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Abstract: We propose a paper solar cell based on carbon nanotube (CNT)-composite papers.
To fabricate this cell, we use dye-sensitized solar cells (DSCs) for generating power through the redox
reaction of dyes in conjunction with CNT-composite papers, which are composite materials containing
CNTs and pulp (raw paper material) that can be fabricated easily by using a method based on the
Japanese washi papermaking technique. The demand for CNT applications is expected to increase
due to their high conductivity and metallic or semiconducting characteristics. This CNT-composite
paper can also have metallic or semiconducting characteristics based on the contained CNTs in the
composite paper. We previously fabricated a DSC that generates electricity by using CNT-composite
papers stacked in a typical DSC structure. However, the conversion efficiency of this DSC was just
0.188%, which is not practical. To overcome this low power generation issue, we tried improving
the DSC structure by applying electrodes to the CNT-composite papers in grid patterns for efficient
current collection and applying an optimally mixed dye for efficient electron excitation. Results
showed that the conversion efficiency improved to 0.58%. Moreover, we demonstrated that using
a mixed dye can improve the conversion efficiency of the paper DSC. We expect these types of
CNT-composite papers to be used as material for new DSCs.

Keywords: carbon nanotube; carbon-nanotube-composite paper; dye; dye-sensitized solar cell;
flexible device; paper

1. Introduction

Renewable energy has been attracting attention as a potential solution to environmental problems.
Research on photovoltaic power generation, a renewable form of energy, is being studied, and solar
cells that are capable of generating clean energy are attracting attention [1]. In the present study, we
focus on a dye-sensitized solar cell (DSC), which is a type of solar cell [2]. A DSC generates electricity
by using dyes that absorb light and emit electrons. Since a DSC can generate electricity without
using rare metals and can use various natural dyes [3–6], it can be fabricated at a low cost and is easy
to use [7]. Previously, we developed a unique DSC by using carbon nanotube (CNT) paint [8], i.e.,
a paint-type DSC.

CNTs are made of carbon and can be used in a wide variety of applications due to their excellent
characteristics [9]. However, they are difficult to handle because they are a nano-scaled and generally
come in a powdery state. Therefore, in this study, we compounded CNTs and pulp (raw paper material)
to form CNT-composite papers (Figure 1) [10] that facilitate the application of CNTs to electrical devices
such as transistors [11] and thermoelectric devices [12]. To generate power from DSCs [13], one first
needs to prepare both semiconducting and metallic electrodes, as described in Section 2. CNTs are
divided into those having metallic characteristics and those having semiconducting characteristics,
depending on their structure [14]. Our concept is to selectively fabricate metallic and semiconducting
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CNT-composite papers and apply them to both electrodes of a DSC. Various flexible DSCs—e.g.,
a wire-shaped one [15], a type that uses a conductive mesh [16], and a type that uses CNTs only for
a counter electrode [17]—have been proposed. Compared with them, our paper-based DSC is very
unique because of its use of paper.
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volume of contained CNTs.

It is important to select a suitable semiconductor having a large surface area. To achieve high
power-generation efficiency, one needs to adsorb dyes to the material used as a semiconducting
electrode. Generally, TiO2 is used for this purpose. Since CNTs have higher surface areas than other
materials, we believe they are suitable for such dye adsorption. In addition, CNTs have high electrical
conductivity, so we can expect them to produce more electric power with less energy loss. Therefore,
we argue that our CNT-composite papers are suitable for DSC electrodes. In this study, we apply our
CNT-composite papers to the electrodes of a DSC in order to take advantage of these characteristics.

