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Abstract: Accurate temperature estimation inside an electrical motor is key for condition monitoring,
fault detection, and enhanced end-of-life duration. Additionally, thermal information can benefit
motor control to improve operational performance. Lumped-parameter thermal networks (LPTNs)
for electrical machines are both flexible and cost-effective in computation time, which makes them
attractive for use in real-time condition monitoring and integration in motor control. However,
the accuracy of these thermal networks heavily depends on the accuracy of its system parameters,
some of which are difficult to calculate analytically or even empirically and need to be determined
experimentally. In this paper, a methodology for the thermal condition monitoring of long-duration
transient and steady-state temperatures in an induction motor is presented. To achieve this goal, a
computationally efficient second-order LPTN for a 5.5 kW squirrel-cage induction motor is proposed
to apprehend the dominant heat paths. A fully thermally instrumented induction motor has been
prepared to collect spatial and temporal temperature information. Using the experimental stator
and rotor temperature data collected at different motor operating speeds and torques, the key
thermal parameter values in the LPTN are identified by means of an inverse methodology that
aligns the simulated temperatures of the stator windings and rotor with the corresponding measured
temperatures. Validation results show that the absolute average thermal modelling error does not
exceed 1.45 ◦C with maximum absolute error of 2.10 ◦C when the motor operates at fixed speed
and torque. During intermittent motor-loading operation, a mean (maximum) stator temperature
error of 0.38 ◦C (0.92 ◦C) was achieved and mean (maximum) rotor errors of 2.11 ◦C (3.40 ◦C). These
results show the validity of the proposed thermal model but also its ability to predict in real time the
temperature variations in stator and rotor for condition monitoring and motor control.

Keywords: condition monitoring; transient thermal modelling; lumped-parameter thermal network;
induction motor; inverse identification methodology; model fitting

1. Introduction

Thermal prediction of electric motors is becoming increasingly important in the drive for higher
power density, energy efficiency and cost reduction [1]. Accurate temperature estimation of motor
hotspots is key for condition monitoring and fault detection [2], as well as motor control [3,4]. As the
stator windings are surrounded by thermally vulnerable insulation material, real-time prediction of

Energies 2020, 13, 37; doi:10.3390/en13010037 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4741-5476
https://orcid.org/0000-0002-0442-3786
https://orcid.org/0000-0001-7630-8579
http://dx.doi.org/10.3390/en13010037
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/1/37?type=check_update&version=2


Energies 2020, 13, 37 2 of 27

the temperature of the windings allows enhancement of the motor end-of-life duration. Furthermore,
Direct Torque Control (DTC) schemes for electric motors depend on the parameter value of the stator
resistance, especially at low speeds or standstill [3]. A large portion of the industrial induction
motors use Field-Oriented Control (FOC) schemes. They rely on having accurate knowledge of the
rotor resistance parameter value for their torque control [4]. Having accurate real-time temperature
prediction capabilities thus allows improvement to the torque performance of DTC (i.e., knowledge of
the stator windings temperature) and FOC (rotor temperature) as well as enhance end-of-life duration.

Thermal analysis of electric machines is a less elaborated field of research, although considerable
advancements have been achieved over the past three decades. Three large categories can be
distinguished to model the thermal behavior of electric motors: a fully numerical approach,
a lumped-parameter thermal network (LPTN) approach, or a combination of both. Fully numerical
methods include rigorous analyses using Finite-Element (FE) methods both for determining heat
transfer through solid materials and for electromagnetic loss determination, while computational fluid
dynamics are used to model convective heat transfer between the motor and coolant fluid or air [5–7].
The main advantage of these methods is the capability to accurately estimate the entire temperature
distribution of the motor, including critical hot-spot locations [1]. These models are however unsuitable
for real-time applications due to their high computational cost.

Contrary to FE-based models, LPTNs are computationally cost efficient, which makes them
suitable for real-time applications. They have been introduced in [8] and developed [9–12] over recent
years. A combination of LPTN and FE has been proposed and used in [13,14]. The challenge with LPTN
modelling is the identification of on the one hand the dominant heat paths [1] and on the other hand
the thermal parameter values of the LPTN elements, which have a considerable impact on the accuracy
of temperature prediction [15,16]. These thermal parameters can either be calculated in a direct
manner through analytical relations and empirical formulas from literature [16–19], or alternatively be
determined through an inverse methodology by using temperature measurements as a reference for
the model outputs [11,20–25].

The bulk of research work concerning electric motor LPTNs use the direct method to identify the
thermal system parameters. Simplifications to the original network in [8] have been presented in [17]
for a self-ventilated induction motor, taking into consideration only the steady-state regime where
maximal temperature deviations of 5 ◦C were achieved. A similar thermal analysis was performed
in [9] for high power density electrical machines for steady-state regime, where the electromagnetic
losses were calculated using FE methods, while air gap convection was calculated analytically using
empirical expressions based on the relevant dimensionless numbers. Transient thermal behavior of
an induction motor using a second-order LPTN is investigated for only one motor operating point
in [26], where mechanical losses were also included in the model, leading to temperature modelling
errors of only 0.75 ◦C. Furthermore, in [27] the authors adapted the network introduced in [8] to a
maximum-based temperature instead of an average-based temperature model, using FE calculations
as a reference. Another addition to the original model has been considered in [19], where nodes are
supplemented in the LPTN to apprehend the heat transport by air flow in an open-type, air-cooled
induction motor. In this case, computational fluid dynamics calculations validated the full thermal
model. However, only steady-state regime was considered since thermal capacitances were absent.
A higher-order LPTN was considered for the thermal analysis of an induction motor with a die cast
copper rotor in [18], where it was shown that the stator end winding transient temperature could be
predicted for different motor loadings, although the maximal modelling error was still close to 5 ◦C.
Finally, in [12,28] the short-time transient behavior of the stator windings of an induction motor was
examined for the first few minutes of operation.

In this work, a methodology for the thermal condition monitoring of long-duration transient and
steady-state temperatures in an induction motor is presented. To achieve this goal, a computationally
efficient second-order LPTN for a 5.5 kW squirrel-cage induction motor is proposed to apprehend the
dominant heat paths. A fully thermally instrumented induction motor has been prepared to collect
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spatial and temporal temperature information. This induction motor is connected in a back-to-back
configuration with another induction motor that emulates the load. Using the experimental stator
and rotor temperature data collected at different motor operating speeds and torques, the key thermal
parameter values in the LPTN are identified by means of an inverse methodology. The capability to
predict both long-duration transient and steady-state temperatures of stator windings and rotor cage
is tested and validated experimentally for both fixed and intermittent motor operations. The proposed
methods have the potential to be included in a condition monitoring system for induction motors that
are not fully instrumented.

Section 2 details the structure and analytical discussion of the proposed LPTN. Section 3 discusses
the experimental setup with the fully thermally instrumented induction motor. The next Section 4
presents the inverse methodology for the thermal identification of the induction motor. Section 5
discusses the experimental identification of the proposed LPTN and its subsequent validation for both
different fixed motor operating points and intermittent operating regime. Finally, conclusions are
drawn in Section 6.

2. Lumped-Parameter Thermal Network

A second-order LPTN is considered to model the temperature of the stator windings and the rotor
block in an induction motor. It is assumed in this thermal model that both the copper stator windings
and the rotor cylinder block are at a uniform temperature [29,30]. The model is illustrated in Figure 1,
where the nodes θCu(t) and θrotor(t) represent the temperature of the stator windings and rotor,
respectively. The thermal capacity of the stator windings and rotor are denoted with CCu and Crotor,
respectively, while the heat sources due to motor losses are specified as PCu and Protor, respectively.
R1 is the thermal resistance between stator windings and the ambient air at room temperature θroom

and R2 is the thermal resistance between the rotor and the copper stator windings.

Figure 1. Illustration of the second-order LPTN to model the temperature of the copper stator windings
and the rotor cylinder.

