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Abstract: Variable structure control with sliding mode can provide good control performance and
excellent robustness. Unfortunately, the chattering phenomenon investigated due to discontinuous
switching gain restricting their applications. In this paper, a chattering free improved variable
structure control (IVSC) for a class of mismatched uncertain interconnected systems with an unknown
time-varying delay is proposed. A sliding function is first established to eliminate the reaching
phase in traditional variable structure control (TVSC). Next, a new reduced-order sliding mode
estimator (ROSME) without time-varying delay is constructed to estimate all unmeasurable state
variables of plants. Then, based on the Moore-Penrose inverse approach, a decentralized single-phase
robustness sliding mode controller (DSPRSMC) is synthesized, which is independent of time delays.
A DSPRSMC solves a complex interconnection problem with an unknown time-varying delay term
and drives the system’s trajectories onto a switching surface from the initial time instance. Particularly,
by applying the well-known Barbalat’s lemma, the chattering phenomenon in control input is
alleviated. Moreover, a sufficient condition is established by using an appropriate Lyapunov theory
and linear matrix inequality (LMI) method such that a sliding mode dynamics is asymptotically
stable from the beginning time. Finally, a developed method is validated by numerical example with
computer simulations.

Keywords: variable structure control; chattering avoidance; reduced-order sliding mode estimator;
without reaching phase; interconnected systems; unknown time-varying delay

1. Introduction

In practical control systems, chattering and time delays are common phenomena. These have
motivated the study of chattering removal problems and time-delay systems, leading to many useful
results [1–7]. The chattering phenomenon causes reducing of control precision or in the worst-case,
drive the system to its resonant [8]. In addition, time delay existence can induce degradation and/or
instability in system performance [9,10]. Hence, one of the efficient techniques is the traditional
variable structure control (TVSC) theory [11–13]. Due to its various attractive features such as quick
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response, good transient performance, excellent robustness, external disturbances rejection ability,
and its insensitivity to uncertainties and parameter variations TVSC has been successfully applied to
enhance the stability of the time delay of uncertain systems, as indicated by a large number of quality
papers published in the most recent internationally renowned journals and the related references
therein [14–19].

Based on the advantages of TVSC, the problem of decentralized control design for interconnected
systems has attracted significant attention, and several approaches for designing robust state feedback
control schemes have been reported [20–23]. In particular, a robust decentralized sliding mode controller
was derived on the basic properties of the Lur’e-Postnikov systems for the interconnected systems
with series nonlinearities [21]. By using the well-known closed-loop eigenvalue/eigenvector method,
a novel decentralized controller was developed for a class of mismatched uncertain systems [22].
A decentralized robust controller was designed for a class of decentralized multi-input perturbed
systems via the multiple-sliding surface [20]. The design problem of robust decentralized adaptive
neutral control was investigated for a class of non-affine nonlinear interconnected systems with
unknown dead zones and without the uncertainties [23]. Nevertheless, these works did not consider
the time delays in the systems, which is important in both theory and real-world applications.
Furthermore, the studies assumed that the states of the system are measurable, but in most practical
situations, state variables are generally not easy to obtain for many reasons, such as the limitations of
available measurement equipment. Therefore, the design problems of a decentralized sliding mode
controller (DSMC) based on full order sliding mode estimator (FOSME) and output information using
only are necessary for time-delay systems [24–29]. An estimator–based DSMC was established for a class
of nonlinear interconnected systems with time delays by employing the neural network approximation
theory and backstepping design method [24]. Also, following this technique, a decentralized adaptive
output feedback controller was presented for a class of time-delay systems with saturating input
constraints [28]. An adaptive neural network DSMC based on FOSME was constructed for a class of
uncertain nonlinear systems with immeasurable states and unknown time delays [25]. The authors
proposed a decentralized adaptive output feedback stabilizer for a class of nonlinear time-delay
systems without a priori knowledge of subsystem high-frequency gain signs [26]. A decentralized
robust output feedback control scheme was developed by combining the backstepping technique with
adaptive fuzzy control theory for a class of strict feedback nonlinear systems [27]. A decentralized
fault-tolerant controller was proposed for a class of interconnected nonlinear systems under the
Lipschitz condition via the cyclic small gain methodology [29]. However, these studies did not consider
the uncertainty in the i–th subsystem. In order to solve this problem, studies [30,31] have proposed a
class of time-delay interconnected systems with uncertainty in the state matrix and in interconnections.
A DSMC was synthesized to stabilize a class of time-delay systems with nonlinear interconnections by
using the Lyapunov-Razumikhin approach [30]. By using the known-well linear matrix inequality
(LMI), a DSMC was investigated to be connectively stable with maximized interconnection bounds
for a class of interconnected time-delay systems [31]. Unfortunately, limitations of these works to be
considered are the uncertainty in the state matrix of system and in interconnections under matching
conditions. Recently, there are several interesting studies that focused on the interconnected time-delay
systems with mismatched uncertainty in the state matrix or in interconnection such as [14–16]. Notably,
a FOSME—based decentralized control problem was established by the singular value decomposition
approach for a class of interconnected systems of neutral type considering only mismatched uncertainty
in the system’s state matrix [14]. A DSMC was proposed based on the Razumikhin–Lyapunov method
for a class of interconnected time-delay systems [15]. The problem of decentralized memory static
output feedback control design was investigated for a class of nonlinear time-delay interconnected
systems with a similar structure under strict Lipschitz constraint [16]. However, the studies [15,16]
consider the matched uncertainty in the state matrix and the mismatched uncertainty in interconnections
when designing the decentralized output feedback controller under known time delays constraint.