We previously developed a DSC by using CNT-composite papers; however, its conversion
efficiency was only 0.188% [18]. As the conversion efficiency of general DSCs with, e.g., ruthenium
dyes, is about 5–13% [19–21], our DSC had various problems that must be overcome before it could be
put to practical use. One reason for the low conversion efficiency of this CNT-composite paper was
the high resistance (about 4 kΩ) the electrons faced when flowing to an electrode. When fabricating
our paper DSCs, electrodes were made of conductive paste and were only attached to a part of the
semiconducting CNT-composite paper. Therefore, the distance that the excited electrons had to travel
from the dye to the electrode was too long. Additionally, electrons did not flow efficiently because they
recombined with the dye before flowing to the electrode. As a result, conversion efficiency was low.
A second reason is related to the dye. To obtain highly efficient power generating DSCs, choosing a
high-performance dye is key. However, such dyes are usually quite expensive. Moreover, individual
dyes can absorb only limited light that has a narrow range of wavelength. Here, we consider the use of
mixed dyes, where each dye can absorb a different light (different wavelength).

2. Dye-Sensitized Solar Cell

In this section, we describe the principle behind our DSC and the method for evaluating its
conversion efficiency.

2.1. Principle of Dye-Sensitized Solar Cell

A DSC consists of one semiconducting electrode to which dyes are adsorbed and another that
functions as a counter electrode. The DSC is filled with an electrolyte between the two electrodes.
The general structure of a DSC is shown in Figure 2. When light is irradiated to the dyes that are
adsorbed to the semiconductor, electrons inside the dyes are excited and transition to the semiconducting
electrode. They then pass through the external circuit and arrive at the counter electrode. After that,
electrons flow into the electrolytic solution and back inside the dyes. Power is generated by following
the above process.
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Figure 2. Schematic of a dye-sensitized solar cell (DSC).

2.2. Evaluation Method for Dye-Sensitized Solar Cell

One measures the current while changing the bias voltage in our DSC. The current-voltage (I–V)
curve can be obtained by plotting the obtained data. The performance of devices can be evaluated by
calculating the conversion efficiency (η) and fill factor (FF) based on the I–V curves that are obtained
from measuring various values of the solar cell, which are described in the following. Conversion
efficiency is the ratio when irradiated light energy is converted into electric energy and is expressed as
a percentage. The proportional factor Pin is the incident light energy, and Pmax is the maximum electric
power generated by the DSC.

The short-circuit current (Isc) is the current when the voltage between both terminals of a DSC is 0,
and the open-circuit voltage (Voc) is the voltage when no current flows through the DSC. FF is obtained
by dividing the maximum output Pmax by the products of Voc and Isc. It represents the curvature of
the I–V characteristics and takes a value from 0 to 1. An FF close to 1 indicates that the DSC has a high
performance. It is an indicator of the I–V characteristic of the solar cell represented by the I–V curve.

η = (Pmax/Pin) × 100 (1)

FF = Pmax/(Voc × Isc) (2)

3. Experimental Method and Results

We prepared CNT-composite papers and used them to fabricate our DSC. We then evaluated
the electrical characteristics. In Section 3.1, we describe our method of preparing the CNT-composite
papers, and in Section 3.2, we describe the fabrication method of our DSC and the previous experimental
results. We discuss the fabrication method and evaluation results of our modified DSC in Section 3.3.

3.1. Method for Preparing Carbon Nanotube-Composite Papers

CNTs have a cylindrical structure [22–24] and are roughly divided into single-walled carbon
nanotubes (SWNTs) that have a layer sheet and multi-walled carbon nanotubes (MWNTs) that have
multi-layer sheets. When SWNTs have metallic characteristics, chirality (n, m) satisfies n − m = 3q (q is
an integer), and SWNTs that have chirality that does not satisfy this characteristic have semiconducting
characteristics [25]. Since MWNTs are mainly metal, we felt that they could be used for the metallic
CNT-composite paper of our DSC. We used SWNTs for the semiconducting CNT-composite paper.
CNT-composite papers are a composite material of CNTs and pulp, which makes them easy to handle.
Moreover, because they also have the characteristics of paper, they are extremely flexible and easy to
use, and their shape can be set or processed as users desire [10,26].