The thermal behavior can be described by the following differential equation:

[C]2×2

[
dθ

dt

]
2×1

= [Y]2×2[θ]2×1 + [P]2×1 (1)

where [θ]2×1 is the vector carrying the temperature of the stator windings and rotor,
[

dθ
dt

]
2×1

is the

time derivative of [θ]2×1, [C]2×2 is the thermal capacity matrix, [Y]2×2 is the thermal admittance matrix
and [P]2×1 the vector carrying the thermal heat sources. Equation (1) can be written in its full form
as follows:

[
CCu 0

0 Crotor

]  dθCu
dt

dθrotor
dt

 =

− 1
R1
− 1

R2(Ω)
1

R2(Ω)
1

R2(Ω)
− 1

R2(Ω)

 [ θCu

θrotor

]
+

[ 1
R1

1 0

0 0 1

]  θroom

PCu(T)
Protor(T, Ω)

 (2)
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where T and Ω are the motor torque and speed, respectively. The motor speed Ω has a considerable
influence on the thermal resistance R2(Ω), as it includes the modelling of heat transfer through
convection between the rotor, the air gap and the stator. The heat sources PCu(T) and Protor(T, Ω)

represent the motor joule and iron losses, and are dependent on the motor operating points of torque
and speed. These quantities can be explicitly written as function of motor torque T and speed Ω:

R2(Ω) = pR2,0 + pR2,1Ω + pR2,2Ω2 (3)

PCu(T) = pCu,0 + pCu,1T + pCu,2T2 (4)

Protor(T, Ω) = protor,00 + protor,10T + protor,01Ω + protor,20T2 + protor,11TΩ + protor,02Ω2 (5)

where the p coefficients are fitting parameters that need to be determined experimentally. Equation (1)
can be written in the standard form for state-space equations as follows:

θ̇(t) = Aθ(t) + Bu (6)

θ(t) =

[
θCu(t)

θrotor(t)

]
(7)

A = C−1Y (8)

B = C−1

[ 1
R1

1 0

0 0 1

]
(9)

u =

 θroom

PCu(T)
Protor(T, Ω)

 (10)

The full solutions for θCu(t) and θrotor(t) can be obtained by superposition of the zero-input response
θ0−I(t) and zero-state response θ0−S(t):

θ(t) =

[
θCu(t)

θrotor(t)

]
= θ0−I(t) + θ0−S(t) (11)

The zero-input response and zero-state response are:

θ0−I(t) =

[
α11θCu(0) + α12θrotor(0)
α21θCu(0) + α22θrotor(0)

]
exp(s1t) +

[
β11θCu(0) + β12θrotor(0)
β21θCu(0) + β22θrotor(0)

]
exp(s2t) (12)

θ0−S(t) =

 1
s1

(
α11

1
CCu

(
θroom

R1
+ PCu

)
+ α12

Protor
Crotor

)
1
s1

(
α21

1
CCu

(
θroom

R1
+ PCu

)
+ α22

Protor
Crotor

) (−1 + exp(s1t))

+

 1
s2

(
β11

1
CCu

(
θroom

R1
+ PCu

)
+ β12

Protor
Crotor

)
1
s2

(
β21

1
CCu

(
θroom

R1
+ PCu

)
+ β22

Protor
Crotor

) (−1 + exp(s2t)) (13)

where the α and β coefficients are determined in Appendix A according to (A7) and the eigenvalues s1

and s2 according to (A4).
This temperature model is subsequently aligned with experimental data collected on a fully

thermally instrumented induction machine. The following section describes the considered
instrumented induction motor and its inclusion in an experimental test bench.
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3. Fully Thermally Instrumented Induction Machine

The experimental test setup consists of a 5.5 kW squirrel-cage induction motor (test motor) in
back-to-back configuration with a 7.5 kW induction motor acting as a load emulator, as shown in
Figure 2. The 5.5 kW motor has a nominal speed of 1460 rpm and nominal torque of 35.97 Nm, as listed
in Table 1. The test motor (on the right in Figure 2) is controlled with an in-house implementation of
Indirect Field-Oriented Control (IFOC) while the load emulator (on the left in Figure 2) is controlled
with V/ f -control with an industrial motor drive. The IFOC motor drive algorithm of the test motor
is programmed in Matlab Simulink and uploaded to the Real-Time Interface (RTI) of the dSPACE
MicroLabBox rapid prototyping system, which sends the command signals for the inverter switches.
The inverter switching frequency is 8 kHz, while the applied DC voltage to the inverter is 600 V.

Figure 2. Picture of the experimental test setup. The 5.5 kW test induction motor (right) is mounted in
back-to-back configuration with a 7.5 kW induction motor (left) acting as a load emulator. Furthermore,
the test motor is equipped with PT1000 RTDs in the stator and a contactless infrared temperature
sensor is mounted close to the rotor end to measure its temperature.

Table 1. Specifications of the 5.5 kW induction motor and external fan.

Characteristic Motor Fan

Type 2EC132S-4 FLAI Bg132
Number of pole pairs Np 2 1
Nominal power PN (W) 5500 160

Nominal speed ΩN (rpm) 1460 2830
Nominal torque TN (Nm) 35.97 0.540
Nominal current IN (A) 18.6/10.7 ∆/Y 0.64/0.37 ∆/Y
Nominal voltage VN (V) 230/400 ∆/Y 230/400 ∆/Y

Efficiency η (%) 89.6 −
Volumetric flow rate ΦN (m3/h) − 532

The 3-phase stator currents of the test motor are measured with 3 Hall-effect LEM current
transducers. Motor speed is measured with a standard 1024 incremental encoder from BEI Sensors,
type DHO5 which is mounted on the shaft of the 7.5 kW load emulator. Furthermore, motor torque
is measured with a torque sensor that is mounted in between the two motors with single lamellar
couplings. The torque sensor is supplied by Lorenz Messtechnik GmbH, type DR-2112 and has a
50 Nm rating with an accuracy of ±0.05 Nm.
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Platinum Resistance Temperature Detectors (RTDs) of type PT1000 have been embedded into the
impregnated stator windings to measure its temperature. They have accuracy class A according to the
DIN/IEC 60751 standard [31], which corresponds to an accuracy of ±(0.15 + 0.002θ) ◦C with θ the
measured temperature. Four-wire sensing is applied to eliminate any unwanted additional resistance
increases due to heat-up of the sensing wires. Because of the high dv/dt in the stator windings of
the motor, the PT1000 temperature sensors are highly susceptible to high-frequency noise and DC
offsets. An in-house designed multi-channel temperature board has been implemented to excite the
PT1000s and filter out the high-frequency noise and DC offset on the measured signal, as well as
condition the output signals for the data-acquisition through the MicroLabBox. The linearity error
and common-mode rejection ratio of the temperature board have been measured to be 0.12% of full
scale and −79.2 dB, respectively. The amplitude of the remaining noise is limited to 0.3 ◦C for the full
measuring range.

The PT1000 temperature sensors are placed at different radial and axial positions inside the stator
windings, as shown in Figure 3. The three relevant radial positions of the thermal sensors are located
at the top, in the middle and at the bottom of the stator slot, respectively. In the axial position the
sensors are placed equidistantly with a distance in between each sensor equivalent to a quarter length
of the stator lamination pack. Sensors have also been placed in the end windings both at the drive side
and the fan side, where three sensors are placed in each end winding: one close to the inner radius,
a second in the middle and a third close to the outer radius of the end winding. In order to implement
these sensors, the original impregnated stator windings were removed, and new stator windings were
placed in the stator slots together with the PT1000 sensors. The stator windings were subsequently
re-impregnated with a resin. Additional temperature sensors have also been placed in the stator tooth
tip, stator tooth, yoke and on the motor frame to obtain a fully thermally instrumented induction
motor. The 4 enameled copper wires of each temperature sensor exit the motor through the terminal
box at the top and are connected to an intermediary board that is mounted on the side of the motor
(cfr. Figure 2). Shielded cables connect each temperature sensor from the intermediary board to the
corresponding input of the in-house designed multi-channel temperature board.

Figure 3. Location of the PT1000 temperature sensors in the stator windings.