Energies 2020, 13, 282 3 of 27

Although the DSMC guarantees robustness for the matched and mismatched uncertain systems
with time-varying delays, implementation of the DSMC becomes challenging due to a major
disadvantage known as chattering. In the chattering phenomenon, a high-frequency motion makes
the state trajectories of the system rapidly oscillating about the sliding surface. It may excite the
unmodelled system dynamics and lead to premature wear and tear or even breakdown of the system.
In the recent past, a lot of techniques have been investigated to reduce the chattering phenomenon
in DSMCs [32–35]. Among the various solutions to prevent the chattering, the boundary layer [34]
is probably the most common method instead of a sign or saturation function [32,33] in order to
have a continuous output in the system’s control law. However, the use of this method has two
drawbacks. First, when the noise in measurement has a high level, so the effectiveness of the system
in boundary layer design is reduced. Second, the finite reaching time from initial states to the
switching phase is not ensured when applying the continuous approximation. To solve the problems,
the higher-order sliding mode control was investigated for mitigating the chattering in uncertain
multi-input and multi-output nonlinear systems [35]. Nevertheless, this technique requires a complex
implementation algorithm which is difficult to estimate the high-order derivatives of the system’s
states. As a special case of the higher-order sliding mode control, the second-order sliding mode control
technique was successfully applied for avoiding the chattering effect with finite-time convergence
in the previous works [36–39]. Recently, a second-order sliding mode controller was designed by
combining a proportional-integral term of the sliding variable and an integral sign function term into
the control signal [36]. A second-order control scheme was established by using geometric homogeneity
and adaptive sliding mode concept [37]. To effectively avoid the chattering, the authors used the
low-pass integrator properties in the second-order control input [38]. This algorithm does not need the
derivative of the sliding variable; hence, the requirement of designing a differentiator is removed. Thus,
the second-order sliding mode control method is easy to implement and less information demand.
However, these studies must be assumed to be the second derivative of all state variables that must
be existed, even though the mathematical model of systems is the first order. This is not realistic in
practice. Another way is to eliminate the chattering that uses a proportional plus integral sliding
surface in the controller under a restrictive condition for the bound of the disturbance derivative [39].
Consequently, the presented techniques are still serious in solving the chattering problem. Recently,
it was noticed that several researchers introduce new techniques using the well-known Barbalat’s
lemma for DSMCs to soothe the chattering problem and keep its control performance [17,18]. However,
the methods given in these studies are only available for small scale systems, therefore, they cannot
be applied for the complex problem of decentralized control design for interconnected systems with
unknown time-varying delay, external disturbance, and mismatched interconnections. As a result,
it is the key for decentralized control systems to develop a chattering free improved variable structure
control (IVSC) utilizing output signal. The chattering free IVSC is extremely necessary and reaching
phase elimination is currently indispensable. In the chattering free IVSC, the sliding mode dynamics
of the interconnected system with unknown varying-time delays is asymptotically stable in the zero
reaching time.

For the aforementioned reasons, the aim of this paper was the development of a decentralized
single-phase robustness sliding mode controller (DSPRSMC) for a class of mismatched uncertain
systems with interconnections and unknown time-varying delays via Moore-Penrose inverse approach.
The main contributions of this paper are summarized below:

(1) Propose an IVSC that eliminates the reaching phase by establishing a new sliding function. It
enables the plant’s trajectories always start from the initial time instance.