We prepared the CNT-composite papers by using our papermaking method that is based on the
traditional Japanese washi process, as shown in Figure 3. To make a semiconducting CNT-composite
paper, we mixed 4 mg of SWNTs and 36 mg of anthocyanin dyes (purple sweet potato color, Kiriyasu
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Red PSP, KIRIYASU Chemical Co., Ltd., Japan) in 30 mL of pure water. Then, we ultrasonically
dispersed them for 90 min. Here, the dye was expected to be the dispersant for CNTs. It is known that
the molecules that have benzene rings and hydroxy groups, such as catechin [27,28], have the ability to
disperse CNTs in water. The benzene rings of molecules are drawn and adsorbed on the surface of
CNTs by the synergy effects of π-π stacking interaction. Anthocyanin dye has the benzene rings and
the hydroxy groups. Generally, CNTs cannot be dispersed in water by just ultrasonication. To disperse
CNTs in water, in addition to the use of ultrasonication, a dispersant must be used. As a result of
the preparation of the CNT dispersion with anthocyanin dye, CNTs keep dispersing in water for
a long time. Therefore, we could consider the use of anthocyanin dye as the dispersant for CNTs.
Simultaneously, we dispersed 1 g of pulp in 100 mL of pure water by using a stirrer for one hour
to prepare the pulp dispersion. In addition, we mixed 36 mL of this pulp dispersion with the CNT
dispersion. Next, we poured it on a fine mesh net and scooped up the net. The pulp fibers including
CNTs remained on the net. We then shaped a wet sheet made by the pulp fibers and CNTs into a 6 cm
square (6 × 6 cm2) by hot press and dried it. The thickness of the paper was about 0.2 mm. The sheet
resistance of the fabricated semiconducting CNT-composite papers was about 4 kΩ.
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Similarly, to make a metallic CNT-composite paper, we mixed 48 mg of MWNTs and 70 mg of
sodium dodecyl sulfate (SDS) as the dispersant (surfactant) in 36 mL of pure water, and then we
ultrasonically dispersed them for 90 min. Next, we mixed 45 mL of the prepared pulp dispersion
with the MWNTs solution. After that, we prepared the metallic CNT-composite paper from the mixed
dispersion by using the same method described above. The thickness of the paper was about 0.2 mm,
which was the same as the semiconducting CNT-composite paper. The sheet resistance of the fabricated
metallic CNT-composite papers was about 10 Ω. Finally, the two types of CNT-composite paper were
prepared, and the leads on each one were connected by using conductive paste. Each paper was
prepared in 2 × 2 cm2 sheets for our DSC.

3.2. Method of Fabricating Original Dye-Sensitized Solar Cell and Its Evaluation

The method of fabricating our original DSC [18] that we prepared as the reference (Sample A) is
as follows. First, we prepared the metallic and semiconducting CNT-composite papers by the above
methods, an ordinal paper (0.2 mm of thickness) and an iodinated electrolyte solution (0.26 g of iodine
and 1.66 g of potassium iodide in 20 mL of ethylene glycol). Then, we stacked the papers, as shown
in Figure 4a. We could stack and fix the papers by a simple method based on technique to make a
paper from a few papers for Japanese washi paper. The paper fibers fluff in the making process. When
the fabricating (wet) paper, before drying with fluffed fibers on its surface, is stacked with another
wet paper and pressed, the fibers of each paper entwine each other. As a result, the stacked papers
are fixed easily after drying. We here assumed that the layers were uniformly stacked because we
used a press machine. The thickness of the sample was about 0.5 mm. After preparing the stacked
paper, we dropped 355 µL of the electrolyte onto the ordinal paper as an object that was capable of
holding liquid. The permeability of the paper was almost same as conventional filter papers. After
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that, the electrolyte solution was held between two sheets of the CNT-composite papers to prepare a
DSC sample. Anthocyanin dye then adsorbed to the semiconducting CNT-composite paper. This dye
is excellent for absorbing near 500 nm of the solar spectrum [29–33]. Figure 4b shows a photograph of
a fabricated sample.
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DSC sample.