To measure the rotor temperature, a contactless infrared (IR) temperature sensor has been mounted
close to the drive end of the rotor so that its field of view is entirely focused on the rotor surface. The IR
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sensor is supplied by Melexis and is of type MLX90614-ACC with an accuracy ranging from ±0.5 ◦C
to ±1 ◦C.

Both motors are cooled independently with external ventilators mounted on each motor with the
fan running at 2830 rpm. The fan specifications are listed in Table 1. Data-acquisition of all sensors
and control of the test motor are performed simultaneously through the RTI of the MicroLabBox.
Commanding setpoints of speed and torque are performed with the dSPACE ControlDesk 6.1 software.

In each of the measurement sets for model identification and for model validation, the 5.5 kW test
induction motor is torque controlled, while the 7.5 kW is speed controlled. For each experiment,
the motors are operated until thermal equilibrium is reached, while measuring both the stator
temperatures and the rotor temperature.

4. Inverse Thermal Identification of the Induction Machine

An inverse methodology is used to determine the thermal parameter values of the LPTN (Section 2)
starting from the experimental data collected on the fully thermally instrumented induction motor.
Previous research has shown the identification of a steady-state higher-order LPTN (not consisting of
capacitances) for a single motor operating point in [32]. A transient second-order LPTN was similarly
identified in [24] with maximum estimation errors of only 4 ◦C for the stator windings, which was
validated experimentally. However, no rotor temperature measurement or validation was presented
in this work. A data-driven method was adopted in [20] to model the transient rotor temperature
using subspace identification, which can be subsequently applied as an open-loop observer, but only
the rotor temperature was considered here. As the accuracy of the modelled heat sources has a large
impact on the modelled output temperatures, an investigation of the possibility of determining power
losses in electrical machines based on the inverse identification methodology has been conducted
in [21,22]. Finally, the results of an inverse identification of a LPTN for permanent magnet synchronous
motors was presented, using a global identification technique for linear parameter-varying systems.
The maximum estimation error is reported to be 8 ◦C. However, rigorous long-duration transient
real-time thermal prediction of both stator and rotor of an induction motor, and accurate for the entire
motor operating field ranging from zero to nominal speed and torque has yet to be investigated.

From the state-space system (2) there are 6 system parameters that need to be identified: the
thermal resistances R1 and R2(Ω), thermal capacitances CCu and Crotor, and the heat sources PCu(T)
and Protor(T, Ω). As R2(Ω), PCu(T) and Protor(T, Ω) depend on the motor torque T and speed Ω,
the identification of these 6 parameters would only be valid for one specific motor operating point of
speed and torque. To make sure that the thermal model is applicable for any T and Ω, the 3 speed and
torque dependent parameters need to be identified for multiple, well-chosen motor operating points
(T, Ω). Three values for both T and Ω have been selected ranging from zero to the nominal value in
equal intervals, assuming that the motor predominantly operates in full nominal load and speed or
lower loads and speed setpoints. This results in 9 combinations of the motor operating point (T, Ω),
which means that the thermal system parameters need to be simultaneously fitted for 9 scenarios,
where the motor operates at a fixed speed Ω and torque T until thermal equilibrium is reached. As a
result, 19 thermal system parameters need to be identified as specified in Table 2:
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Table 2. Thermal system parameters (Param) to be identified, relating to the values of the lumped
parameters (Values) in (2).

Param Value Param Value Param Value

CCu - PCu,1 PCu(T1) Protor,12 Protor(T1, Ω2)

Crotor - PCu,2 PCu(T2) Protor,22 Protor(T2, Ω2)

R1 - PCu,3 PCu(T3) Protor,32 Protor(T3, Ω2)

R2,0 R2(0) Protor,11 Protor(T1, Ω1) Protor,13 Protor(T1, Ω3)

R2,1 R2(Ω1) Protor,21 Protor(T2, Ω1) Protor,23 Protor(T2, Ω3)

R2,2 R2(Ω2) Protor,31 Protor(T3, Ω1) Protor,33 Protor(T3, Ω3)

R2,3 R2(Ω3)

This identification can be performed by aligning the modelled temperatures (11) with the
measured temperature profiles using an iterative inverse methodology, as illustrated in Figure 4.
The aim is to minimize the global cost function ftot, which is proportional to the deviation between the
modelled temperatures and the corresponding measured temperatures:

ftot = wstat fstat + wrot frot (14)

where fstat and frot are the cost functions associated with the deviation of stator and rotor temperatures,
respectively. wstat and wrot are the applied weight coefficients to both components. The stator and
rotor cost component fstat and frot both consist of on the one hand a cost associated with motor heating
at certain operating points (Ti, Ωj) and on the other hand a cost associated with motor cooling at zero
torque and speed:

fstat = fstat,heating + fstat,cooling (15)

frot = frot,heating + frot,cooling (16)

The stator and rotor cost components corresponding to the heating phase and cooling phase can
be expressed as:

fstat,heating =
3

∑
i,j=1


√√√√end

∑
k=1

(
θ
(meas)
stat,k (Ti, Ωj)− θ

(model)
stat,k (Ti, Ωj)

)2
 (17)

fstat,cooling =

√√√√end

∑
k=1

(
θ
(meas)
stat,k (0, 0)− θ

(model)
stat,k (0, 0)

)2
(18)

frot,heating =
3

∑
i,j=1


√√√√end

∑
k=1

(
θ
(meas)
rot,k (Ti, Ωj)− θ

(model)
rot,k (Ti, Ωj)

)2
 (19)

frot,cooling =

√√√√end

∑
k=1

(
θ
(meas)
rot,k (0, 0)− θ

(model)
rot,k (0, 0)

)2
(20)

where k denotes the time step according to the sampling time interval (here 3s) of the temperature
measurements. The total time of the measured temperatures for the heating and cooling phase is
approximately 3.5 h and 3 h, respectively.
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Figure 4. Inverse methodology for the identification of the system thermal parameters.

The cost function (14) is minimized by updating the 19 thermal system parameters in Table 2
iteratively using an optimization scheme. A genetic algorithm with a population of 400 is used for this
specific minimization problem. Elitism is set at 20 individuals that survive to each subsequent iteration.
Furthermore, in each generation 80% of the remaining 380 individuals are created by crossover while
the other 20% are created through mutation. This division ensures a good balance between local
exploitation and global exploration in the searching algorithm. Crossover is performed by randomly
selecting an individual whose coordinates are within the boundaries of the 19-dimensional hypercube
formed by locating the parents at the opposite vertices:

Childcrossover = Parent1 + random(0, 1)(Parent2 − Parent1) (21)

where random(0, 1) is a uniformly distributed random number between 0 and 1 (excluded). Mutation
is performed by randomly selecting a direction that is adaptive to the last generation, as well as a step
size, for the individual within the bounds and constraints.

The raw fitness scores of the individuals are scaled according to their rank r, with the fittest
individual having r = 1, the second-fittest r = 2 and so on. Fitness scaling converts the raw fitness
score of the individuals into values that are adequate for the selection function, which uses these
values to select the parents for the next generation. The scaled value of an individual with rank r is
proportional to 1/

√
r, which reduces the spread of the values with respect to the raw fitness values.

A large spread of the fitness values used for selection would make the domination of the gene pool by
the best individuals more likely, which would decrease the explorative behavior of the algorithm.

