventional
whole building energy modeling to the scale of neighborhoods, cities, or even entire building stocks [2].
Creating reliable models at these scales is difficult, as they require large amounts of detailed input data
that are lacking in digitized form for most existing buildings. However, development within aerial
imaging or LiDAR (light detection and ranging) [3] makes 3D shape representation of existing buildings
possible. Such data sources enable relatively detailed energy models to be constructed, especially
geometrical aspects of the building and its surroundings [4]. However, parameters describing thermal
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performance of the building fabric, the technical systems, and occupant behavior are usually not
readily accessible in a digitized format. Calibration with on-site measurements is needed to obtain
reliable estimates of these aspects [1,5]. Today, metering data that provides the basis for utility billing
are often available in decent resolution and sampling rates [6]. These metering data coming from
on-site measurements, such as supplied energy and domestic cold water, indirectly contain or mirror
the buildings’ actual energy performance.

In a review on methodologies and recent advancements in the calibration of building energy
models, Fabrizio and Monetti [5] concluded that automated models are often simplified in order
to reduce computational time, and due to that, more complex models are difficult to handle in the
calibration process. They also highlighted the importance of assessment of occupancy behavior, “since
the occupancy related to the building usage is one of the main sources of uncertainty in the building
simulation models” [5]. A method of introducing and handling parameter uncertainty in energy models
is with a Bayesian approach. Several studies aiming at understanding and showing the potentials
of this approach are listed in Chong and Menberg [7], where energy models performance, based on
Bayesian calibration, are tested on and compared with deterministic model results. Based on these
experiences, guidelines for Bayesian calibration of building energy models are presented. Accordingly,
a test of the guidelines in a case study [7] also suggests that Bayesian calibration has limitations
depending on the information content within datasets in terms of how many uncertain parameters can
be introduced in the model and the quality of prior knowledge about these.

Previous energy model calibration research can be grouped into those working with relatively
simple state-space models with 2 to 4 state variables (for example Bacher and Madsen [8], Coffman
and Barooah [9], Raillon and Ghiaus [10], Rouchier et al. [11]) and those working with calibration of
detailed engineering-based models (for example Chong and Menberg [7], Tian et al. [12], Bandera
and Ruiz [13]). The benefits of simple state-space models are that little prior information about the
building is needed and that these can be efficiently computed and used directly in Monte Carlo
Markov Chain (MCMC)-based inference. However, such models do not reveal much details about
the energy performance. Engineering-based simulation tools such as EnergyPlus [14] are based on
extensive building physics research [15]. When such models are calibrated, they can provide detailed
knowledge about the energy performance of the building and its components. Nonetheless, these
engineering-based models require detailed input and are too computationally expensive to be directly
used in MCMC-based inference. The typical Bayesian approach is to approximate the detailed model
with a simpler surrogate or emulator model [7].

Weather-dependent space heating use can be estimated reasonably well deterministically [4].
However, even the most sophisticated deterministic models contain approximation errors and, for
example, Bacher and Madsen [8] and Rouchier et al. [11] suggest using stochastic state-space modeling
to account for such approximation errors. Solar heat gains, internal heat gains, and heat use for
domestic hot water (DHW) are inputs that contain high levels of time-varying uncertainty and
are challenging for both stochastic and deterministic modeling approaches. Internal heat gains
and DHW use are inherently uncertain due to dependency on occupant behavior [16], whereas
solar heat gains are uncertain both due to epistemic uncertainty of occupant behavior (i.e., shading
operation) and aleatory uncertainty due the complexity in modeling solar irradiance and shading
from the surroundings [4,17,18]. Augmented stochastic state-space models have been suggested as a
suitable approach to deal with such highly nondeterministic inputs: Kim and Park [19] used a detailed
augmented state-space model (consisting of 15 states) to estimate time-varying process disturbances
attributed to uncertainty in internal heat sources and airflow, and Coffman and Barooah [9] augmented
a simplified two state-space model with a third disturbance state to account for unmeasured
disturbances attributed to occupant behavior.

In this paper, we focus on Swedish district-heated multifamily buildings. Figure 1 exemplifies
the heat balance of a district heating substation serving multiple multifamily buildings. According
to Kensby et al. [20], there is untapped potential in using thermal mass as short-term thermal energy
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storage to shift heat demand from times when the district heat is produced at high cost and with
negative environmental impact to more favorable hours. In Sweden, energy and water bills must
be based on actual consumption [21]. Consequently, most Swedish district heating operators have
automatic meter-reading systems installed, which gather hourly or sub-hourly readings, storing them
in centralized databases. Most Swedish cities have extensive district heating networks which provide
heat to around 90% of all multifamily buildings [22]. Such on-site measurements make calibration of
energy models on large scales possible.

District heating

Solar heat gains

Internal gains

Heating system

DHW

Internal DHWC

Space heating

Ventilation

Transmission

Pipe network

Overheating

Thermal mass

Figure 1. Typical heat balance of a district heating-connected Swedish multifamily building: The height
of the gray areas indicates relative share of total heat flow over the heating season. Darker gray areas
show 1. overheating due to imperfect control and 2. net contribution from charging and discharging
the thermal mass.

Kim and Park [19] and Lundström et al. [4] have proposed detailed state-space models that are able
to produced simulation results similar to engineering-based simulation tools and that have potential to
reveal detailed knowledge about the energy performance of buildings and their systems/components.
To the authors knowledge, there are no previous published work that have conducted calibration with
such detailed space-model with data from actual buildings. With increased availability of digitized
information, automated collection, and integration of data into an energy model, representing one
or multiple similar buildings is feasible today [4]. A deterministic model in the form of a thermal
network [4] (a 14-node implementation based on that proposed by the ISO 52016-1:2017 [23] standard)
is transformed into a stochastic state-space model and further augmented with four additional
disturbance variables. Furthermore, we presents a Bayesian calibration procedure to assess parameter
uncertainty, to incorporate prior knowledge, and to test parameter estimation with both dynamic
Hamiltonian Monte Carlo (HMC) sampling and penalized Maximum Likelihood Estimation (MLE)
optimization by utilizing the probabilistic programming language Stan [24]. The proposed model
framework was tested in a case study, and lessons learned are reported and discussed.

The objective is a framework for assessing actual energy performance: A framework that works
on most Swedish multifamily buildings, that is sufficiently detailed to result in usable insights, and
that can make use of the varying data sources that are available today while still resulting in decent
results in situations of less data availability. The main original contributions of our work are an
iterated extended Kalman filter to handle nonlinearity of DHW use; an augmentation that implements
a probabilistic approach for handling uncertain input data; a direct implemention of the model in the
Stan language, thus enabling computationally efficient (including automatic differentiation) inference
with both HMC and penalized MLE; and a case study based on real buildings and original data.

The work is presented as follows: Section 2 presents the proposed Bayesian calibration procedure
with an augmented stochastic state-space model. In Section 3, we briefly describe our previous
modeling work [4] and extend the deterministic model to include heat losses in the piping, manual
venting, DHW heat use, and internal heat gains and the uncertainty modeling of these four uncertain
inputs. Finally, Section 4 presents a case study to demonstrate the performance of the developed
model framework: parameter estimation with both dynamic HMC sampling and penalized MLE
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optimization, the behavior of the filtering algorithm, the impact of different data sources for DHW use,
and the impact of uncertainty in indoor temperature sensor readings.

2. Bayesian Calibration with Augmented Stochastic State-Space Models

Section 2.1 gives an overview of the proposed Bayesian calibration procedure with an augmented
stochastic state-space model. Section 2.2 presents the discretization and augmentation procedures.
Section 2.3 describes the nonlinear state estimation using an Iterated Extended Kalman Filtering
(IEKF) algorithm.

2.1. Overview

Let θ denote the set of unknown/uncertain parameters. Further, let θ ⊂ Θ, where Θ contains all
of the system-describing parameters, including parameters considered as known/certain. In Bayesian
inference, the unknown parameters θ are given a prior distribution π(θ), which represents the prior
belief before calibrating with data. Information available in the data is summarized in the likelihood
function π(y1:N |θ), which is the conditional distribution over the output y1:N given parameters θ.
The prior belief and the evidence provided by the data are combined in the Bayes’ theorem to compute
the posterior distribution:

π(θ|y1:N) ∝ π(y1:N |θ)π(θ) (1)

A penalized maximum likelihood (MLE) estimate is obtained by optimizing the posterior density,
and a full Bayesian inference is obtained by sampling from the posterior density. In this paper,
we employ the dynamic Hamiltonian Monte Carlo (HMC) sampling algorithm implemented in the
statistical modeling language Stan [24]. Stan also handles the calculation of the partial derivatives of
the likelihood function through its automatic differentiation capabilities. In this work, the likelihood is
computed with an augmented stochastic state-space model using an IEKF algorithm for the nonlinear
state estimation. Figure 2 shows an overview of the proposed procedure.