To measure and calculate the conversion efficiency and FF of the sample, we irradiated the
semiconducting CNT-composite paper with artificial sunlight (1000 W/m2) and then measured the I–V
characteristic for ten minutes with a semiconductor parameter analyzer (4200-SCS, Keithley). Figure 5
shows the I–V characteristic of this sample. As a result, the I–V characteristic showed an approximately
linear line. Here, we searched for and chose a point of near Isc/2 and Voc/2 to calculate Pmax. Then,
the conversion efficiency of this sample was calculated as 0.23%, and FF was calculated as 0.22.
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3.3. Approach to Improving Conversion Efficiency and Fill Factor of Our Paper Dye-Sensitized Solar Cell

We here describe two approaches to improve the performance of the paper DSC. First, we fabricated
a DSC sample with a grid electrode by using conductive paste to connect the semiconducting
CNT-composite paper with the lead wire, and we measured its I–V characteristics to evaluate its
performance (Section 3.3.1). Second, focusing on the dye, we evaluated the absorption wavelength
bands of the dye by using an absorption spectrophotometer [34] and developed a new dye that has
a wide absorption wavelength band by mixing two kinds of dyes that have different absorption
wavelength bands. After that, we applied the dye to the paper DSC and evaluated its performance
(Section 3.3.2).
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3.3.1. Changing Shape of Attached Electrodes

For electrical measurement and evaluation, electrodes for the leads were attached to the fabricated
sample, and the sample was attached to a section of the CNT-composite paper by using conductive
paste. As described above, this sample’s efficiency is low, presumably due to the excited electrons
from the dyes not efficiently flowing to the semiconducting CNT-composite paper. Here, a conductive
paste in the form of differently sized grids was attached to the semiconducting CNT-composite paper
to improve conversion efficiency by increasing the short-circuit current. We prepared three samples
with three different grid patterns to investigate how the short-circuit current changed by increasing the
size of the grid pattern (Figure 6).
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We conducted experiments on Sample A (the original) and on those with the three different grid
patterns (B, C, and D) to evaluate conversion efficiency. Artificial sunlight (1000 W/m2) was irradiated
on the semiconducting CNT-composite paper surface, and the I–V characteristics were measured
every two minutes for ten minutes. Figure 7 shows the measured I–V characteristics six minutes after
irradiation. Conversion efficiency was calculated by using Equation (1) and evaluated on the basis of
these I–V characteristics. We found that the short-circuit current of Sample D (pattern 3) increased
about twice as much as that of Sample A. We observed that the short-circuit current increased as the
number of grids increased. This result demonstrates that we could increase the short-circuit current
by attaching the electrode in a grid pattern. The conversion efficiency was improved to 0.24% for
Sample B, to 0.46% for Sample C, and to 0.58% for Sample D. For calculation, we also searched for and
chose a point of near Isc/2 and Voc/2, as described in the end of Section 3.2. Table 1 lists the short-circuit
current and conversion efficiencies of Samples A, B, C, and D.Energies 2019, 12, x FOR PEER REVIEW 7 of 13 
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Table 1. Measured short-circuit current values and conversion efficiencies of our DSC estimated from
the I–V characteristics given in Figures 5 and 7.

Sample A
New Samples with Different Grid Patterns

B C D

Short circuit current Isc (mA) 7.26 10.41 15.51 19.50
Conversion efficiency η (%) 0.23 0.24 0.46 0.58

3.3.2. Using More than Two Dyes

The solar spectrum includes a wide range of wavelengths from 300 to 3000 nm. The visible light
whose wavelength is between 400 and 700 nm has the highest strength. The efficient absorption of the
wide range wavelength of the solar spectrum, especially visible light, is very important to improve
power generation efficiency. However, there is no dye that can follow and absorb all of the wavelength
bands of sunlight; i.e., various dyes can absorb only a limited wavelength. Therefore, we could improve
the power generation efficiency of the DSC by preparing a mixture of dyes that could compensate for
the lower absorption of the others.