As 0 < Ω1 < Ω2 < Ω3, the following constraints were applied to the convection-dependent
resistance R2: 

R2(0) > R2(Ω1)

R2(Ω1) > R2(Ω2)

R2(Ω2) > R2(Ω3)

(22)
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Following the law for conservation of energy and power, the total motor power losses
Ploss,tot(Ti, Ωj) for a certain motor operating point can be determined from the difference between
the electrical power input Pel,in(Ti, Ωj) and the mechanical power output Pmech,out(Ti, Ωj). The stator
windings and rotor loss components are subjected to the following constraints, with i = 1, . . . , 3, j =
1, . . . , 3:

0.8Ploss,tot(Ti, Ωj) < Ploss,Cu(Ti) + Ploss,rotor(Ti, Ωj) < 1.2Ploss,tot(Ti, Ωj) (23)

where

Ploss,tot(Ti, Ωj) = Pel,in(Ti, Ωj)− Pmech,out(Ti, Ωj) (24)

Pel,in = VDC IDC(Ti, Ωj) (25)

Pmech,out = TiΩj (26)

where VDC and IDC(Ti, Ωj) are the measured DC voltage and current supplied to the motor, respectively.
After identifying the 19 system parameters specified in Table 2, the 16 parameters that depend on
T and Ω are fitted to the functions (3)–(5). The resulting LPTN is validated using 3 additional sets
of temperature measurements, each set corresponding to the motor operating at a fixed point (T, Ω)

where the motor heats up until thermal equilibrium is reached. The motor operating point of the 3
validation temperature sets are different from the 9 operating points of the data sets for identification
of the LPTN.

5. Results and Discussion

This section details the results of the methodology and discussions are provided. First, we turn
our attention to the collected measured data and zoom into the steady state and time constants of the
measured temperature data sets. Secondly, the parameters within the LPTN are identified where the
weighting factors in the cost function (14) are varied. Validation results of stator and rotor temperatures
are subsequently presented both for static and intermittent loading. Finally, a sensitivity study is
conducted of the different thermal system parameters on the stator/rotor temperature.

5.1. Steady State and Time Constants of the Measured Temperature Profiles

The measured average temperature of the stator windings and rotor for the 9 motor operating
points used for model identification are shown in the upper and lower Figure 5, respectively.
The average room temperature during measurements is 22.3± 0.2 ◦C. Steady-state temperatures
are also listed in Table 3. Motor torque is varied in T = (15 Nm, 25 Nm, 35 Nm), while motor speed
ranges in Ω = (300 rpm, 850 rpm, 1350 rpm). As can be seen from Figure 5 and Table 3, the rotor
temperature is consistently higher than the stator windings for all motor operating points, except for
the first half hour where the opposite is true due to the higher thermal inertia of the rotor (and
especially for the motor operating points at Ω = 300 rpm with higher thermal resistance R2).

Table 3. Average steady-state temperatures θss of the stator windings and the rotor at the 9 motor
operating points for model identification.

θCu,ss(
◦C)/θrotor,ss(◦C) Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 34.6/38.1 37.2/43.3 40.2/48.4
T = 25 Nm 47.4/53.6 49.5/57.7 52.8/62.7
T = 35 Nm 69.5/78.8 70.6/81.4 75.9/87.8
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Figure 5. Measured average temperature of the stator windings (upper figure) and the rotor (lower
figure) for 9 motor operating points with motor torque setpoints T = (15, 25, 35)Nm and speed
setpoints Ω = (300, 850, 1350) rpm. When motor thermal equilibrium is reached, the motor is shut
down and the temperatures in the cooling phase are measured. The average room temperature during
measurements is 22.3± 0.2 ◦C, while temperature measurement sampling frequency is 1/3 Hz.

The steady-state temperatures increase for higher motor speeds Ω and higher torques T, both in
the stator windings and the rotor. However, temperature changes are considerably more sensitive to
changes in torque than in speed, as illustrated in Table 3. Transient thermal behavior can be quantified
with a thermal time constant τ defined by the time needed for the temperature θ to reach θtrans:

τ = t (θ = θtrans) θtrans =

(
1− 1

e

)
θss (27)

where θss is the steady-state temperature and e is the Euler number. The experimentally determined
thermal stator and rotor time constants τCu and τrotor can be related to the eigenvalues s1 and s2 of the
considered thermal model through the following expressions, by combining (11)–(13) and (27):

θCu,ss = −XCu · exp(s1τCu + 1)−YCu · exp(s2τCu + 1) (28)

θrotor,ss = −Xrotor · exp(s1τrotor + 1)−Yrotor · exp(s2τrotor + 1) (29)

where XCu, Xrotor, YCu and Yrotor are determined coefficients that are dependent on R1, R2, CCu, Crotor,
PCu, Protor, θroom and the initial conditions. Table 4 shows the time constants that are experimentally
determined according to (27) for the model identification temperature data set. It is clear from Table 4
that the rotor time constant τrotor is considerably larger than the stator windings time constant τCu for all
operating points (T, Ω), which illustrates the larger thermal inertia of the rotor compared to the stator
windings. Clear trends are visible as function of the motor speed Ω: a higher Ω consistently results in
an increase of τCu but a decrease of τrotor, for all motor operating points (T, Ω). For Ω = 850 rpm and
Ω = 1350 rpm, the rotor thermal time constant τrotor increases as function of motor torque T. No clear
trend for τrotor at Ω = 300 rpm nor for τCu is visible as function of T.



Energies 2020, 13, 37 12 of 27

Table 4. Time constants τ of the stator windings and the rotor at the 9 motor operating points for
model identification.

τCu(s)/τrotor(s) Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 981/1935 1011/1578 1095/1530
T = 25 Nm 936/1881 972/1620 1053/1551
T = 35 Nm 972/1980 999/1704 1113/1623

Analogously, the temperature data set for model validation is generated and captured with the
following motor operating points: (T, Ω) = {(20 Nm, 575 rpm), (30 Nm, 575 rpm), (30 Nm, 1125 rpm)}.
These operating points have been chosen to be fixed in between the operating points of the model
identification temperature set. The transient temperatures are illustrated in Figure 6, while the
steady-state temperatures θss and rotor time constants τ are presented in Table 5. From Figure 6 and
Table 5 it can be seen that the rotor gets hotter than the stator windings for all three operating points.
Furthermore, τrotor is consistently larger than τCu as expected.
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Figure 6. Measured average temperature of the stator windings (upper figure) and the rotor (lower
figure) for 3 motor operating points (20 Nm, 575 rpm), (30 Nm, 575 rpm) and (30 Nm, 1125 rpm).
When motor thermal equilibrium is reached, the motor is shut down and the temperatures in the
cooling phase are measured. The average room temperature during measurements is 22.3± 0.2 ◦C,
while temperature measurement sampling frequency is 1/3 Hz.

Table 5. Steady-state temperatures θss and time constants τ of the stator windings and the rotor at the
3 motor operating points for model validation.

θCu,ss/θrotor,ss τCu/τrotor

(20 Nm, 575 rpm) 41.9/47.0 1095/1860
(30 Nm, 575 rpm) 59.4/67.7 1023/1836
(30 Nm, 1125 rpm) 63.2/72.6 1113/1671

5.2. Thermal Model Parameter Identification

The identification of the thermal system parameters in Table 2 is performed by aligning the
modelled temperatures with the corresponding measured temperatures using an iterative inverse
methodology as explained in Section 4. The weight factors in (14) are chosen to be wstat = 1 and
wrot = 1 respectively, giving stator and rotor temperatures equal importance of obtaining thermal
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alignment with the measurements. After convergence of the genetic algorithm, the solutions for the 19
SPs have been obtained (Table 6).

Table 6. Identified thermal system parameters solution with equal weight of stator and rotor
temperature in the cost function (14): wstat = 1 and wrot = 1.

Param Value Param Value Param Value

CCu 9.45× 103 J
K PCu,1 2.20× 102 W Protor,12 9.40× 10 W

Crotor 1.16× 104 J
K PCu,2 4.52× 102 W Protor,22 1.21× 102 W

R1 4.86× 10−2 K
W PCu,3 8.51× 102 W Protor,32 1.57× 102 W

R2,0 1.21× 10−1 K
W Protor,11 3.92× 10 W Protor,13 1.55× 102 W

R2,1 8.29× 10−2 K
W Protor,21 7.33× 10 W Protor,23 1.83× 102 W

R2,2 6.63× 10−2 K
W Protor,31 1.15× 102 W Protor,33 2.39× 102 W

R2,3 5.21× 10−2 K
W

R2(Ω), PCu(T) and Protor(T, Ω) are fitted according to (3)–(5) respectively, with the coefficients
determined in Table 7.