Output y 

 with noise σy

π(θ )π(θ | y ) π(y | θ )

Estimate states x

Prediction FilteringInput u

Uncertainty in 
input σu

Process noise of 
augmented states σx 

 ∝ x

Posterior PriorLikelihood

Estimate parameters θ

Augmented stochastic state-space model

Figure 2. Bayesian calibration using an augmented stochastic state-space model to compute
the likelihood.

Figure 3 visualizes the proposed augmented stochastic state-space model in the form of an
energy-flow diagram. The cyan-filled circles show the four inputs that, through state augmentation,
are converted into uncertain inputs, i.e., inputs declared with a location value µk and accompanying
an uncertainty scale σk for each time step k. Most of the energy flowing into the conditioned space
(the middle section of the figure) are treated as uncertain, whereas the heat losses (energy leaving
the conditioned space) are treated as deterministic. The heating system energy flow is also treated as
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uncertain—the heat use is estimated at each time step based on deterministic inputs and the output
internal air temperature θint from the previous time step and then forwarded as an uncertain input to
the correction stage.
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Figure 3. An energy flow diagram showing where the deterministic inputs, uncertain inputs, and
uncertain outputs enters the stochastic system.

The proposed filtering algorithm is summarized as follows: at each time step k, prediction/time
update and filtering/measurement update stages are carried out. During the prediction/time update
stage, a deterministic prediction of the outputs is calculated based on the states of the previous
time step k− 1, the deterministic inputs, and the most probable value (the mode) of the uncertain
inputs. Next, during the filtering/measurement update stage, any discrepancy between predicted
and measured outputs results in a correction of the four augmented state variables and a selection of
temperature-state variables of the thermal network (the five internal surface nodes and the internal air
node). The magnitude of correction depends on the ratio between measurement and process noise;
a small ratio will render a large correction and vice-versa. The relative share of the correction received
by each state variable depends on the ratios of process noises; more uncertain state variables receive a
relatively larger share of the correction. For example, the input for solar heat gains during night time
is zero with no uncertainty (N (0, 0)), and therefore, any correction is directed to state variables with
encoded uncertainty during this time step.

2.2. Augmented State-Space Modeling

In Section 2.2.1, the thermal network of the ISO14N model (presented in Section 3) is converted
from a continuous-time system into a discrete-time system. In Section 2.2.2, the system is further
augmented with four new state variables, which will later be used to enable time-varying uncertainty
for selected inputs.

2.2.1. Discretization

The ISO14N thermal network is expressed as a deterministic continuous-time state-space model:

dxθ
t = Aθ

t xθ
t dt + Bθ

t uθ
t dt (2)

where xθ ∈ R14×1, Aθ ∈ R14×14, Bθ ∈ R14×10, and uθ ∈ R10×1 are the states (the temperature nodes),
continuous-time transition matrix, continuous-time input coefficient matrix, and input data vector
of the ISO14N thermal model, respectively, and t denotes time. The states of the thermal network
are expressed in degrees centigrade, and the thermal network part of the system is therefore denoted
with the superscript θ. Let ∆t denote the sampling interval, and assume that the inputs u are constant



Energies 2020, 13, 76 6 of 28

during this interval. A continuous-time system is then translated into a discrete system using the
following set of equations [25]:

F = exp(A∆t), G = (F − I) A−1B (3)

where I is the identity matrix. Applying Equation (3) results in the following discrete-time system
(where k is the discrete-time index):

xθ
k = Fθ

k xθ
k−1 + Gθ

k uθ
k (4)

2.2.2. Augmentation

To enable encoding of time-varying uncertainty in selected inputs, the system is augmented with
four additional state variables. The augmented states are expressed as thermal power (W/m2

fl) and
denoted with the superscript φ:

[
xθ

k
xφ

k

]
=

Fθ
k Gφ 0
0 I 0
0 0 0

 [θk−1
φk−1

]
+

Gθ
k 0

0 0
0 1

 [ uθ
k

ln(φdhw;k + 1)

]
(5)

where xφ ∈ R4×1 contains four augmented state variables describing solar heat gains, internal heat
gains, heat from the hydronic heating system, and DHW heat use and where Gφ ∈ R14×3 is a subset of
Gθ containing the three columns that model how the inputs uθ

φ;sol , uθ
φ;int, and uθ

φ;hyd enter the thermal

network. The fourth augmented state variable xφ
φ;dhw;ln models the DHW heat use with a logarithmic

scale (see Section 3.5 for rationale). No interaction between DHW use and the the space heating
(the thermal network) is assumed: the input coefficient matrix simply maintains an identity link to the
input ln(φdhw;k + 1). The system in Equation (5) can now be written in the following simplified form:

xk = Fkxk−1 + Gkuk (6)

where x ∈ R18×1, F ∈ R18×18, G ∈ R18×10, and u ∈ R10×1 are the state vector, transition matrix, input
coefficient matrix, and input data vector, respectively, of the augmented system.

2.3. Nonlinear State Estimation of a Stochastic System

Kalman and Bayesian filters blend noisy and limited knowledge of how a system behaves with
noisy and limited sensor readings to produce an optimal estimate of the state of the system at each
time step. In Section 2.3.1, the system is formulated as a nonlinear stochastic system and the algorithm
for the proposed filtering method is presented. Section 2.3.2 details the process and measurement
noise of the filter, whereby the process noise of the augmented state variables are used to encode the
time-varying uncertainty for the selected inputs. A state-space formulation of a discrete-time nonlinear
stochastic system is given by the following pair of equations:

xk = f (xk−1, uk) + wk (7a)

yk = h(xk, uk) + vk (7b)

where xk ∈ Rnx is the state vector of the system, yk ∈ Rny is the measurement vector, f : Rnx → Rnx

is the state transition function, h : Rnx → Rny is the measurement function, wk ∈ Rnx is the process
noise vector, and εk ∈ Rny is the measurement noise. wk and vk are zero-mean Gaussian sequences
with covariance Qk ∈ Rnx×nx and Rk ∈ Rny×ny , respectively. Due to the nonlinear augmented state
variables introduced in Equation (5), the system under study is no longer linear and a nonlinear
filtering method is required.
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2.3.1. Iterated Extended Kalman Filter

An Extended Kalman Filter (EKF) handles nonlinearity by linearizing the system at the point of
the current estimate [26]. However, due to the often high and non-normally distributed uncertainty
in the DHW use (see Section 3.5 for detailed investigation), regular EKF does not always suffice.
Therefore, Iterated Extended Kalman Filtering (IEKF) is used. IEKF improves the reference trajectory
and, consequently, the estimate by local iterations of the EKF measurement update step [27]. The IEKF
procedure is outlined in Algorithm 1. The log-likelihood is obtained by

− lnL(θ) = 1
2

N

∑
k=1

ln |Sk(θ)|+
1
2

N

∑
k=1

εk(θ)
TSk(θ)

−1εk(θ) (8)

where ε is the Kalman innovation and S is the Kalman innovation covariance. The Kalman filter
applies Bayes’ rule at each time step k, where the updated state p(xk|y1:k) = N (xk|k, Pk|k) is a posterior
distribution, obtained by compromising between a prior output p(xk|y1:k−1) = N (xk|k−1, Pk|k−1) and
the evidence from the measurement yk. Their relative weight is expressed by the Kalman gain Kk,
which measures the relative confidence put on both the prediction and the measurement.

Algorithm 1: Iterated Extended Kalman Filter (IEKF).