In this study, we mainly used an anthocyanin dye (Figure 8a), as described in Section 3.1. Before
trying to improve the power generation efficiency through the above approach, we firstly measured the
property of the mixture of the dyes. For the measurement, we used dye solutions, as described below.
We dissolved the anthocyanin dye in water at the rate of 3 mg/mL as Solution I and then measured its
absorption wavelength to evaluate how much spectrum it could absorb.
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Figure 8. Structural formula of (a) anthocyanin dye and (b) chlorophyll-a.

We also tried mixing chlorophyll-a (Figure 8b) [35] with the anthocyanin dye. We dissolved it in
acetone at the rate of 0.1 mg/mL as Solution II and measured its absorption wavelength to evaluate
how much spectrum it could absorb. Finally, we investigated which mix of dyes could best expand
the absorbing wavelength bands. We mixed Solutions I and II at the rate of 1:4, 2:3, 3:2, and 4:1 and
measured several absorbing wavelengths. After that, we calculated the absorption efficiency from the
absorbing wavelength and the solar spectrum by:

Absorption e f f iciency =
[∑800

k=350

{
1−

(
1/10Ak

)}
rk/

∑800

k=350
rk

]
× 100 (3)

where Ak describes the absorbance when the wavelength is k and rk is the spectral irradiance when the
wavelength is k.

The results showed that the maximum absorption wavelength of the anthocyanin dye was 530 nm,
and the maximum absorption wavelengths for chlorophyll-a were 430 nm and 660 nm, as shown in
Figure 9.
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Figure 10 shows the measurement results of the absorption wavelength for the mixed dye solutions.
Table 2 lists the total absorption efficiency obtained from the mixed dye solutions as a function of the
mixture rate (I:II). For reference, each pure dye (Solutions I and II) is also listed. We found that the
ratio of I:II = 3:2 was most suitable for our DSC. These results demonstrate that the mixed dye enabled
a higher efficiency DSC than the single dye.
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Table 2. Total absorption efficiency obtained from the mixed dyes as a function of the mixture rate (I:II).

I:II 1:4 2:3 3:2 4:1 Only I Only II

Absorption
efficiency [%] 80.0 68.4 84.0 73.1 48.3 61.1

Then, we applied the mixed dye (solution, mixture rate: 3:2) to our paper DSC instead of only
anthocyanin dye. Here, we slightly changed the making method for the semiconducting CNT-composite
paper to apply the mixed dye. Firstly, we made the paper without the dye. For this, we used SDS to
prepare the CNT dispersion in the making process. After that, we dropped the mixed dye solution
and dried it. We here assumed that the greater part of the mixed dye was finally adsorbed on CNTs,
although the adsorption speeds of the dyes may have been different because the CNT had a large
surface area as, described in Section 1. Moreover, the CNT composite paper had a porous and network
structure, as shown in Figure 11. Then, we dropped 0.2 mL of the electrolyte, irradiated 1000 W/m2 of
artificial sunlight to the sample, and measured the I–V characteristics. We found that using the mixed
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dye increased the short-circuit current, as shown in Figure 12. This led to the improvement of the
conversion efficiency.
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We should point out that, compared with the results in Figure 5, the obtained short-circuit current
here was low. This is because we used less dye for this test. This low current could have also
been caused by the changing of the making method for the semiconducting CNT-composite paper.
For simplicity, we focused only on the effect of dyes. The important point of this result is that using the
mixed dye was effective in improving the conversion efficiency.