Table 7. Fitting coefficients p for R2(Ω), PCu(T) and Protor(T, Ω).

Param Value Param Value

pR2,0 0.0924 K
W protor,00 16.84 W

pR2,1 −3.222× 10−5 K
W×rpm protor,10 −0.228 W

Nm

pR2,2 1.761× 10−9 K
W×rpm2 protor,01 0.0245 W

rpm

pCu,0 186.8 W protor,20 0.0726 W
(Nm)2

pCu,1 −10.32 W
Nm protor,11 0.00038 W

Nm×rpm

pCu,2 0.837 W
(Nm)2 protor,02 4.684× 10−5 W

rpm2

The modelled temperatures for Ω = 1350 rpm are shown in Figure 7, where the upper figure
shows the fitted temperature profile of the stator windings (blue) and the rotor (red) at (T, Ω) =

(15 Nm, 1350 rpm), the middle figure at (T, Ω) = (25 Nm, 1350 rpm) and the lower figure at (T, Ω) =

(35 Nm, 1350 rpm).
Figure 8 illustrates the thermal model error of the stator windings (blue) and the rotor temperature

(red) for every time step, for the same 3 motor operating points considered above. It can be
seen that the modelled temperature closely follows the measured temperature for both the stator
windings and the rotor. The fitting errors are largest in the first hour of the transient regime
for both the stator windings and the rotor, and subsequently converge to smaller error values as
the temperatures get closer to reaching steady state. The modelled rotor temperature generally
demonstrates larger fitting errors than the modelled average temperature of the stator windings.
For (T, Ω) = (15 Nm, 1350 rpm) the mean/max fitting errors for the stator windings and the rotor
are 0.18/0.75 ◦C and 0.13/0.59 ◦C respectively, while for (T, Ω) = (25 Nm, 1350 rpm) the mean/max
fitting errors are 0.17/0.91 ◦C and 0.26/0.99 ◦C respectively. The rotor fitting errors are highest at
T = 35 Nm: for (T, Ω) = (35 Nm, 1350 rpm) the rotor mean/max fitting errors are 0.64/2.13 ◦C and
only 0.48/1.13 ◦C for the stator.
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Figure 7. Modelled temperature profiles of the stator windings (blue) and the rotor (red) for
Ω = 1350 rpm and T = 15 Nm (upper figure), 25 Nm (middle figure), 35 Nm (lower figure). Model
identification with (wstat, wrot) = (1, 1).
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Figure 8. Thermal model error of the stator windings (blue) and the rotor (red) temperature for
Ω = 1350 rpm and T = 15 Nm (upper figure), 25 Nm (middle figure), 35 Nm (lower figure). Model
identification with (wstat, wrot) = (1, 1).

Analogously, the mean and maximum thermal fitting errors of the identification data set for
the remaining motor operating points (T, Ω) are presented in Tables 8 and 9 for the stator windings
and the rotor, respectively. The mean rotor thermal fitting error is generally higher than the stator
windings, while the maximum fitting error is consistently higher for the rotor than for the stator
(except at (15 Nm, 1350 rpm)), especially at T = 35 Nm.
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Table 8. Mean and maximum modelling error of the stator windings temperature for 9 motor operating
points (T, Ω). Solution of system parameters identified with different weighting factors (wstat, wrot)

in (14).

|∆θ|Cu,mean/|∆θ|Cu,max(
◦C) for (wstat, wrot) = (1, 1)

Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 0.08/0.23 0.16/0.47 0.18/0.75
T = 25 Nm 0.05/0.50 0.19/0.68 0.17/0.91
T = 35 Nm 0.30/0.85 0.30/0.92 0.48/1.13

|∆θ|Cu,mean/|∆θ|Cu,max(
◦C) for (wstat, wrot) = (1, 3)

Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 0.13/0.35 0.38/0.60 0.31/0.67
T = 25 Nm 0.44/0.87 0.35/0.62 0.25/0.82
T = 35 Nm 0.38/1.66 0.77/1.08 0.26/0.66

|∆θ|Cu,mean/|∆θ|Cu,max(
◦C) for (wstat, wrot) = (1, 6)

Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 0.61/1.04 0.62/0.94 0.76/1.16
T = 25 Nm 1.50/2.33 0.48/1.51 0.55/1.35
T = 35 Nm 1.61/5.12 0.74/3.97 0.30/3.64

Table 9. Mean and maximum modelling error of the rotor temperature for 9 motor operating points
(T, Ω). Solution of system parameters identified with different weighting factors (wstat, wrot) in (14).

|∆θ|rotor,mean/|∆θ|rotor,max(◦C) for (wstat, wrot) = (1, 1)

Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 0.16/0.66 0.18/0.69 0.13/0.59
T = 25 Nm 0.23/1.26 0.29/1.56 0.26/0.99
T = 35 Nm 0.51/2.80 0.48/2.88 0.64/2.13

|∆θ|rotor,mean/|∆θ|rotor,max(◦C) for (wstat, wrot) = (1, 3)

Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 0.15/0.59 0.13/0.48 0.11/0.57
T = 25 Nm 0.18/0.95 0.17/0.94 0.19/0.89
T = 35 Nm 0.38/2.20 0.30/1.99 0.42/1.90

|∆θ|rotor,mean/|∆θ|rotor,max(◦C) for (wstat, wrot) = (1, 6)

Ω = 300 rpm Ω = 850 rpm Ω = 1350 rpm

T = 15 Nm 0.11/0.52 0.13/0.51 0.17/0.71
T = 25 Nm 0.11/0.55 0.13/0.60 0.16/0.69
T = 35 Nm 0.19/1.08 0.22/0.91 0.25/1.09

In the cooling phase, the heat sources are absent and the rotor is at standstill: PCu = 0, Protor = 0
and R2 = R2(Ω = 0). The results of the thermal fitting of the cooling phase is shown in Figure 9,
where the measured temperatures are well fitted within an error margin of 1 ◦C.

As the modelling errors turn out to be higher for the rotor temperatures, a fitting can be performed
for a higher rotor weight factor wrot in the global cost function (14).
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Figure 9. Thermal model error of the stator windings and the rotor temperature for Ω = 1350 rpm and
T = (15 Nm, 25 Nm, 35 Nm). Model identification with (wstat, wrot) = (1, 1).

Table 10 shows the relative deviation of the system parameter solution with (wstat, wrot) = (1, 3)
and (1, 6) from the solution obtained with equal weight factors (wstat, wrot) = (1, 1). For higher wrot

the relative deviation of the identified system parameters also increases. In the newly identified set of
system parameters the Crotor, R1 and Protor increase while CCu, R2 and PCu decrease with respect to the
initial solution. The largest deviations are seen for Protor, CCu and Crotor whereas R1 and PCu show the
least system parameter variation.

Table 10. Relative deviation (in %) of the identified system parameters from the values in Table 6 for
two different sets of weight coefficients: (wstat, wrot) = (1, 3)/(1, 6).