(2) A DSPRSMC is constructed based on an output signal and the estimated state variables from a
reduced-order sliding mode estimator (ROSME). As a result, the robust property of the system is
guaranteed and the overall stability of the system is assured.
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(3) The results of existing work [14–18] are extended to a class of interconnected plants with
mismatched interconnections and unknown time-varying delays when the reaching phase
is eliminated.

(4) The chattering in control input is alleviated by combining the well-known Barbalat’s lemma and
Lyapunov stability theory. Also, computer simulation results are provided to show the feasibility
of the proposed scheme as well as to demonstrate the effectiveness of the analytical results.

The outline of this paper is as follows: Section 2 describes the preliminaries of the system,
the definition of the sliding function, and the considered problem is formulated, which will be used to
find achievements in the next section. Section 3 is the key part in this work including the establishment
of ROSME, DSPRSMC design for improving the robustness and performance of the interconnected
time-delay system, and mitigating the chattering phenomenon. The stability of the overall system is
demonstrated in Section 4 by employing the Lyapunov function and the LMI method. One computer
simulation is presented in Section 5 to show the advantages and effectiveness of the developed
technique. Finally, conclusions are drawn in Section 6.

The notations that will be used through the paper are standard. ‖x(t)‖ =
√

xT(t)x(t) denotes the
Euclidean norm of a vector and ‖A‖ =

√
λmax(ATA) stands for the induced spectral norm of a matrix.

AT and λmax(A) are the transpose and maximum eigenvalues of a matrix A, respectively. A > 0 means
that A is real symmetric and positive definite. I and 0 represent the identity matrix and a zero matrix,
respectively. M⊥ denotes an orthogonal complement of a matrix M, i.e., M⊥TM⊥ = I and MM⊥ = 0 or
MTM⊥ = 0.

2. System Descriptions and Problem Formulation

In this section, a general class of the interconnected systems with mismatched uncertainty where
are included L subsystems with unknown time-varying delays in the interconnections and external
disturbances. The system’s state-space form for each subsystem is described as follows:

.
xi(t) = [Aii + ∆Aii(t)]xi(t) + Bi[ui(t) +$i(xi(t), xi(t− di(t)), t)]

+
L∑

j = 1
j , i

[
Fi j + ∆Fi jd j(t)

]
x j(t− d j(t)),

yi(t) = Cixi(t),
xi(t) = χi(t), f or − di ≤ t < 0,

(1)

where for the ith subsystem xi ∈ Rni is the continuous-time state variables of the system,
ui ∈ Rmi is the control signal, and yi ∈ Rpi is measured control output. The character j is the
index of interconnection subsystems. The matrices ∆Aii(t) = MiiΣii(xi(t), t)Nii and ∆Fi jd j(t) =

Di jΣi j(xi(t), xi(t − d j(t)), t)Ei j show the mismatched uncertainty of the system and mismatched
interconnections with unknown time-varying delay in each isolated subsystem, respectively. The
matrices Σii(xi(t), t) and Σi j(xi(t), xi(t − d j(t)), t) are unknown functions. The constant matrices
Aii, Bi, Fi j, Mii, Nii, Di j, Ei j, and Ci have known parameters. The term $i(xi(t), xi(t − di(t)), t)
presents the matched disturbances of the plant in the ith subsystem. The function di(t) is the
time-varying delay which is assumed to be unknown, non-negative and bounded in <+, that is,
di := supt∈<+

{
di(t)

}
< ∞. The character χi(t) represents differential vector-valued initial function

on [−di, 0]. The main purpose of this paper is to synthesize a decentralized single-phase robustness
sliding mode controller (DSPRSMC) for mismatched uncertain interconnected systems with unknown
varying-time delays (Equation (1)) such that the overall of the closed-loop system is asymptotically
stable and the chattering in control input is removed. The following is assumed regarding the systems
for design the DSPRSMC.