1 Initialize x̂0 and P0;
2 for k in 1:n do

// prediction, time update
3 x̂k|k−1 = f (x̂k−1|k−1, uk, Θk) ; // predict state mean values
4 F = ∂ f (x̂k|k−1, u = 0, Θk)/∂x̂ ; // linearize state transition function f
5 Pk|k−1 = FPk−1FT + Qk ; // predict state covariance matrix

// filtering, measurement update
6 x̂1 = x̂k|k−1 ; // initialization
7 for i in 0:Niter do
8 H i = ∂h(x̂i, u = 0)/∂x̂ ; // linearize measurement function h
9 if i > 0 & ||H i − H i−1|| < ε then stop ; // stop if negligible change in H

10 ŷk = h(x̂i, uk) ; // predict output
11 εk = yk − h(x̂i, uk) ; // Kalman innovation

12 Sk = (H i)T
(

H iPk|k−1(H i)T + Rk

)
; // Kalman innovation covariance

13 K = Pk|k−1S−1
k ; // Kalman gain

14 x̂i
k = x̂k|k−1 + K(εk − H i(x̂k|k−1 − x̂i

k)) ; // update states
15 end
16 x̂k|k = x̂i ; // final state update
17 Pk|k =

(
I − KH i)Pk|k−1 ; // update state covariance

18 end
19 ŷk = h(x̂i, uk) ; // final filtered output

The state transition function f of the system under study is given in Algorithm 2, where line 2
adds a prediction of the heat use (φ̂hyd) to the input vector u and line 4 equals the linear state transition
of Equation (6). For the system under study, the linearization step of the transition function (line 4
in Algorithm 1) is not needed, as the Jacobian matrix of f (·) equals the linear transition matrix F of
Equation (6).
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Algorithm 2: The state transition function

1 Function f (x, u, Θ)
2 uφ;hyd = fhyd(x, u, Θ) ; // calculate space heating use as a nonlinear function
3 Θ→ F, G ; // map parameter set Θ to matrices F and G
4 x̂ = Fx + Gu ; // linear state transition
5 return x̂ ; // return the predicted states

The measurement function h is given in Algorithm 3, where xφ;sol , xφ;int, and xφ;hyd are the
augmented state variables containing the correction for the corresponding inputs solar heat gains,
internal heat gains, and hydronic heating system. xφ;dhw;ln is heat use for the DHW in logarithmic
scale and u contains the inputs, including the predicted heat use of the hydronic heating system. ŷ1

is the predicted total heat use, corresponding to the total heat use metered by the DH-meter y1. The
augmented states xφ;hyd and xφ;dhw;ln are added as these are directly part of the measured total heat use
y1, while xφ;sol and xφ;int are subtracted as these correspond to passive heat input that is not measured
by the y1 (i.e., 1 kWh of passive heat gain is assumed to offset 1 kWh of actively provided heat input).

Algorithm 3: The measurement function.

1 Function h(x, u)
2 ŷ1 = uφ;hyd + uφ;dhwc + uφ;p − xφ;sol − xφ;int + xφ;hyd + exp(xφ;dhw;ln)− 1;
3 ŷ2 = xθ;int;
4 return ŷ

Local linearization at time step k of the measurement function h is given below in Equation (9),
where H ∈ R2×18 is the linearized measurement matrix and utrv denotes average control signal from
the thermostatic radiator valves.

H =
∂h(xk, u)

∂x
=

[
(0)×13 0 –1 –1 1 exp(xφ;dhw;ln)

(0)×13 1 0 0 0 0

]
(9)

2.3.2. Process and Measurement Noise

The time-varying process noise covariance matrix is given as

Qk = diag([0 0 σθ 0 0 σθ 0 0 0 σθ 0 0 σθ σθ σφ;sol;k σφ;int;k σφ;hyd;k σφ;dhw;ln;k]
2) (10)

where σθ is the time-invariant uncertainty of the interior surfaces and internal air states of the thermal
network and where σφ;sol;k, σφ;int;k, σφ;hyd;k, and σφ;dhw;ln;k are the time-varying uncertainty of the
augmented state variables (Section 3 details the modeling of the uncertainty). Setting σθ to 0.05 was
found heuristically to give reasonable results, in the sense that it resulted in the measurement noise
being on the same scale as the process noise of the augmented states. If heat input to the conditioned
space is overestimated at time step k, it is clear that the internal air temperature node will immediately
increase, causing the temperature nodes of the interior surface nodes to increase. However, it takes
time for the overestimated heat input to propagate to the temperature nodes further away from the
internal air node. Therefore, only the interior surface nodes (except the low-mass windows) and the
internal air nodes of the thermal network are given process noise, which results in a sparse matrix,
enabling less computation (the Kalman filtering can be conducted with 9× 9 matrices instead of
18× 18 matrices).

The discrete-time measurement noise covariance matrix is given as

Rk = diag([σφ;tot;k σθ;int;k]
2/∆t) (11)
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where φtot;σ;k is the standard deviation of the heat meter readings and θint;σ;k is the standard deviation of
the internal air temperature measurements. When the total heat use measurements come from a billing
heat meter, the time-varying uncertainty can be determined by the method developed by Lundström
and Dahlquist [6].

3. Modelling District-Heated Multifamily Buildings

Figure 4 shows a schematic example of a district heating substation serving multiple buildings
with both space heating and heat for DHW use (including DHW circulation and local pipe network).
A complete energy model for such building(s) has to model everything after the meter (new buildings
tend to have one substation per building). In our previous work [4], we developed a deterministic
energy model consisting of a thermal network, a hydronic radiator heating system, and simulation and
data handling procedures. The thermal network consists of 14 nodes and is a lumped and simplified
version of the ISO 52016-1:2017 [23] standard; see Figure 5. The data handling consists of preprocessing
procedures to acquire and make use of satellite-based solar radiation data, meteorological reanalysis
data (air temperature, ground temperature, wind, albedo, and thermal radiation) and preprocessing
procedures of boundary conditions to account for the effect of shading objects, window blinds,
wind- and stack-driven air leakage, and variable exterior surface heat transfer coefficients. In this work,
we extend our previous modeling work to also include network pipe heat losses, manual venting,
DHW heat use, and internal heat gains and modeling of the uncertainty of the four uncertain inputs.
The procedures are detailed in the sections below.

CRTL

CRTL

Heat 
meter

θe

Flow 
meter

DH return
DH supply

Pipe networkCold water 
supply

Radiators

Taps

Substation

θset

θset

Domestic hot 
water circulation

Radiators

Taps

θset

Figure 4. District heating substation serving multiple buildings.

3.1. Network Pipe Heat Losses

This section details the modeling of two additional major sources of heat losses: the local piping
network and DHW circulation (DHWC). In the case of a district heating substation serving several
buildings, a local piping network is needed to connect all buildings with the substation. The heat
losses from this local piping network can comprise a substantial part of the heat use that is metered at
the substation [28]. Here, we model a four-pipe configuration with separate pairs of pipes for DHW
and space heating:

φp;k = Ψp · Lp/A f l · ((θdhw;set − θgr3;k) + utrv;k · (θhyd;sup;k + θhyd;ret;k − 2 · θgr3;k)) (12)

where Ψp (W/(m ·K)) is the linear heat loss coefficient for the ground-buried pipes, Lp (m) is the length
of the piping network, A f l is the floor area for normalization, θdhw;set is the set-point temperature for
DHW (in Sweden, set above 55 ◦C to avoid legionella growth and below 60 ◦C to avoid scolding), utrv is
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the control signal from the thermostatic radiator valves (modeling that the flow is turned off when
there is no heat demand), θhyd;sup and θhyd;ret are the supply and return temperatures of the hydronic
heating system, respectively, and θgr3 represents ground temperature of soil layer at 0.28–1.0 m depth.
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Figure 5. The thermal network used to represent the conditioned space.

The purpose of DHWC is to ensure that waiting time at the tap is short. Heat losses due to DHWC
can be substantial and can depend on factors such as design, craftsmanship, and insulation level of
the DHWC system. For energy calculations, a standard value of 4 kWh/(m2

fl · year) is often used.
However, a Swedish study [28] showed that heat losses varied between 2 and 28 kWh/(m2

fl · year)
in 12 studied multifamily buildings. The DHWC heat losses can be divided into two parts: internal
heat losses occurring within the building (φdhwc;i) and external heat losses occurring in the eventual
post-substation piping network (φdhwc;e). Heat losses within the building contribute to the heating of
the building and are assumed to be constant over the year. In this paper, external DHWC heat losses
are modeled as part of the heat losses from the piping network as described in Equation (12). In the
rest of the paper, the symbol φdhwc refers only to the internal heat losses.