Param RelDev (%) Param RelDev (%) Param RelDev (%)

CCu −27.6/− 68.2 PCu,1 −9.4/− 25.8 Protor,12 21.9/60.4
Crotor 18.3/51.0 PCu,2 −9.0/− 25.4 Protor,22 26.2/76.8

R1 2.6/4.9 PCu,3 −5.7/− 17.3 Protor,32 23.1/72.2
R2,0 −16.3/− 36.9 Protor,11 29.7/89.8 Protor,13 11.8/39.4
R2,1 −18.0/− 36.6 Protor,21 29.1/92.7 Protor,23 15.6/52.7
R2,2 −23.7/− 44.9 Protor,31 21.2/74.8 Protor,33 12.2/47.8
R2,3 −13.3/− 36.2

Tables 8 and 9 show the mean and maximal model fitting errors for different motor operating
points (T, Ω) of the stator and rotor temperatures, respectively, both for (wstat, wrot) = (1, 3) and
(wstat, wrot) = (1, 6). A higher value for the rotor weight wrot consistently results in lower mean
and maximal rotor temperature fitting errors, except for wrot = 6 at (T, Ω) = (15 Nm, 1350 rpm),
where the maximal rotor fitting error is only 0.12 ◦C higher than for wrot = 1. The largest reduction
in mean rotor temperature fitting error when increasing the rotor weight to wrot = 6 occurs at
T = 35 Nm, where the error is decreased by 0.32 ◦C, 0.26 ◦C and 0.39 ◦C for Ω = 300, 850 and 1350 rpm
respectively. The corresponding maximal rotor fitting errors are decreased by 1.72 ◦C, 1.97 ◦C and
1.04 ◦C, respectively. At (25 Nm, 300 rpm) and (25 Nm, 850 rpm) both the mean and maximal rotor
fitting errors are reduced to less than half when changing wrot from 1 to 6. However, this has a negative
effect on the modelling accuracy of the stator temperatures, as is clear from Table 8. Increasing wrot

consequently increases the average stator temperature fitting errors for all motor operating points,
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except at (35 Nm, 1350 rpm) where the average fitting error drops. The maximal stator fitting error at
(35 Nm, 1350 rpm), however, increases by more than 2.5 ◦C. The highest increase on average stator
fitting error at wrot = 6 occurs for Ω = 300 rpm with an increase of 0.53 ◦C, 1.45 ◦C and 1.31 ◦C at
T = 15, 25 and 35 Nm, respectively. The increase in maximal stator temperature fitting errors is the
highest at T = 35 Nm, where an increase of 4.27 ◦C, 3.05 ◦C and 2.51 ◦C are noted at Ω = 300, 850 and
1350 rpm, respectively. These results suggest a trade-off between the accuracy of the stator and rotor
temperature that are predicted with the considered second-order thermal model.

5.3. Model Validation

The temperature measurements of the stator windings and rotor at the 3 motor operating points
(T, Ω) = (20 Nm, 575 rpm), (30 Nm, 575 rpm), (30 Nm, 1125 rpm) are used for the validation of
the experimentally identified thermal model. The results for (wstat, wrot) = (1, 1) are shown in
Figures 10–12, respectively. In these 3 figures, the upper figure illustrates the modelled and measured
temperature of the stator windings and rotor, while the lower figure shows the absolute temperature
error for the stator windings and the rotor. In contrast to the model identification results, the largest
modelling errors in the validation results are situated in the steady-state regime instead of the transient
regime. For the motor operating points (20 Nm, 575 rpm) and (30 Nm, 1125 rpm), the stator windings
demonstrate the largest modelling error over the entire temperature profile compared to the rotor,
with the exception of the first 15 min where the rotor modelling error is larger. At (30 Nm, 575 rpm)

the modelling error of the rotor temperature is largest in the first 15 minutes, before it converges to
approximately the same modelling error of the stator windings. The absolute mean and maximum
error for both the stator windings and the rotor at the 3 motor operating points are listed in Table 11.

For (wstat, wrot) = (1, 1), the lowest average modelling error is achieved for the rotor temperature
at (20 Nm, 575 rpm) with |∆θ|rotor,mean = 0.26 ◦C, whereas the highest average error is demonstrated
for the stator windings at (30 Nm, 1125 rpm) with |∆θ|Cu,mean = 1.70 ◦C. The highest maximum
error is demonstrated for the stator windings, also at (30 Nm, 1125 rpm), with |∆θ|Cu,max = 2.47 ◦C.
The lowest maximum error can be found at (20 Nm, 575 rpm) for the rotor with |∆θ|rotor,max = 0.77 ◦C.
From Table 11 it can be seen that the proposed thermal model is able to predict the rotor temperature
with higher accuracy compared to the stator windings, which is true for all values of wrot. Furthermore,
lower motor torque and speed setpoints generally result in higher thermal prediction accuracy,
especially for the stator windings. Although a higher wrot suggested a higher accuracy in rotor
temperature prediction but a lower accuracy in stator temperature prediction in the previous section
concerning the model fitting, this does not always seem true for the validation data set. While the
average and maximal stator temperature errors are indeed mostly higher for wrot = 6 compared to the
case where wrot = 1, they are, however, generally lower for wrot = 3.

Table 11. Absolute mean and maximum thermal modelling errors for both the stator windings and the
rotor, at 3 different motor operating points. Solution of system parameters identified with different
weighting factors (wstat, wrot) in (14).

(wstat, wrot) = (1, 1) |∆θ|Cu,mean/|∆θ|Cu,max |∆θ|rot,mean|/|∆θ|rot,max

(20 Nm, 575 rpm) 0.58/0.89 (◦C) 0.26/0.77 (◦C)
(30 Nm, 575 rpm) 0.98/1.35 (◦C) 0.94/1.68 (◦C)
(30 Nm, 1125 rpm) 1.70/2.47 (◦C) 0.83/1.86 (◦C)

(wstat, wrot) = (1, 3) |∆θ|Cu,mean/|∆θ|Cu,max |∆θ|rot,mean|/|∆θ|rot,max

(20 Nm, 575 rpm) 0.59/0.80 (◦C) 0.23/0.81 (◦C)
(30 Nm, 575 rpm) 0.94/1.17 (◦C) 0.66/1.55 (◦C)
(30 Nm, 1125 rpm) 1.45/2.10 (◦C) 0.92/2.03 (◦C)

(wstat, wrot) = (1, 6) |∆θ|Cu,mean/|∆θ|Cu,max |∆θ|rot,mean|/|∆θ|rot,max

(20 Nm, 575 rpm) 1.02/1.41 (◦C) 0.24/1.05 (◦C)
(30 Nm, 575 rpm) 1.68/2.55 (◦C) 0.63/1.38 (◦C)
(30 Nm, 1125 rpm) 1.56/2.05 (◦C) 0.94/2.01 (◦C)
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Figure 10. Validation of the thermal model for (T, Ω) = (20 Nm, 575 rpm) with (wstat, wrot) = (1, 1).
Upper figure: modelled and measured temperature of the stator windings and the rotor. Lower figure:
absolute modelling error for the stator windings and the rotor. The mean temperature errors for the
stator windings and the rotor are 0.58 ◦C and 0.26 ◦C respectively, while the maximum errors are
0.89 ◦C and 0.77 ◦C.
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Figure 11. Validation of the thermal model for (T, Ω) = (30 Nm, 575 rpm) with (wstat, wrot) = (1, 1).
Upper figure: modelled and measured temperature of the stator windings and the rotor. Lower figure:
absolute modelling error for the stator windings and the rotor. The mean temperature errors for the
stator windings and the rotor are 0.98 ◦C and 0.94 ◦C respectively, while the maximum errors are
1.35 ◦C and 1.68 ◦C.
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Figure 12. Validation of the thermal model for (T, Ω) = (30 Nm, 1125 rpm) with (wstat, wrot) = (1, 1).
Upper figure: modelled and measured temperature of the stator windings and the rotor. Lower figure:
absolute modelling error for the stator windings and the rotor. The mean temperature errors for the
stator windings and the rotor are 1.70 ◦C and 0.83 ◦C respectively, while the maximum errors are
2.47 ◦C and 1.86 ◦C.

The transient behavior of the three thermal models corresponding to wrot = 1, wrot = 3 and
wrot = 6 have also been tested on varying motor conditions where the motor torque is varied in
discrete steps. The motor torque is varied between 10 and 30 Nm in stepwise fashion at different
time instances to obtain an intermittent motor-loading regime, as shown in Figure 13. Motor speed
is fixed at 1350 rpm for the entire duration of the intermittent loading test. Figures 14 and 15 show
the performance of the different thermal models for both the stator windings and rotor temperatures,
respectively. From Figure 14 it can be seen that the thermal model performance for the stator windings
is best for the solution corresponding with wrot = 1, followed by wrot = 3 and wrot = 6, the last case
resulting in the largest errors. The maximum stator temperature error for wrot = 1 is 0.92 ◦C while
the average error is only 0.38 ◦C. For wrot = 3 the stator temperature errors are slightly higher with a
maximum value of 1.38 ◦C and a mean value of 0.52 ◦C, while the largest stator temperature errors
occur for wrot = 6 with a maximum of 3.96 ◦C and an average error of 1.11 ◦C. The highest stator
temperature errors generally occur in the first few minutes directly after a discrete change in motor
operating point. However, the temperature errors never exceed 4 ◦C, which is still better in terms of
temperature accuracy compared to literature as discussed in the Introduction.