A1: The matrices Bi and Ci have full rank and rank(CiBi) = mi.
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A2: The matched disturbance input satisfies the conditions that there exist nonnegative, but unknown,
constants β1i and β1i such thatfor:

‖$i(xi(t), xi(t− di(t)), t)‖ ≤ β1i + β2i(‖xi‖+ ‖xi(t− di(t))‖). (2)

A3: The matrices ∆Aii(t) and ∆Fi jd j(t) denote the mismatched parameter uncertainties in the state
of each isolated subsystem and interconnection elements. We assume that for all (xi, t) and
(x j, t) ∈ RnixR,

‖Σii(xi, t)‖ ≤ 1 and ‖Σi j(xi(t), xi(t− d j(t)), t)‖ ≤ 1. (3)

Remark 1. The mathematical model of the system (Equation (1)) is extended from the published studies [15,19,40].
The rank(CiBi) = mi in Assumption 1 is a limitation on the triplet (Ai, Bi, Ci) and is the existing condition of
the output sliding surface. Further, the Assumptions 1–3 are standard assumptions in the existing works of the
traditional variable structure control (TVSC) [14,19,41].

Now, we develop a new approach for the design of single-phase to be used in the context of the
mismatched uncertain system with unknown time-varying delays for each subsystem. The proposed
sliding function is defined as:

σi(yi(t), t) = σi(yi, t) − σi(yi, 0) exp(−αit), i = 1, 2, . . . , L, (4)

where the term σi(yi, t) = Sixi = Piyi with Si = PiCi, and αi is a positive scalar. In addition, we assume
that the sliding matrix Si must satisfy the following properties:

Property 1: (SiBi) is non-singular.
Property 2: When the reaching phase is eliminated, the states of the plant move into switching

surface from the initial time instance. As a result, the reduced-order sliding mode dynamics is
asymptotically stable.

Property 3: Owing to assumption 2 and 3, the sliding mode dynamics must guarantee the invariant
property for any uncertainties and external disturbances.

Remark 2. The equation Si = PiCi is assumed to be solvable. The sliding surface parameter matrix Si also must
satisfy the properties 1–3 where are generally developed from the previous papers [19,42,43].

Remark 3. In the design of TVSC, the robustness and performance of the system are not ensured in during
complete intervals of a control signal. That is, the desired motion of the system has only achieved after the sliding
motion has happened. In order to solve the drawback, the switching function is proposed in the Equation (4).
From this equation, it is plainly seen that the sliding mode, σi(yi(t), t) = 0, exists from the beginning time t = 0
and there is no reaching phase which is eliminated. This technique ensures that the system’s state moves into
switching surface from the initial time whose the reaching time is equal to zero. This leads to enhancing the
robustness of the system which is necessary in sliding mode control design.

To guarantee the properties 1–3, the Moore-Penrose inverse approach is introduced in [42] for
designing the DSPRSMC. That is, there are symmetric matrices R1i and R2i exist and satisfy the two
following the linear matrix inequalities (LMIs):

ΓiR1iΓi + BiR2iBT
i > 0,

B⊥T
i

(
Ai ΓiR1iΓi + ΓiR1iΓiAT

i

)
B⊥i < 0,

(5)



Energies 2020, 13, 282 6 of 27

where Γi and Γ j are nxn symmetric matrices such that:

Γi = Ii i f B⊥T
i Mii = 0,

Γi = Ii −Ng
iiNii i f B⊥T

i Mii , 0,
and

Γ j = I j i f B ⊥T
i Di j = 0,

Γ j = I j − Eg
ijEi j i f B⊥T

i Di j , 0, (6)

where Ng
ii and Eg

ij are the Moore-Penrose inverse of the matrices Nii and Ei j, respectively, and B⊥i is any

basis of the null space of the matrix BT
i .

Remark 4. The term B⊥i Mii = 0 and B⊥i Di j = 0, that is, the uncertainties of systems and the interconnection
are matched. Otherwise, the term B⊥i Mii , 0 and B⊥i Di j , 0, that is, the uncertainties of systems and the
interconnection are mismatched.

The sliding surface matrix guaranteeing properties 1, 2, and 3 are parameterized by:

Si = KiBT
i

(
ΓiR1iΓi + BiR2iB

T
i

)−1
, (7)

where Ki is any mixmi non-singular matrix, and the matrix Hi = ΓiR1iΓi + BiR2iB
T
i . And the matrix Pi

should be selected to satisfy Si = PiCi. Now, the transformation matrix Πi is introduced to achieve the
regular form from the original uncertain interconnected systems (Equation (1)):

Πi =

[
B⊥T

i
KiBT

i H−1
i

]
,
[

zi
σi

]
= Πixi, (8)

where the dynamic variable zi ∈ Rni−mi is unmeasurable and the sliding variable σi(yi, t) ∈ Rmi is

measurable. We can see that the inverse form of the matrix Πi is Π−1
i =

[
HiB⊥i

(
B⊥T

i HiB⊥i
)−1

Bi(SiBi)
−1

]
.