3.2. Ventilation

Heat transfer due to ventilation is modeled as a sum of controlled ventilation in the air handling
unit, infiltration, and occupant-induced manual venting:

φve;k = κρa · (θ̂int;k − θe;k) · (qV;ahu · (1− ηahu) + qV;in f ;k + qV;mve;k) (13)

where κρa is the heat capacity of air per volume 1.21 W · s/(l ·K), θ̂int;k is the estimated internal air
temperature (from the previous time step in the first iteration), θe;k is the external air temperature,
qV;ahu is the specific air flow rate (l/(s ·m2

fl)) for the air handling unit, ηahu is the temperature transfer
efficiency of the heat recovery unit, qV;in f ;k is the specific air flow rate due to infiltration, and qV;mve;k is
the specific air flow rate due occupant-induced manual venting. The infiltration calculation accounts
for wind and stack-driven pressure difference and is described in Lundström et al. [4] (adapted from
the ASHRAE enhanced infiltration model [29]).
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For Swedish multifamily buildings, occupant-induced manual venting mainly arises when
occupants open windows or balcony doors or force ventilate with the kitchen hood or bathroom
exhaust air outlets. Manual venting contributes with a relatively small share to the total air exchange
and is typically accounted for by adding between 2.3 to 4.6 l/s per apartment in continuous air flow
rate [30]. Based on field surveys, Rijal et al. [31] proposed the use of a logistic function for describing
the relationship between the external and internal globe temperature and the fraction of open windows
in office buildings. Hedegaard et al. [32] adopted the model to describe the effective amount of natural
ventilation as a fraction of a design flow for Danish single-family buildings. In this study, we further
adopted logistic function approach and used the following equation to model occupant induced
manual venting:

qV;mve;k = qV;mve;H · umve;H;k + qV;mve;C · umve;C;k (14)

where qV;mve;H and qV;mve;C are the nominal manual venting rates during heating season and cooling
season respectively, and umve;H;k and umve;C;k are the control signals describing how much of the
available nominal venting rates are utilized at each time step k. The control signal for manual venting
during heating season is modeled with the following logistic function:

umve;H;k = 0.3 +
0.7

1 + exp(−0.25 · (θe;mwa;k − 1))
(15)

where θe;mwa;k is computed as a moving weighed average of the external air temperature from the
last 48 h (similar to what is used for calculating the position of the window blinds [4]). The original
version in Rijal et al. [31] only studied the relationship with regards to current external air temperature
by using a moving, weighed average of the recent temperatures’ results in a control signal that models
occupants as acting on both current conditions (active control) and recent conditions (delayed control),
which seems to agree better with the results presented in the extensive review article by Fabi et al. [33]:
70% of the venting is assumed related to the external air temperature, and the other 30% is assumed
constant. However, a time-related component is not accounted for, which has been reported to be
present in typical venting patterns [34,35].

Swedish multifamily buildings typically rely on manual window venting to avoid overheating
during hot summer days. The control signal for manual venting during cooling season is modeled
with the following logistic function:

umve;C;k =
1

1 + exp(−2 · (θop;k − 24))
(16)

where θop;k is the operative temperature (computed accordingly to the ISO 52016-1:2017 [23] standard),
which is, for practical purposes, equal to the globe temperature measurements used by Rijal et al. [31].

3.3. Hydronic Heating System

The heat supplied by the hydronic heating system is predicted at each time step using the model
developed in [4] (the thermostatic radiator valve equation was updated to a inverse logistic-function
smoothed PD-controller, which is more stable and better suited for automatic differentiation).
The uncertainty of the heat supplied by the hydronic heating system, σφ;hyd;k, is represented with
following empirically derived equation:

σφ;hyd;k = 0.02 · (φ̂hyd;k + 10 · utrv;k) (17)

where φ̂hyd is the estimated supplied heat and utrv is the control signal from the thermostatic radiator
valves. The rationale for this equation is that the uncertainty should increase with φ̂hyd;k, but there is
also often uncertainty when φ̂hyd;k is close to zero. The inclusion of utrv;k ensures that the uncertainty
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approaches zero as indoor temperature rises above the set-point temperature, e.g., during warm
summer days.

3.4. Internal Heat Gains

Several bottom-up approaches [16,36,37] for modeling internal heat gains induced by occupants
and electrical equipment have been reported in literature. For brevity, we used a simple reference
metering-based model to estimate the internal heat gains:

φ̂int;k = fdhe(wnk, wdk, hk) + φb (18)

where fdhe is a function that matches hourly metered domestic household electricity from reference
buildings based on week number wn, working day or non-working day wd, and hour of the day h
for each time step k and where φb is constant base load, which is assumed to be 2 W/m2 to account
for heat load that is not included in domestic household electricity (mainly heat dissipation from
occupants): 80% of household electricity was assumed to end up as useful heat gains [38]. The reference
metering is based on 3 years of hourly metering data from 121 apartments in multifamily buildings.
This model can be assumed to include major patterns: the diurnal pattern of the occupants, the
difference between working and non-working days, and the seasonal variation in available daylight
(affecting heat-dispatch from electrical lighting).

The uncertainty is modeled as normally distributed:

σφ;int;k = σ%;int · φ̂int;k (19)

where σ%;int is the relative standard deviation calculated according to Equation (20). The assumption of
normal distribution holds quite well when the number of apartments is large, but when there are fewer
than approximately 10 apartments, a right-tailed distribution (e.g., log-normal) starts to better match
observations from the dataset. The probability density distributions for hourly domestic household
electricity resemble those for DHW in Figure 6 (to be described in Section 3.5) but are more normally
distributed. Based on the observation of both datasets, the following relationship was derived to
model the relative standard deviation as a function of the number of apartments, N:

σ% = 1.5/
√

N (20)

3.5. Domestic Hot Water

The following equation is used to estimate the heat required for DHW use:

φ̂dhw;k = qV;dhw;k · 4180 · (θdhw;set − θgr4;k), (21)

where qV;dhw (l/(s ·m2
fl)) is the DHW water volume flow averaged per hour, 4180 is the heat capacity

of water in W · s/(l ·K)), θdhw;set is the desired set-point temperature of the DHW (typically around
55 ◦C, as that is the minimum temperature required by Swedish building regulations), and θgr4 is the
ground temperature representative of the soil layer at 1.0–2.89 m (assumed to reflect incoming cold
water temperature).

The availability of data and quality on qV;dhw varies greatly within the building stock.
Recent Swedish building regulations require that new buildings and buildings that undergo a major
renovation have separate DHW metering (individually per apartment for multifamily buildings).
However, in practice, hourly measured DHW use is still often not available either for new or older
buildings. In Sweden, domestic cold water (DCW) use is often gathered with the same infrastructure
that is used for gathering district heating (DH) use and such data is therefore available for large
building stocks in a systematic way. However, the resolution of the hourly DCW values can be of poor
quality (much of the current billing metering infrastructure was built in a time when only monthly
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values were required [39]). Also, the placement of the DCW meters can be quite different than the
placement of DH meters, which is the case in our case study (see Figure 7). The share of DCW used for
preparation of DHW can generally be estimated as:

qV;dhw;k = αk · qV;dcw (22)

where αk varies, but has been reported to reach an average of 44–50% over time [30].
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Figure 6. One year of domestic hot water (DHW) usage probability density distributions, grouped per
hour and weekday: N denotes the number of apartments over which the measurements are averaged.
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Figure 7. Overview of the case study, where buildings 1–3 are the ones being modeled.