Looking at Figure 15 for the rotor temperature estimation performance, the opposite trend can be
seen for the model solutions with different wrot values: in this case the best performance is obtained
for wrot = 6, followed by wrot = 3 and lastly the model solution corresponding to wrot = 1, which is
to be expected according to the discussions in the previous paragraphs. The maximal and mean rotor
temperature errors obtained for wrot = 6 are 3.40 ◦C and 2.11 ◦C, respectively. For wrot = 3 the maximal
rotor temperature error is 3.86 ◦C with an average error of 2.19 ◦C, while for wrot = 1 the obtained
maximal and mean rotor temperature errors are 4.14 ◦C and 2.32 ◦C, respectively. The highest rotor
temperature estimation errors occur right after the motor loading decreases to a lower load, in the
regions where the rotor temperature cools down. However, this error consistently decreases to a lower
value as time passes. To conclude, a clear trade-off can be observed between the accuracy of the stator
and rotor temperature estimation for intermittent loading, especially in thermally transient operation: a
higher stator temperature accuracy comes at a cost of a lower rotor temperature accuracy and vice versa.
Depending on the priorities of the user, the corresponding model identification can be applied.
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Figure 13. Motor operating torque T variation during the intermittent load test for demonstrating the
validity of the thermal transient performance of the thermal model. Motor speed remains constant at
Ω = 1350 rpm throughout the entire test.
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Figure 14. Validation of the transient behavior of the thermal model for Ω = 1350 rpm and stepwise
changing motor torque setpoints. Upper figure: measured (blue) and modelled temperature of the
stator windings for the model solution corresponding to wrot = 1 (red), wrot = 3 (yellow) and wrot = 6
(purple). Lower figure: absolute stator windings temperature modelling error for the corresponding
three model solutions.



Energies 2020, 13, 37 21 of 27

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (s)

20

30

40

50

60

70

80

R
o

to
r 

te
m

p
er

at
u

re
 (

°C
)

Ω = 1350 rpm

measurement
estimate w

rot
 = 1

estimate w
rot

 = 3

estimate w
rot

 = 6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (s)

-2

-1

0

1

2

3

4

5

6

A
b

so
lu

te
 e

rr
o

r 
(°

C
)

w
rot

 = 1

w
rot

 = 3

w
rot

 = 6

Figure 15. Validation of the transient behavior of the thermal model for Ω = 1350 rpm and stepwise
changing motor torque setpoints. Upper figure: measured (blue) and modelled temperature of the
rotor for the model solution corresponding to wrot = 1 (red), wrot = 3 (yellow) and wrot = 6 (purple).
Lower figure: absolute rotor temperature modelling error for the corresponding three model solutions.

5.4. Sensitivity Study

A sensitivity study is conducted to investigate the effect of a change in one of the 6 system
parameters in Table 2 on the temperature of the stator windings and the rotor. The 6 investigated
parameters are R1, R2, CCu, Crotor, PCu and Protor. The reference values for the SPs are selected as the
solution obtained in Table 6 for the nominal motor operating point (T, Ω) = (35 Nm, 1350 rpm):

R1,0 = 0.0486 K
W

R2,0 = 0.0521 K
W

CCu,0 = 9447 J
K

Crotor,0 = 11617 J
K

PCu,0 = 850.76 W

Protor,0 = 239.35 W

(30)

The resulting reference temperature profiles of the stator windings and rotor are shown as the
dark blue curves (denoted by ‘Initial’ in the legend of the figure) in Figures 16 and 17, respectively.

Each of the 6 parameters of Equation (30) is individually increased or decreased by a certain
amount while the remaining 5 parameters retain their original reference values. The authors have
chosen this amount to be 30 % of their reference parameter value indicated by (30), to have a clear effect
on the stator and rotor temperature profiles. For example, to investigate the effect of R1, the stator and
rotor temperature profiles are calculated once with R1 = 130% R1,0 (cfr. upper graphs of Figures 16 and
17) and once with R1 = 70% R1,0 (cfr. lower graphs of Figures 16 and 17), while the other parameters
are unchanged, i.e., R2 = R2,0, CCu = CCu,0, Crotor = Crotor,0, PCu = PCu,0 and Protor = Protor,0.
The calculated stator temperatures θCu(t)|R1=70% R1,0 and θCu(t)|R1=130% R1,0 are then compared to
θCu(t)|R1=R1,0 , while the calculated rotor temperatures θrotor(t)|R1=70% R1,0 and θrotor(t)|R1=130% R1,0 are
compared to θrotor(t)|R1=R1,0 . The effect of each of the 6 parameters on the temperature profiles of the
stator windings and the rotor are presented in Figures 16 and 17, respectively. Figure 16 shows that
R1 and PCu have the largest effect on the temperature profile of the stator windings, especially on
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the steady-state regime. Furthermore, the temperature of the stator windings is the least sensitive to
variations in the thermal resistance R2, for both the transient and steady-state regime. Notice that the
deviation of temperature in the steady-state regime for a change in R1, PCu or Protor is symmetrical
around the temperature of the reference case: an increase or decrease in either of these 3 SPs results in
an increase or decrease by the same amount, respectively of the stator windings temperature.
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Figure 16. Temperature sensitivity of the stator windings with respect to the 6 thermal SPs R1, R2,
CCu, Crotor, PCu and Protor. In the upper and lower figure, each profile represents the modelled
temperature where one of the SPs is increased by 30% or decreased by 30%, respectively, while
the other SPs retain their original values. The latter are obtained from the solution in Table 6 with
(T, Ω) = (35 Nm, 1350 rpm).
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Figure 17. Temperature sensitivity of the rotor with respect to the 6 thermal SPs R1, R2, CCu, Crotor,
PCu and Protor. In the upper and lower figure, each profile represents the modelled temperature where
one of the SPs is increased by 30% or decreased by 30%, respectively, while the other SPs retain their
original values. The latter are obtained from the solution in Table 6 with (T, Ω) = (35 Nm, 1350 rpm).
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The sensitivity of the thermal time constant τ and the steady-state temperature θss of the stator
windings and the rotor are listed in Tables 12 and 13, respectively.

Table 12 shows that both τCu and θCu,ss are most sensitive to the thermal resistance R1, while R2

has the least effect on transient and steady-state regime. The thermal capacitances Crotor and CCu are
next in line for the sensitivity of τCu, followed by PCu and Protor. The steady-state temperature θCu,ss is
most sensitive to R1, followed by PCu and Protor, whereas R2, CCu and Crotor simply do not have an
effect on θCu,ss. Increasing R1, PCu or Protor results in higher θCu,ss and vice versa. An increase in R1,
Crotor, CCu or Protor causes an increase in the thermal time constant τCu, while a decrease in these SPs
results in a decrease in τCu with respect to the reference value. PCu has the inverse effect on τCu than
the other SPs.

Table 12. Sensitivity of the thermal time constant τ and steady-state temperature θss of the stator
windings with respect to the SPs.

∆τCu
τCu

(%) ∆θCu,ss
θCu,ss

(%)

k = 130% k = 70% k = 130% k = 70%

k · R1 30.45 −31.01 21.20 −21.20
k · R2 −0.84 0.28 0.00 0.00

k · CCu 14.25 −14.25 0.00 0.00
k · Crotor 15.64 −15.64 0.00 0.00
k · PCu −3.35 5.31 16.54 −16.54

k · Protor 3.91 −4.47 4.65 −4.65

Figure 17 and Table 13 show that the behavior of the rotor temperature with respect to the SPs is
more complex than the stator windings. The thermal resistance R2 plays a larger role for both τrotor

and θrotor,ss as compared to the stator windings. Similar to the stator windings, R1 has the largest effect
for θrotor,ss but only the second largest for τrotor. The thermal time constant τrotor is most sensitive to
Crotor, followed by R1, R2, CCu and lastly PCu and Protor. An increase in either of the 6 SPs except Protor

results in an increase in τrotor, while a decrease in these SPs causes a largely symmetrical decrease in
τrotor with respect to the reference value. Protor has an inverse effect on τrotor compared to the other
5 SPs.