By employing the above transformation, one can obtain: .
zi.
σi

 = [Aii + ∆Aii(t)]
[

zi(t)
σi(t)

]
Π−1

i + Bi

{
ui(t) +$i(

[
zi(t)
σi(t)

]
Π−1

i ,
[

zi(t− di(t))
σi(t− di(t))

]
Π−1

i , t)
}

+
L∑

j = 1
j , i

[
Fi j + ∆Fi jd j(t)

][ z j(t− d j(t))
σ j(t− d j(t))

]
Π−1

j . (9)

Also, the above equation can be represented in the regular form as follows: .
zi(t).
σi(t)

 = [
Aii11 + ∆Aii11 Aii12 + ∆Aii12

Aii21 + ∆Aii21 Aii22 + ∆Aii22

][
zi(t)
σi(t)

]
+

[
0

SiBi

]
[ui(t) +$i(xi(t), xi(t− di(t)), t)]

+
L∑

j = 1
j , i

 Fi j11 + ∆Fi j11d j Fi j12 + ∆Fi j12d j

Fi j21 + ∆Fi j21d j Ai j22 + ∆Fi j22d j

[ z j(t− d j(t)
σ j(t− d j(t)

]
,

(10)



Energies 2020, 13, 282 7 of 27

where:

Aii11 + ∆Aii11(t) = B⊥T
i [Aii + MiiΣii(xi, t)Nii]HiB⊥i

(
B⊥T

i HiB⊥i
)−1

,
Aii12 + ∆Aii12(t) = B⊥T

i [Aii + MiiΣii(xi, t)Nii]Bi(SiBi)
−1,

Aii21 + ∆Aii21(t) = KiBT
i H−1

i [Aii + MiiΣii(xi, t)Nii]HiB⊥i
(
B⊥T

i HiB⊥i
)−1

,
Aii22 + ∆Aii22(t) = KiBT

i H−1
i [Aii + MiiΣii(xi, t)Nii]Bi(SiBi)

−1,

Fi j11 + ∆Fi j11d j(t) = B⊥T
i

[
Fi j + Di jΣi j(xi(t), xi(t− d j(t)), t)Ei j

]
HiB⊥i

(
B⊥T

i HiB⊥i
)−1

,

Fi j12 + ∆Fi j12d j(t) = B⊥T
i

[
Fi j + Di jΣi j(xi(t), xi(t− d j(t)), t)Ei j

]
Bi(SiBi)

−1,

Fi j21 + ∆Fi j21d j(t) = Si
[
Fi j + Di jΣi j(xi(t), xi(t− d j(t)), t)Ei j

]
HiB⊥i

(
B⊥T

i HiB⊥i
)−1

,

Fi j22 + ∆Fi j22d j(t) = Si
[
Fi j + Di jΣi j(xi(t), xi(t− d j(t)), t)Ei j

]
Bi(SiBi)

−1,
zi = B⊥T

i xi, and σi = Py = Sixi.

Equation (10) can be rewritten by:

.
zi(t) =

(
Aii11 + ∆Aii11

)
zi(t) +

(
Aii12 + ∆Aii12

)
σi(t)

+
L∑

j = 1
j , i

[(
Fi j11 + ∆Fi j11d j

)
z j(t− d j(t) +

(
Fi j12 + ∆Fi j12d j

)
σ j(t− d j(t))

]
,

.
σi(t) =

(
Aii21 + ∆Aii21

)
zi(t) +

(
Aii22 + ∆Aii22

)
σi(t) + (SiBi)ui(t)

+(SiBi)$i(xi(t), xi(t− di(t)), t)

+
L∑

j = 1
j , i

[(
Fi j21 + ∆Fi j21d j

)
z j(t− d j(t) +

(
Fi j22 + ∆Fi j22d j

)
σ j(t− d j(t)

]
.