4. Discussion

From the measured I–V characteristics of the three grid patterns (Samples B, C, and D), we found
that Sample D had the highest conversion efficiency. From the measurement results of Samples B,
C, and D, we confirmed that as the size of the grid pattern increased, the short-circuit current also
increased. This may have been due to the following reasons. In Sample A, electrons excited from a
dye moving in the device exhibited various resistances when flowing to the electrode. By increasing
the size of the grid pattern, the distance to the electrode became shorter, so the electrons could flow
efficiently to that electrode without much resistance. We thus conclude that the short-circuit current
depends on the size of the grid pattern. For Sample D, the short-circuit current increased to 19.50 mA,
and the conversion efficiency increased to 0.58%. This conversion efficiency was almost same value
shown by our paint-type DSCs [8]. However, as compared with other flexible DSCs that use CNTs and
anthocyanin dye [17], the value was not so high, although there are differences between our DSC and
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others, e.g., other studies used a TiO2-based semiconducting electrode. The efficiency of the other DSCs
was from about 0.1% to about 3.2% [3]. For detailed evaluation, theoretical analysis and additional
measurement, e.g., for mobility, must be conducted. Thus, detailed properties of the sample will be
clarified in near future.

From the measured I–V characteristics of the sample with the mixed dye, we found that using
the mixed dye was very effective in improving conversion efficiency. In this study, we only used
two dyes. When a mixed dye containing three or more dyes with a suitable mixture rate is used for
the paper DSC, we expect the conversion efficiency to be further improved. For detailed evaluation,
the absorption wavelength of the contained dyes in the fabricated DSC must be measured. In this
study, for simplicity and to find the suitable mixture rate, we only measured the dye solutions and
calculated the value of the absorption efficiency as a first step of the approach before making our new
DSC, as shown in Figure 10 and Table 2. When the dyes are contained in our DSC, their properties may
be scattered. To improve the performance, such properties should also be evaluated by using, e.g.,
standard deviations. Though it has thus far been difficult to measure absorbance after constructing the
DSC, we will try to develop a way to measure the value of our DSC in the near future.

For future work, we will investigate the utilization of a gel electrolyte, which is considered
necessary to prevent the leakage and evaporation of the electrolytic solution [36–38] because our
paper DSC was not packaged. Therefore, the lifetime of it was not very long (approximately one day).
When the sample was irradiated with artificial sunlight, the electrolyte started to evaporate. Thus,
the use of the gel electrolyte will be a strong candidate for improvement. Recently, the use of the
cellulose-based gel electrolyte for conventional DSCs was reported [39]. Cellulose is a main ingredient
of paper. Therefore, we consider that the gel electrolyte is also candidate to use for our paper DSC.
A further improvement of conversion efficiency is expected by examining new dyes such as ruthenium
dye, phthalocyanine dye [40–42], and various mixed dyes. In this study, the maximum value of the
FF of our modified DSC was 0.22 (from Equation (2)). Since the FF of general DSCs is from 0.35 to
0.7 [3,39], this needs to be improved. We feel that the maximum power obtained from a DSC can be
improved by lowering its series resistance or increasing its parallel resistance. Compared with the
resistance of the negative electrode of a general DSC, which is about 250 Ω, the negative electrode of
our DSC was as high as about 4 kΩ. However, the FF is still low. One solution is to mix metal-type
CNTs with the negative electrode in order to reduce the resistance and improve FF.

5. Conclusions

In a previous work, we fabricated a “paper DSC” consisting of metallic- and semiconducting-CNT-
composite papers that could generate power. However, its conversion efficiency was low, and there
were problems regarding practical use. The main cause of the low conversion efficiency was that
the excited electrons from the dyes did not efficiently flow to the electrodes (conductive pastes for
lead wires) on the semiconducting CNT-composite paper. As a solution, in the present study, we
attached electrodes to the semiconducting CNT-composite paper in grid patterns to improve conversion
efficiency by increasing the short-circuit current. We found that this shortened the distance from
electrons that were excited from the dyes to the electrodes, and the electrons were thus able to flow
without much resistance. This led to an increased short-circuit current and a conversion efficiency
that improved to about 2.5 times that of our original DSC sample. We also found that the short-circuit
current could be increased by applying an optimized mixed dye for the semiconducting electrode,
which in turn improved the conversion efficiency. We believe that DSCs that are fabricated by using
CNT-composite papers will make it easier to generate cleaner electricity in the near future.
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