We identified three commonly occurring situations of data availability: (i) no hourly data, the
DHW needs to be modeled (for example, by using reference metering from similar buildings); (ii) useful
hourly domestic cold water metering exists; or (iii) actual hourly DHW use metering exists (metered
for the whole building or aggregated from individual, per apartment, metering). A common factor
is that usually only flow is measured; therefore, Equation (21) needs to be applicable to all three
cases above. In order to test methods that are applicable for the three situations mentioned above,
individual billing metering data for DHW use was gathered. The data consist of hourly time-series,
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grouped per apartment (799 in total), from 38 multifamily buildings located in Eskilstuna, Sweden and
was gathered from 2016 to 2018. Figure 6 shows probability density distributions for hourly DHW
use based on that data. From the figure, it is apparent that there are diurnal and workday-related
patterns. When averaging over a large number of apartments, the probability density tends to follow
a close-to-normal distribution. However, when averaging over a smaller number of apartments, the
long right-tailed distribution is better described as log-normal. Based on observation of the dataset,
the following equation was derived to model the uncertainty (log-scaled) standard deviation of a
log-normal distribution:

σφ;dhw;ln;k = σ%;dhw ·
(

a · φ̄dhw

(φ̂dhw;k + 1)
+ 1− a

)
(23)

where σ%;dhw is the nominal relative standard deviation Equation (20) used to relate it to number of
apartments, φ̄dhw is the average DHW heat use, and a is a constant between 0 and 1 that determines
whether the uncertainty is a constant or proportional. Setting a = 1 results in a constant uncertainty of
σ%;dhw · φ̂dhw, whereas setting a = 0 result in a proportional uncertainty of σ%;dhw ·φdhw;k. Setting a = 0.7
was found to approximately reflect the diurnal pattern in uncertainty shown in Figure 6. Equation (23)
can be somewhat counterintuitive due to the log-normal transformation; it can be helpful to think
of the standard deviation in logarithmic scale as corresponding to the relative standard deviation in
normal scale.

3.6. Solar Heat Gains

Solar heat gains are estimated with following deterministic equation:

φsol;k = rgl · ggl · gbl;k · Itot;ver;sh;k (24)

where rgl is the glazing-to-floor area ratio, ggl is the solar energy transmittance of the glazing, gbl;k is the
time-varying solar energy transmittance of the window blinds, and Itot;ver;sh;k is the surface orientation
weighted hemispherical solar irradiance on vertical surfaces including shading effects. Satellite-based
solar radiation is acquired from Copernicus Atmosphere Monitoring Service (CAMS) radiation
service [40]. Calculation procedures developed for Reference [4] based on the ISO 52010:2017 [41]
standard are used to calculate the solar irradiance at an arbitrarily tilted and oriented surface
(code available at https://github.com/lukas-rokka/solarCalcISO52010). The shading and window
blind operation calculation are described in Lundström et al. [4].

The solar heat gain uncertainty is assumed to be normally distributed, and the standard deviation
is modeled as follows:

σφ;sol;k = σ%;sol · φ̄sol ·
ln(φ̂sol;k + 1)
ln(φ̄sol + 1)

· 3− r
2

(25)

where σ%;sol is the relative standard deviation, φ̄sol is the long-term average solar heat gain (for hours
with nonzero heat gain), φ̂sol;k is the estimated solar heat gain for time step k, and r is a reliability
code in the CAMS dataset that ranges between 0 and 1 and encodes cloud information availability for
the particular time step [40]. The log-transform term, ln(φ̂sol;k + 1)/ ln(φ̄sol + 1), models a standard
deviation that rises quickly towards the expected standard deviation of 0.3 · φ̄sol and then flattens
out when φ̂sol;k > φ̄sol . According to the CAMS validation report [42], the relative standard deviation
(relative to the mean of one year of measurements) is in the order of 15–30% for hourly global horizontal
irradiance for stations located in northern Europe. In this paper, we use the higher value of 30% to
account for the uncertainty added due to shading and window blinds.

https://github.com/lukas-rokka/solarCalcISO52010
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4. Case Study

In this section, the proposed modeling framework is tested on a group of three buildings sharing
the same district heating substation. Section 4.1 describes the buildings and used data sources.
Section 4.2 presents results from conducting parameter estimation (Section 4.2.1), the behavior of the
proposed filtering method (Section 4.2.2), and four experiments that address different sources of data
regarding DHW use and the uncertainty in measured indoor air temperature (Section 4.2.3).

4.1. Setup

Buildings 1–3 in Figure 7 share a common district heating meter (“DH meter 1”) and were chosen
for the case study. Buildings 4–7 are not explicitly modeled, but one of the experiments use metered
domestic cold water use as input, measurements that are shared with all seven buildings. Description
of the buildings is as follows: four floors (bottom floor has both apartments and common space) built in
1967 with brick facade, flat roof with retrofitted extra insulation, windows retrofitted with an insulating
inner glazing pane, 59 apartments, mechanical exhaust ventilation, and a hydronic heating system
consisting of the original plate radiators (in Sweden known as HE radiators) with thermostatic radiator
valves on the return pipes. Among tenants who responded to a customer satisfaction questionnaire,
only 20% responded that they were satisfied with the indoor thermal comfort (typically, a satisfaction
rate of at least 70% is targeted). This can be attributed to cold drafts from the air inlets, varying indoor
temperatures, and temporal faults in heat supply. The radiator type is notoriously difficult to control,
and the ventilation is suspected to be unbalanced due to tenants tampering air inlets (cold draft causes
tenants to seal air inlets, which tends to result in a vicious circle of increased drafts in other apartments
and air inlets in other apartments getting sealed as well).

Figure 8 shows the selection of parameters that were chosen as uncertain (i.e., part of θ) and
which energy flows they impact). The prior model parameterization is shown in Table 1. N (µ, σ)

denotes a normal probabilistic density function (PDF), in which µ and σ are the mean and standard
deviation, respectively. The Nln(µ, σ) denotes a log-normal PDF, where µ and σ are the mean and
standard deviation of the natural logarithm of the variable, respectively. EMG(µ, σ, λ) denotes an
exponentially modified Gaussian (normal) PDF, where µ and σ are the mean and standard deviation of
a normal distribution and λ is the inverse of the exponential decay (high λ results in a slowly decaying
probability density in the upper tail). NMV(µ, Σ) denotes a multivariate normal PDF, where µ is a
vector of mean values and Σ is a covariance matrix. The Σ(σ, ρ) denotes a covariance matrix with
standard deviations σ and a correlation of ρ.

Two time periods of data were used for the calibrations, 5 July 2016 to 10 August 2016 and
21 December 2016 to 1 March 2017. The first ten days of both periods were discarded from the
likelihood calculation and were therefore only used to initialize inert state variables (ground and
internal mass). Two periods were used so that different seasonal conditions would be represented in
the data (e.g., thermal transmittance parameters need the heating season to be learned well, whereas
the heat losses for DHW circulation are better learned during the non-heating season).

Shading and sheltering impact of the surroundings were modeled using the category method
developed in Lundström et al. [4]. As the site of the case study is well sheltered, a shading/sheltering
class 4 was used (ranging from (1) no shelter to (5) a highly dense urban area). Class 4 results in a
reduction of approximately 35% in annual solar irradiance, compared to no shading. Also, the effect of
air infiltration and exterior surface convective heat transfer are substantially reduced compared to an
open field site.
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Table 1. Input parameters of the case study: Parameters considered as uncertain are expressed as
probability density functions.

Symbol Description Value/Distribution Unit

Geographic coordinates N 59.36, E 16.50 ◦

Nb Number of buildings 3 -
H f l Ceiling height 2.6 m
N f l Number of floors 4 -
P Building perimeter (per building) (90)×3 m
A f l Floor area (all buildings) 5754 m2

fl

r Surface to floor area ratios for roof, external
walls, windows, internal mass, ground floor (0.25, 0.36, 0.13, 3.5, 0.25) m2

s /m2
fl

γ Azimuth angles for the external walls (165, 75,−15, 105)×3
◦

Fγ Surface area fraction for the external walls (0.19, 0.310.31, 0.19)×3 -

xy Supply temperature look-up table

[
−17 −10 0 18
60 55 43 18

]
◦C

Lp Length of piping network 110 m

qV;mve;H Nominal manual venting, heating season 0.03 l/(s ·m2
fl)

qV;mve;C Nominal manual venting, cooling season 0.25 l/(s ·m2
fl)

Ψp
Linear heat loss coefficient for
ground buried pipes Nln(ln(0.25), 0.05) W/(m ·K)

φdhwc Heat losses DHW circulation Nln(ln(0.7), 0.15) W/m2
fl

θint;set Internal air set-point temperature N (22.5, 0.1) ◦C
qV;ahu Specific air flow rate of the air handling unit N (0.35, 0.01) l/(s ·m2

fl)

Cin f Specific infiltration coefficient EMG(0.06, 0.001, 200) l/(s ·m2
flPan)

ggl Solar heat gain coefficient N (0.65, 0.02) -
Hhyd Specific radiator constant N (0.45, 0.02) W/(K ·m2

fl)

Fint Bias factor internal heat gains N (1, 0.05) -
Fdhw Bias factor DHW N (1, 0.05) -
Ur f Thermal transmittance roof Nln(ln(0.1), 0.15) W/(K ·m2

s )