(11)

Now, we only consider the problem in the mismatching condition for the uncertainties of the
system’s state matrix and interconnections for interconnected systems. Based on the properties of the
Moore-Penrose inverse approach and results in [42], we can easily get:

∆Aii11(t) = B⊥T
i MiiΣii(xi, t)NiiHiB⊥i

(
B⊥T

i HiB⊥i
)−1

= 0,

∆Fi j11d j(t) = B⊥T
i Di jΣi j(xi(t), xi(t− d j(t)), t)Ei jHiB⊥i

(
B⊥T

i HiB⊥i
)−1

= 0,

∆Aii21(t) = KiBT
i H−1

i [MiiΣii(xi, t)Nii]HiB⊥i
(
B⊥T

i HiB⊥i
)−1

= 0,

∆Fi j21d j(t) = Si
[
Di jΣi j(xi(t), xi(t− d j(t)), t)Ei j

]
HiB⊥i

(
B⊥T

i HiB⊥i
)−1

= 0.

(12)

From Equations (11) and (12), the regular form can be represented by the following:

.
zi(t) = Aii11zi(t) +

(
Aii12 + ∆Aii12

)
σi(t)

+
L∑

j = 1
j , i

[
Fi j11z j(t− d j(t) +

(
Fi j12 + ∆Fi j12d j

)
σ j(t− d j(t)

]
,

.
σi(t) = Aii21zi(t) +

(
Aii22 + ∆Aii22

)
σi(t) + (SiBi)[ui(t) +$i(xi(t), xi(t− di(t)), t)]

+
L∑

j = 1
j , i

[
Fi j21z j(t− d j(t) +

(
Fi j22 + ∆Fi j22d j

)
σ j(t− d j(t)

]
,

(13)

With the purpose of the controller design, we now design a reduced-order sliding mode estimator
(ROSME) without time-varying delays.
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3. Main Results

3.1. Design a Novel ROSME for the Interconnected Systems with Time-Varying Delay

In order to design a new decentralized single-phase robustness sliding mode controller (DSPRSMC)
for a class of mismatched uncertain interconnected systems with interconnections and unknown
time-varying delays, we firstly establish new ROSME without time-varying delay. Then, a controller
will be constructed based on the upper bound of the estimator error.

Now, a new ROSME will be proposed to estimate the unmeasurable variables of the systems as
follows:

.
ẑi(t) = Aii11ẑi(t) + Aii12σi(t) (14)

where ẑi(t) is the estimation of variable zi(t).

Remark 5. The novel ROSME design (Equation (14)) is extended from the conventional Luenberger observer
investigated by the authors [44,45]. Different from the full order sliding mode estimators (FOSMEs) [14,24,25,28],
the dimension of ROSME, which is established in the Equation (14), is lower. So, our proposed ROSME without
time-varying delay guarantees that the robustness of the system is enhanced and the conservatism of the computer
process is reduced.

The state estimate ẑi(t) can converge as far as possible to the original state zi(t). For this,
the estimator error between the estimated state and the true state is defined as ei(t) = ẑi(t) − zi(t).
The estimation error dynamics of the estimator is constructed by combining the first Equations (13)
and (14):

.
ei(t) = Aii11ei(t) − ∆Aii12σi(t) +

L∑
j = 1
j , i

[
Fi j11e j(t− d j(t))

]

−

L∑
j = 1
j , i

[
Fi j11ẑ j(t− d j(t)) + Fi j12σ j(t− d j(t))

]
−

L∑
j = 1
j , i

[
∆Fi j12d jσ j(t− d j(t))

]
.

(15)

Then, by using (Equation(15)) and properties:

L∑
j = 1
j , i

[
Fi j11e j(t− d j(t))

]
=

L∑
j = 1
j , i

[
F ji11ei(t− di(t))

]
,

L∑
j = 1
j , i

[
Fi j11ẑ j(t− d j(t)) + Fi j12σ j(t− d j(t))

]
=

L∑
j = 1
j , i

[
F ji11ẑi(t− di(t)) + F ji12σi(t− di(t))

]
,

L∑
j = 1
j , i

[
∆Fi j12d jσ j(t− d j(t))

]
=

L∑
j = 1
j , i

[
∆F ji12diσi(t− di(t))

]
,

(16)
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it generates:

.
ei(t) = Aii11ei(t) − ∆Aii12σi(t) +

L∑
j = 1
j , i

[
F ji11ei(t− di(t))

]

−

L∑
j = 1
j , i

[
F ji11ẑi(t− di(t)) + F ji12σi(t− di(t))

]
−

L∑
j = 1
j , i

[
∆F ji12diσi(t− di(t))

]
.