Table 13. Sensitivity of the thermal time constant τ and steady-state temperature θss of the rotor with
respect to the SPs.

∆τrotor
τrotor

(%) ∆θrotor,ss
θrotor,ss

(%)

k = 130% k = 70% k = 130% k = 70%

k · R1 19.50 −19.31 18.17 −18.17
k · R2 10.62 −10.42 4.28 −4.28

k · CCu 7.53 −7.53 0.00 0.00
k · Crotor 22.39 −22.59 0.00 0.00
k · PCu 0.97 −1.35 14.18 −14.18

k · Protor −0.97 1.35 8.27 −8.27

The rotor steady-state temperature θrotor,ss is most sensitive to R1, followed by PCu, Protor and
R2. As expected, CCu and Crotor do not have an effect on θrotor,ss. An increase in R1, R2, PCu or Protor

results in an increase of θrotor,ss, while a decrease in one of these 4 SPs induces a symmetrical decrease
in θrotor,ss with respect to its reference value.

6. Conclusions

A methodology for the thermal condition monitoring of long-duration transient and steady-state
temperatures in an induction motor has been presented. To achieve this goal, a computationally
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efficient second-order LPTN for a 5.5 kW squirrel-cage induction motor has been proposed to
apprehend the dominant heat paths. This model has subsequently been identified through a
data-driven, inverse approach and has been validated for a 5.5 kW induction machine. The nodes of the
thermal model represent the temperature of the stator windings and the rotor of the induction motor.
The system parameters of the analytical thermal model have been identified by aligning the modelled
temperatures of the stator windings and the rotor with the measured temperatures for different, fixed
motor operating points and their subsequent zero-operation cooling temperature profiles. This is
performed iteratively using a genetic algorithm to minimize a cost function that is proportional to
the cumulative deviation of the modelled temperature with respect to the corresponding measured
temperature. A 5.5 kW test induction motor has been equipped with thermal contact sensors to
measure the stator windings at different locations, as well as a contactless infrared sensor to measure
the rotor temperature. The test motor is independently cooled with an external fan. In total, 12 thermal
measurement data sets have been obtained through measurement, where each data set corresponds
to the measured temperature of both the stator windings and the rotor while the motor is running
at a certain fixed speed and torque until thermal equilibrium is reached. The motor is subsequently
shut off and the cooling curve is measured. Nine thermal data sets have been obtained for model
identification, where motor torque and speed vary according to T = (15 Nm, 25 Nm, 35 Nm) and
Ω = (300 rpm, 850 rpm, 1350 rpm), respectively. The remaining three data sets are used for model
validation and correspond to fixed motor operating points located in between those of the data sets
used for model identification: (T, Ω) = (20 Nm, 575 rpm), (30 Nm, 575 rpm), (30 Nm, 1125 rpm).
Varying the weight factors that indicate the relative importance of the stator and rotor temperature in
the cost function to be minimized, results in different thermal parameter solution sets with a higher
temperature prediction accuracy for either the stator or the rotor temperature depending on the cost
function weight factors. Validation results show that during motor operation at fixed speed and torque,
the absolute average thermal modelling error of the stator windings and the rotor for the selected
weight factors do not exceed 1.45 ◦C and 0.92 ◦C, respectively, while the maximal absolute error of
the stator windings and the rotor is limited to 2.10 ◦C and 2.03 ◦C, respectively. In intermittent motor
loading it is shown that for the stator windings temperature an average modelling error of 0.38 ◦C can
be achieved with a maximal error of 0.92 ◦C, while for the rotor temperature a mean and maximal error
of 2.11 ◦C and 3.40 ◦C can be obtained, respectively. These results show the validity of the proposed
thermal model, and can be used to predict in real time the temperature of the stator windings and the
rotor for condition monitoring or motor control.
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Appendix A. Explicit Solution of the 2nd Order Thermal Model

To obtain the explicit solution for θ(t), the Laplace transformation is applied to the system (6).
After rearranging, the Laplace transform Θ(s) of the temperature vector θ(t) can be written as:

Θ(s) = (sI2 − A)−1(θ(0) + BU(s)) (A1)

with I2 a 2× 2 unity matrix, θ(0) the initial conditions of θ(t) and U(s) the Laplace transform of
the input vector u. The first and second part correspond to the Laplace transform of the zero-input
response and zero-state response, respectively:
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{
Θ0−I(s) = (sI2 − A)−1θ(0)

Θ0−S(s) = (sI2 − A)−1BU(s)
(A2)

The eigenvalues s1 and s2 of the state-space system are calculated by solving the characteristic
polynomial for the complex variable s:

det (sI2 − A) = 0 (A3)

The solution of the second order equation in s is written as:

s1,2 = −1
2

(
1

CrotorR2
+

1
CCu

(
1

R1
+

1
R2

))

± 1
2

√
1

C2
rotorR2

2
+

1
C2

Cu

(
R1 + R2

R1R2

)2
+

2
CrotorCCuR2

2
− 2

CrotorCCuR2R1
(A4)

Assuming that R1 ≥ 0, R2 ≥ 0, CCu ≥ 0 and Crotor ≥ 0, it can be proven that both s1 < 0 and
s2 < 0, which translates into an exponentially stable behaviour of the temperature states. The inverse
of (sI2 − A) is calculated as:

(sI2 − A)−1 =
1

(s− s1)(s− s2)

s + 1
CrotorR2

1
CCuR2

1
CrotorR2

s + 1
CCu

(
1

R1
+ 1

R2

) (A5)

with s1 and s2 as calculated in (A4). Decomposition of (A5) with partial fractions results in:

(sI2 − A)−1 =
1

s− s1

[
α11 α12

α21 α22

]
+

1
s− s2

[
β11 β12

β21 β22

]
(A6)

with 

α11 = − CrotorR2s1 + 1
CrotorR2(s2 − s1)

= 1− β11

α21 = − 1
CrotorR2(s2 − s1)

= −β21

α12 = − 1
CCuR2(s2 − s1)

= −β12

α22 = − s1
s2 − s1

− R1 + R2
CCuR1R2(s2 − s1)

= 1− β22

(A7)

Assuming that the input vector u is constant, its Laplace transform U(s) can be written as:

U(s) =

θroom

PCu
Protor

 1
s

(A8)

Performing the inverse Laplace transform on (A2) and combining with (A6) and (A8) gives the
following result for the zero-input response and zero-state response respectively:

θ0−I(t) =

[
α11θCu(0) + α12θrotor(0)
α21θCu(0) + α22θrotor(0)

]
exp(s1t) +

[
β11θCu(0) + β12θrotor(0)
β21θCu(0) + β22θrotor(0)

]
exp(s2t) (A9)
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θ0−S(t) =

 1
s1

(
α11

1
CCu

(
θroom

R1
+ PCu

)
+ α12

Protor
Crotor

)
1
s1

(
α21

1
CCu

(
θroom

R1
+ PCu

)
+ α22

Protor
Crotor

) (−1 + exp(s1t))

+

 1
s2

(
β11

1
CCu

(
θroom

R1
+ PCu

)
+ β12

Protor
Crotor

)
1
s2

(
β21

1
CCu

(
θroom

R1
+ PCu

)
+ β22

Protor
Crotor

) (−1 + exp(s2t)) (A10)

where the α and β coefficients are determined according to (A7) and the eigenvalues s1 and s2 according
to (A4).

The full solution for θCu(t) and θrotor(t) are obtained by superposition of the zero-input response
(A9) and zero-state response (A10):

θ(t) =

[
θCu(t)

θrotor(t)

]
= θ0−I(t) + θ0−S(t) (A11)
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