Uew Thermal transmittance external walls Nln(ln(0.25), 0.15) W/(K ·m2
s )

Ugl Thermal transmittance windows N (1.5, 0.2) W/(K ·m2
s )

Ug f Thermal transmittance ground floor Nln(ln(0.25), 0.15) W/(K ·m2
s )

Htb Specific heat transfer thermal bridges Nln(ln(0.06), 0.1) W/(K ·m2
fl)

κm
Areal heat capacity for roof,
external walls, internal mass, ground floor

NMV((69, 31, 49, 69),
Σ((1)×4, ρ = 1)) Wh/(K ·m2

s )

District heating
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Figure 8. Parameters selected as uncertain, placed at the energy flow they influence: Brown colored
names show parameters that are calculated from lower levels and, thus, not explicitly given prior
probability densities. Height of the gray areas indicates relative share of the yearly heat flow, based on
the prior model.
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4.1.1. Data Availability Experiments

To study the effect of commonly occurring data availability situations, four experiments were
conducted: experiments 1–3 compare different sources of DHW input (see Section 3.5 for motivation),
and experiment 4 studies the impact of less uncertain measurements on indoor temperature. Results are
presented in Section 4.2.3. The original plan for experiment 4 was to compare using actual on-site
measurements with modeled input (using the same reference metering approach as used for DHW in
experiment 1). The measured indoor temperature is based on six temperature meters—two for each
building. The uncertainty is periodically very large, resulting in a small influence on the likelihood
calculation. Using on-site measurements resulted in a barely noticeable difference compared to using
modeled indoor temperatures. Therefore, the fourth experiment was modified and constructed as
specified below.

Experiment 1: This case assumes no on-site measurements are available for DHW and, instead,
makes use of reference input composed of hourly measured DHW flow rates from similar buildings
and exactly the same time period. See Section 3.3 for the calculation procedure. The nominal relative
standard deviation is estimated at 20% for this case study with its 59 apartments (1.5/

√
59 = 0.20).

Experiment 2: This experiment uses hourly domestic cold water (DCW) billing metering data.
The share of DCW used for preparation of DHW can generally be estimated with Equation (22).
Unfortunately, the DCW meter structure for our case study is complex and the DCW for our
three buildings could only be estimated. The following weighed sum from two meters was used:
qV;dcw = qV;dcw1 + qV;dcw2 · 3/9. “DCW meter 1” in Figure 7 measures DCW in buildings 1–3, while
“DCW meter 2” measures DCW for DHW preparation for all 7 buildings and DCW in buildings 4 and
5. “DCW meter 3” measures DCW for buildings 6 and 7 and can thus be omitted. Equation (23) was
used to model the uncertainty, assuming a relative standard deviation of 10%.

Experiment 3: In this experiment, individual billing metering data is used. Hourly measured
DHW flow rates values were measured at 129 tapping places of the 59 apartments of buildings under
study. The resolution of the water flow metering data is 10 liters; one meter had faulty values and was
removed. Equation (23) was used to model the uncertainty, assuming a relative standard deviation
of 5%.

Experiment 4: To simulate a situation where more certain indoor temperature measurements
are available and to get insight of the influence of such data, the measured standard deviations were
divided by 3 for this experiment. DHW is the same as in experiment 1.

4.2. Results

4.2.1. Bayesian Parameter Estimation

Bayesian inference, as described in Section 2, was conducted on the demonstration of the case
presented in Section 4.1. Resulting parameter estimates are shown in Figure 9 (the energy flows
controlled by the parameters are visualized in Figure 8). Induced prior density distributions are
shown for parameters Htot, Htr, Hve, and Ctot, while the prior distributions for the other parameters
are explicitly defined by their PDFs, as presented in Table 1. Figure 10 shows the correlations of the
HMC inferred parameter posteriors.
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Figure 9. Parameter probability density distributions. Prior: the prior model; HMC: posterior inferred
with Hamiltonian Monte Carlo sampling; MLE: posterior inferred with penalized maximum likelihood
estimation. Vertical lines show mean values. Densities are scaled per parameter such that the mode of
the prior has a relative height of 200%; densities below 0.01% are filtered out.
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Figure 10. Parameter correlations based on the HMC samples: Color saturation and size of the circles
indicate the magnitude of correlation.

Equation (24) deterministically models solar heat gains by considering glazing-to-floor area
ratio, solar energy transmittance of the glazing, occupant operated window blinds, shading from
the surroundings, and orientation and areas of the external envelope. However, only the solar
transmittance parameter ggl was chosen as uncertain, although it could be argued that the other solar
gain governing parameters are just as uncertain. The strong downward push on the posterior of the ggl
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parameter suggests that the calculated solar heat gains are still overestimated. That deterministically
modeled solar gains tend to be overestimated is consistent earlier results reported by Sjögren et al. [17].

The correlations seen in Figure 10 follow what can be expected. The relatively strong negative
correlation between Htr and Hve confirms that heat loss occurring as air-exchange or as heat
transmission through the building fabric is difficult to separate. This is also the case with the Fdhw,
Fdhwc, and Ψp parameters, which all have a similar “base load”-affecting effect. The relatively strong
positive correlation between Htot and the heat gains governing parameters Fint and ggl confirms that
uncertainty in these heat gains inputs will affect how well the energy performance of the building
fabric can be assessed.

Separating the transmission heat loss through the building fabric Htr parameters is even more
challenging. In a mathematical sense, these parameters are identifiable—the probability density of the
likelihood will start to decrease if the parameter estimate gets far from the true value. However, in
the region close to the true value (the region we, in practice, are interested in) the likelihood flattens
out—e.g., practically no change in likelihood is obtained by increasing rr f ·Ur f with a small number
and decreasing rew ·Uew with the same small number. This effect manifests as negative correlations
between Ur f , Uew, and Ugl in Figure 10. The data (through the likelihood function) usually carry strong
evidence about the total heat loss but has much less information about individual U-values. On the
other hand, our prior knowledge is typically more informed and intuitive to specify on the individual
building element level.

The Gaussian approximation approach of the penalized MLE matches the result of the HMC
sampling. The MLE method was on the order of 100 times faster than HMC sampling. The MLE
parameter estimation took approximately a half minute to compute on a standard laptop computer,
which largely can be attributed to the automatic differentiation and fast linear algebra enabled by Stan.

4.2.2. The Behavior of the Filter

The behavior of the filter is illustrated by running both filtered and deterministic (filtering turned
off) simulations, based on the penalized MLE parameter modes of Section 4.2.1. At every time step,
the measurement-update step of the filter conducts a correction to state variables according to the
Kalman gain matrix, which in turn depends on the specified time-varying uncertainties of the states
and measurements. The correction (Figure 11d) is conducted on the uncertain inputs (Figure 11c)
(note that the interior surface temperature nodes of the thermal network are also corrected, but only
indoor air temperature is shown in the figure).

Figure 11c shows the details of the uncertain inputs (viewing the figures online is recommended
as they are vector-based and can be zoomed in). The augmented states heating system, internal heat
gains, and solar heat gains are modeled as normally distributed. Their uncertainty band is symmetrical
in both directions, and the corrected estimates can occasionally go below zero. This is alleviated by
setting the uncertainty to zero when the predicted mean is clearly zero (e.g., solar gain during nights
or heating when indoor temperature is much higher than the set-point). Indoor temperatures close or
below the set-point and predicted heating close to zero do occasionally result in corrected estimates
below zero for heating. During the extreme cold days of 5–7th of January, there was a relatively
large deviation between the model outputs and the measured values. The heat use measurement
suggests lower energy use than predicted by the model, whereas the measured indoor air temperature
suggests higher temperatures than predicted; the filtered estimates are a compromise between these
contradicting signals.

During the nights of 11–12th of August, there was a fault in the heating system and no heat was
delivered (the measured low indoor temperature is probably correct). The model predicts that the
heating system should deliver heat, but this is not supported by the measurements and a correction is
applied by the filter. However, the correction is not strong enough (in the light of the knowledge that
the heating system was faulty). Such events could be dealt with by using distributions with longer
tails or adaptive filters.
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Figure 11. Hourly inputs and outputs of the Bayesian filtering simulation: (a,b) Comparison of
measured values to both filtered and deterministic simulation outputs for indoor air temperature and
total heat use; (c) normally scaled uncertain inputs; (d) normally scaled corrections (i.e., augmented
states); (e–g) the deterministic inputs: 95% confidence interval is shown for the measured outputs and
uncertain inputs.
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4.2.3. Data Availability Experiments

To study the effect different sources of input and output data, four experiments were conducted:
experiments 1–3 compare different sources for the DHW input, and experiment 4 studies the impact of
less uncertain measurements on indoor temperature output (see Section 4.1.1 for details and motivation
for the experimental setup). The resulting parameter estimates are shown in Figure 12 and yearly
energy flow estimates are given in Table 2.