(17)

To find the upper bound of the estimation error and support the controller design, the matrix Aii11

will be proved to be a stability matrix via the following lemma.

Lemma 1. Let λmaxi is a maximum eigenvalue of the matrix Aii11 and the matrix Aii11 is a stable matrix. Then
the following statement holds

‖exp
(
Aii11t

)
‖ ≤ γi exp

(
λmaxi t

)
, (18)

whereAii11 = B⊥T
i AiiHiB⊥i

(
B⊥T

i HiB⊥i
)−1

and γi > 0.

Proof of the Lemma 1. The matrix Aii11 is stable if and only if there exists a positive-definite Lyapunov
matrix H̃i such that:

Aii11H̃i + H̃iA
T
ii11 < 0. (19)

Obviously, when the constraint condition (Equation (5)) is feasible, the following inequalities
are valid:

Hi = ΓiR1iΓi + BiR2iB
T
i > 0,

B⊥T
i HiBT

i = B⊥T
i ΓiR1iΓiBT

i > 0.
(20)

The LMI condition (Equation (5)) and (Equation (20)) imply that the previous Lyapunov inequality
(Equation (19)) satisfies the expression H̃i = B⊥T

i HiB⊥i > 0. This means that the matrix Aii11 is a stable
matrix and its maximum eigenvalues λmaxi are all negative and real. As a result, we easily obtain the
above statement (Equation (18)) for some positive scalars γi. �

Remark 6. Based on the obtained results of the Lemma 1, the matrix Aii11 is stable. Consequently, the ROSME
(Equation (14)) is asymptotically stable in the sliding mode, σi(t) = σi(t − di(t)) = 0, which means that
ẑi(t− di(t)) in the Equation (17) also converges to zero. Thus, once we can see that the ROSME (Equation (14))
and estimator error dynamics (Equation (17)) are asymptotically stable in sliding mode.

In the following theorem, we will find the upper bound of estimation error that helps the
controller design.

Theorem 1. The matrix Aii11 is stable, the norm of estimation error in the error dynamics (Equation (17)) is
bounded by an upper bound variable θi(t) for all time. The term θi(t) is the solution of:
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.
θi(t) = λiθi(t) + µiγi


L∑

j = 1
j , i

(
µ2 j‖F ji11‖‖ẑi(t)‖

)
+ ‖B⊥T

i Mii‖‖NiiBi(SiBi)
−1
‖‖σi(t)‖

+
L∑

j = 1
j , i

µ1 j

(
‖F ji12‖+ ‖B⊥T

j D ji‖‖E jiB j
(
S jB j

)−1
‖

)
‖σi(t)‖


,

(21)

where λi = λmaxi + µiγi‖Fi j11‖ < 0, λmaxi is a maximum eigenvalue of the matrix Aii11, the symbols γi, µi, µ1 j ,
and µ2 j are positive scalars. In addition, θi(0) ≥ γi‖ei(0)‖, where θi(0) and ei(0) are the initial conditions of
the upper bound variable θi(t) and the error ei(t), respectively.

The detailed proof of this theorem can be found in Appendix A.

Remark 7. By solving the Equation (21) via the MATLAB computing environment, we will get the upper
bound of estimator error (Equation (17)). A suitable controller will be designed to achieve the objective of this
paper, which will be discussed in the next section.

3.2. Construct a DSPRSMC for Reducing the Chattering Phenomenon

In this section, we will propose a DSPRSMC that can render the closed-loop system stable in the
sense of mismatched interconnection and external disturbance.

Theorem 2. For the interconnected systems with unknown time-varying delays (Equation (1)) satisfying
assumptions 1–3, if the following constant control gains:

ρ1i = ‖Aii21‖+ ‖KiBT
i H−1

i Mii‖‖NiiHiB⊥i
(
B⊥T

i HiB⊥i
)−1
‖+ β2i‖SiBi‖

×

[
‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖+ εi‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖

]
+

L∑
j = 1
j , i

εi

(
‖F ji21‖+ ‖S jD ji‖‖E jiH jB⊥j

(
B⊥T

j H jB⊥j

)−1
‖

)
,

ρ2i = ‖Aii22‖+ ‖KiBT
i H−1

i Mii‖‖NiiBi(SiBi)
−1
‖+ β2i‖SiBi‖

[
‖Bi(SiBi)

−1
‖+ µ1i‖Bi(SiBi)

−1
‖

]
+

L∑
j = 1
j , i

µ1 j

(
‖F ji22‖+ ‖S jD ji‖‖E jiB j

(
S jB j

)−1
‖

)
,

(22)

are satisfied, then the control signal:

ui(t) = −ηi(SiBi)
−1σi(t) − (SiBi)

−1
{
ρ1i [‖ẑi(t)‖+ θi(t)] + ρ2i‖σi(t)‖

+β1i‖SiBi‖+ αi‖Pi‖‖yi(0)‖ exp(−αit)
}
σi(t)
‖σi(t)‖

,
(23)

will render the closed-loop system asymptotically stable.