Due to the different uncertainty models, the posterior log-likelihood is not comparable between the
experiments. To get an indication of which source of DHW input carries most information, experiments
1–3 were rerun using the uncertainty model of experiment 1 for all experiments. The resulting
posterior log-likelihoods are −1785, −1472, and −1394, with a standard deviation of 3. This suggests
that using actual metering data from the building (experiments 2 and 3) substantially improves
calibration compared with using a reference input (experiment 1). A more surprising result is that the
log-likelihood of experiment 2 is relatively close to that of experiment 3; using cold water meter data to
predict DHW heat use thus appears to be a promising approach, especially if a cleaner metering signal
is available (in our case study, the meter was shared with neighboring buildings). Parameter estimates
are fairly consistent between the experiments, but experiment 3 shows a push upward for parameters
which captures a pattern of delayed heat use (thermal mass and the transmittance parameters of
building elements with thermal mass).

Experiment 4 simulates a situation where more certain indoor temperature measurements are
available. The result shows much smaller estimated solar heat gains, less “base load” and more space
heating. The heat transmittance of the ground floor (Ug f ) and the total heat capacity (Ctot) are also
affected, which are parameters that influence time delays in energy use and indoor temperatures.

Cinf Htb Urf Uew Ugl Ugf

Fdhw fdhwc Yp ggl Hhyd qV;ve

Htot Htr Hve Ctot q int;set Fint

0.07 0.08 0.09 0.04 0.06 0.08 0.10 0.15 0.20 0.2 0.4 0.6 1.0 1.5 2.0 0.2 0.4 0.6

0.9 1.0 1.1 0.4 0.6 0.8 1.0 0.25 0.30 0.35 0.4 0.5 0.6 0.7 0.44 0.45 0.46 0.30 0.35

0.9 1.0 0.4 0.5 0.60.40 0.45 0.50 200 220 240 22.4 22.6 22.8 0.9 1.0 1.1
Exp. 4

Exp. 3

Exp. 2

Exp. 1

Prior
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Prior
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Figure 12. Parameter probability density distributions showing the prior model and HMC sampled
posteriors for the four experiments. Experiment 1: DHW based on reference measurements. Experiment
2: DHW based on measured total cold water use. Experiment 3: DHW based on individual DHW
measurements per apartment. Experiment 4: The standard deviation of the measured indoor air
temperature divided with 3 (DHW is the same as in Experiment 3). Vertical lines show mean values.
Densities are scaled per parameter such that the mode of the prior has a relative height of 200%.



Energies 2020, 13, 76 22 of 28

Table 2. Estimated specific thermal energy flows in kWh/(m2
fl · year): Estimated as the hourly average

of the training period multiplied by 8 760 h (thus not representative for a typical year).

Model Qtot Qhyd Qdhw Qp Qdhwc Qsol Qint

Prior 140.6 98.1 32.0 4.4 6.1 22.5 33.9
Exp. 1 137.9 100.6 27.6 5.0 4.7 16.7 32.3
Exp. 2 138.2 99.7 30.1 5.2 3.8 18.1 33.0
Exp. 3 139.5 100.0 28.1 5.5 5.9 19.6 34.6
Exp. 4 137.6 101.7 27.9 4.9 3.1 13.2 32.6

5. Discussion

5.1. Bayesian Calibration

The developed energy model is relatively detailed, and identifying the full set of parameters Θ

with only likelihood function is not feasible: the likelihood might not carry enough information
for some parameters, and it is difficult to separate the effects of other parameters. An informative
prior model is needed to constrain the parameter space. The data (through the likelihood function)
usually carries strong evidence about the total heat loss but has much less information about the
individual parameters. On the other hand, our prior knowledge is typically more informed and
intuitive to specify on the individual building element level. The selection of parameters that are
predetermined as uncertain θ should be seen as part of the prior model specification. The used
parameterization was based on a qualitative assessment by the authors, where aspects such as ease of
prior specification, anticipated influence, and insight gain were considered. More formal parameter
screening such sensitivity analysis (e.g., Senave et al. [1] or Chong and Menberg [7]) could be used for
a more quantitative assessment.

The following ideal goals were formulated as a basis for the development work: 1. each parameter
should describe one property; 2. the posterior should encompass the true value; 3. the prior should
encompass the posterior; and 4. the prior model should be informative enough to be useful on its
own. Goal 1 might be unreachable as there are interacting effects that are difficult to fully separate
into a single parameter. If we are too far from goal 1, then goal 2 becomes more difficult to guarantee.
Goal 3 could be reached by defining a very noninformative prior model, but this would breach goal
4 and leave us with a useless model in the absence of calibration data. Furthermore, a sufficiently
informative prior model can, due to its regulating impact, help us in achieving goal 1 and thereby goal
2 as well. In essence, the entire process is somewhat iterative: reliable output is dependent on decent
input which, in turn, is dependent on statistics from previous outputs and case-specific input data.

External air temperature is the strongest driver for energy use, but its effect manifests in different
time lags. There is an instantaneous correlation that mainly affects heat loss through glazing, thermal
bridges, and ventilation; heat losses through the envelope with thermal mass have more delayed effects
(hours and up to a few days) while heat loss through the ground floor or external piping network
has a delayed effect that is best described as seasonal. The occupant-dependent DHW preparation
and internal heat gains have strong diurnal patterns and a seasonal pattern. Solar heat gains are most
instantaneously correlated to the solar irradiance, but there are some delayed effects due to heat stored
on the interior surface layers and heat conducted through the envelope. Also, solar irradiance has both
seasonal and diurnal patterns. The calibration procedure can be seen as pattern matching. The data
carries information about the abovementioned patterns, but the prior model needs to be relatively
informative to enable separation of the various effects into specific heat flows.

The parameters of the prior model are set as independent, i.e., specified without any correlation.
Specifying a correlation structure for a prior model with nonnormal parameters is a complex task, and
as long the likelihood is sufficiently rich, there is no need to specify correlations. As seen in Figure 10,
the correlation structure is identified in the posterior HMC sampled parameters. However, if the
prior model is to be used by itself, the assumption of independent parameters might result in overly
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optimistic uncertainty intervals, summing independent parameters results in a tighter uncertainty
interval than summing correlated parameters. The total heat transfer coefficient, Htot is a weighted
sum of seven parameters that we expect to correlate and is therefore more sensitive for such an effect.

Kristensen et al. [2] used hierarchical modeling to pool information between energy models
through the likelihood function. Such an approach could also be used with our proposed models, thus
allowing energy models of buildings that lack measurement data to be informed by data from other
buildings that can be reliably measured.

5.2. Bayesian Filtering with Time-Varying Uncertainty on Inputs

We propose an augmented stochastic state-space model and iterated extended Kalman filtering.
Both Kim and Park [19] and Coffman and Barooah [9] proposed using augmented state-space
modeling to identify non-measured process disturbance. They use one augmented state to model the
non-measured process disturbance and to identify it as part of the estimation procedure. We propose
four augmented states to enable definition of predetermined time-varying uncertainty separately for
major uncertainty sources. The increased number of disturbance states does not necessarily provide
increased prediction power. Rather, the main motivation is that it is conceptually more appealing and
more natural to incorporate prior knowledge when these sources of uncertainty are kept separate.
The augmentation allows incorporation of prior knowledge, such as solar heat gains, which are highly
uncertain during day time but certainly zero during night time or that DHW use is often close to zero
(but has right-skewed outliers) at night. Another effect of using uncertain inputs is that parameters are
learned with more weight during periods of low uncertainty in the inputs (e.g., night time) than during
periods of high uncertainty (e.g., when occupant activity peaks and high insolation is plausible).

The DHW is modeled as log-normally distributed while the other inputs are modeled as normal
distributions. The log-normal distribution has a multiplicative uncertainty, i.e., right-tailed and
always positive, which describes the nature of uncertain energy flows very well. Modelling the other
augmented states as log-normal was also considered, but a normal scale was chosen for its conceptual
simplicity and computational efficiency. DHW can be modeled as nonnormal with relatively simple
alteration of the measurement function h, while the other uncertain inputs are connected to the
thermal network and thus require a nonlinear state transition function f (discarding the benefits
of computationally fast linear algebra). The more apartments that are served by a DH substation,
the better a normal distribution approximates the occupant-dependent inputs (an effect known as
the central limit theorem). Thus, single family and smaller multifamily buildings benefit more from
nonlinear modeling and/or actual measurements on the inputs.

5.3. Data Availability

The results of Section 4.2.3 show that DHW inputs based on on-site measurements are substantially
more informative than modeled inputs. In practice, measurement-based input data are frequently not
available. We have shown that reference metering from similar buildings can substitute measured
data. Such reference metering will be noisy on a hourly time-scale but captures the general correlations
to weather and time and possibly to other aspects such as demographics. In our case study, we had
access to reference metering for DHW and indoor air temperatures for the exact same period as used
for the training but not for the domestic household electricity. The matching method described in
Section 3.4 was used for internal heat gains; this is a relatively simple modeling approach compared
with existing bottom-up based approaches in the literature [16,36,37]. Using a modeling approach for
all the inputs would also enable calibration when measurements are lacking and for out-of-sample
predictions with, e.g., forecast or normal year weather data.

A few weeks of data during the heating season is enough to identify the main parameters
describing thermal behavior. However, different weather conditions contain different types of
information, and using a longer period of data is beneficial for learning more aspects of the
model/building. For example, heat-use data during the summer holds information about DHW
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use and heat losses due to DHW circulation. If there exist indoor air temperature measurements, the
summer season captures information about the insulation and thermal heat capacity (which is difficult
to identify during the heating season for buildings that hold the set-point temperature well). Our
method of using different time periods for training has the advantage of learning different aspects
about the buildings in a computationally efficient way and allows skipping of periods with faulty or
missing data.

5.4. Energy Modeling

In this paper, we have presented one energy model that we anticipate as general and accurate
enough to sufficiently approximate a large proportion of the targeted Swedish district-heated
multifamily buildings. However, there are also buildings within this category that would not be
well approximated by the current model, for example, buildings with exhaust air heat pumps, thermal
solar panels, active thermal storage, or advanced control strategies. The generality of the model
applied to various building types requires further development work.

Model selection is a frequently advocated approach, for example, by Bacher and Madsen [8],
Raillon and Ghiaus [10], Rouchier [43]. The strongly regulating prior used for the air infiltration
parameter Cin f can be viewed as model selection. In the case study, there is very little evidence of air
infiltration in the data (the buildings are well sheltered and located in an inland region of generally
low wind exposure), and the posterior distribution of Cin f keeps close to the specified prior. However,
the used exponentially modified Gaussian prior distribution would allow for higher Cin f values in
case of strong enough evidence in the data.

In the case study, the internal mass element (modeling internal walls and the intermediate
floors) accounts for some 79% of the total thermal mass. Similar shares would be expected for other
Swedish multifamily buildings. Thus, this element is important for the thermal charging–de-charging
pattern, which is essential for predicting heat demand flexibility [20] and thermal comfort assessments.
The internal mass is modeled with a two-node element [4], its thermal resistance is set to 1 m2

fl ·K/W,
and the thermal mass is split equally between surface and inside nodes. This part of the thermal
network is likely to benefit from more detailed investigation and validation to ensure realistic thermal
mass behavior.

6. Conclusions

Reliable energy models are needed to determine building energy performance. Relatively
detailed energy models can be auto-generated based on 3D shape representations of existing buildings.
However, parameters describing the dynamic thermal behavior of buildings are seldom available in
digitized form and these parameters have to be estimated. This paper presents a Bayesian calibration
framework and qualitatively evaluates results produced from a case study.

The proposed energy model is detailed, and identifying the full set of parameters with only
likelihood function is not feasible. An informative prior model is needed to constrain the parameter
space to ensure identifiability. The Bayesian calibration approach enables incorporation of such
regulating information in a formal way. A benefit of the relatively detailed model specification is
that it allows incorporation of prior knowledge on a level at which such information tends to exist,
e.g., thermal transmittance per building element type rather than total heat loss. An informative prior
model also allows meaningful inference in cases where there is no measurement data to calibrate with.

The results of the Gaussian approximation approach of the penalized MLE match well with the
result of the HMC sampling. The MLE was on the order of 100 times faster than HMC sampling.
For applications where short computation time is essential, penalized MLE is adequate. The MLE
parameter estimation, in the case study, took approximately a half minute to compute on a standard
laptop computer (much thanks to the automatic differentiation and fast linear algebra enabled by Stan).

DHW use is a major source of uncertainty for the targeted district-heated multifamily buildings.
Incorporating hourly billing metering for domestic cold water substantially decreases this uncertainty.
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The benefit would be even greater for buildings with fewer apartments than our case study with
59 apartments.

The proposed state augmentation enables a probabilistic approach for handling uncertain input
data, which allows more prior knowledge to be incorporated. We provide uncertainty models for these
inputs that can be utilized for both model- and measurement-based inputs.

A limitation of using measurement-based inputs is that these cannot be applied in cases lacking
data or for out-of-sample predictions. A seamless utilization of both measurement-based and
model-based inputs is needed to achieve a framework that can learn from all available data while
still result in decent enough results in situations of less or no data availability. We also anticipate that
a hierarchical modeling approach can be used to pool information between models, thus allowing
energy model of buildings that lack measurement data to be informed from other building that do
have reliable measurements.
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Abbreviations

AHU Air Handling Unit
DH District Heating
DCW Domestic Cold Water
DHW Domestic Hot Water
DHWC Domestic Hot Water Circulation
HMC Hamiltonian Monte Carlo
LiDAR Light Detection And Ranging
MLE Maximum Likelihood Estimation
PDF Probability Density Function

Symbols

∆t time interval (h)
γ azimuth angle (◦)
κ areal heat capacity (Wh/(◦C ·m2

s ))
µ location parameter, the mean value in a normal distribution
φ specific thermal power (W/m2

fl)
Ψ linear heat loss coefficient (W/(m ·K))
σ standard deviation
σ% relative standard deviation
θ centigrade temperature (◦C)
Θ all parameters, including known/certain parameters
θ set of uncertain/unknown parameters
A System dynamics matrix, continuous time
B Input coefficient matrix, continuous time
F Transition matrix, discrete time
G Input coefficient matrix, discrete time
H Measurement model matrix, discrete time
K Kalman gain
P Covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
S Kalman filter innovation covariance
u Input vector
w, v White noise vector
x State vector
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y Measurement vector
ε Kalman filter innovation/error term
A Area (m2)
C specific heat capacity (Wh/(◦C ·m2

fl))
F factor
H specific heat transfer coefficient (W/(◦C ·m2

fl))
L length (m)
I solar or thermal radiation (W/m2

s )
N number/amount
Q specific quantity of heat (kWh/m2

fl)
U thermal transmittance (W/(◦C ·m2

s ))
g total solar energy transmittance (-)
h surface coefficient of heat transfer (W/(◦C ·m2

s ))
ln natural logarithmic
n exponent
qV specific (floor area normalized) volumetric flow rate (l/(s ·m2

fl))
r ratio (-)
u control signal (-)

Subscripts

C, H cooling, heating
ahu air handling unit
bl (window) blinds
c, ci convective, convective interior surface
dhw, dhwc domestic hot water and domestic hot water ciruclation
e external (as in outdoor)
g f ground floor
gl glazing (windows, doors etc)
gr ground
hor horizontal
hyd hydronic heating system
im internal mass (internal walls, intermediate floors and adiabatic external walls)
in f infiltration (uncontrolled air leakage)
int internal (as in indoor)
k discrete-time time index
mve manual venting
op operative temperature
p pipe
rc resistance and capacitance
r, ri radiative, radiative interior surface
r f roof
se, si surface exterior, surface interior
set set-point
sh shading or sheltering
sky sky temperature or sky thermal radiation
sol solar radiation/heat gain
sup supply
t continuous-time time index
tb thermal bridges
tot total
tr transmission
trv thermostatic radiator valve(s)
ve ventilation
ver vertical
vi virtual ground layer
wi windows
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