The Proof of Theorem 2 can be seen in Appendix B.
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Remark 8. A key feature of the proposed improved variable structure control (IVSC) is that the switching
function (Equation (4)) and the DSPRSMC (Equation (23)) are designed to be dependent on only output
information and estimated variables from the ROSME (Equation (14)). This controller ensures that the state
trajectories at arbitrary initial value will hit the sliding surface from very beginning time and the original system
(Equation (1)) is asymptotically stable in sliding mode. Thus, the obtained results solved the limitations imposed
in the design of the existing works [20–23,29].

Remark 9. However, σi(t)/‖σi(t)‖ in overall control ui(t) (Equation (23)) will cause the control input to
produce the chattering phenomenon which will be happened from the beginning time. This also is the drawback
of this method. In order to handle this disadvantage, we will establish the following theorem which will reduce
the chattering in control input.

Theorem 3. Suppose that the external perturbations and mismatched uncertainties of the interconnected systems
(Equation (1)) with unknown time-varying delays satisfy the assumptions 1–3. Let the control signal be:

ui(t) = −(SiBi)
−1

{
ρ1i

[‖ẑi(t)‖+ θi(t)]
σi
‖σi‖

+ ηiσi + ρ2i

‖Θi‖

‖Θi‖+ γ̂ie−vit

}
, (24)

where:
ρ1i

= ρ1i = ‖Aii21‖+ ‖KiBT
i H−1

i Mii‖‖NiiHiB⊥i
(
B⊥T

i HiB⊥i
)−1
‖+ β2i‖SiBi‖

×

[
‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖+ εi‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖

]
+

L∑
j = 1
j , i

εi

(
‖F ji21‖+ ‖S jD ji‖‖E jiH jB⊥j

(
B⊥T

j H jB⊥j

)−1
‖

)
,

ρ2i
= ρ2i‖σi(t)‖+ β1i‖SiBi‖+ αi‖Pi‖‖yi(0)‖ exp(−αit),

and Θi = ρ2i

σi
‖σi‖

.

(25)

Then the state trajectories of the systems will reach the sliding surface σi(yi(t), t) = 0 from the initial time
instance.

The detailed proof of Theorem 3 can be found in Appendix C.

Remark 10. There are many approaches for reducing the chattering phenomenon such as using a sign or tanh
function [32,33], the boundary layer method [34]. However, these approaches affect the accuracy and robustness
of the system. In this section, by using the Barbalat’s lemma, the proposed chattering free single-phase sliding
mode controller (Equation (24)) offers the major advantage that the chattering in control input is completely
rejected, the system’s state trajectories always start from the sliding surface, and the robustness of the system is
ensured. Therefore, the designed controller (Equation (24)) is very worthwhile and more realistic, since it can be
implemented in many practical control systems.

Remark 11. For instances, the sign function was used to reduce the chattering for the proton exchange membrane
fuel cell [7], the chattering was reduced by using the saturation function in wind energy conversion system [6],
and layer boundary method was utilized to handle the high-frequency oscillation in sliding mode controller for a
photovoltaic inverter connected to the power grid [5], etc. However, these methods may remove the chattering
phenomenon but they have challenges in presence of uncertainty and external disturbances. Consequently,
the proposed sliding mode controller (Equation (24)), which is based on the well-known Barbalat’s lemma, can be
considered to deal with the chattering phenomenon in these applications.

Remark 12. The problem of decentralized control design for the matched and mismatched uncertain interconnected
systems has a lot of engrossment. In recent years, the published researches about decentralized control remarkably
arise from the control of interconnected uncertain systems including hydraulic systems, rolling mills, robotic
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manipulators, nuclear reactors, manufacturing processes and long transmission lines in pneumatic systems,
etc. [1–4]. In addition, our proposed DSPRSMC can apply to many practical control applications such as
flywheel energy storage system [46], grid-connected voltage-source converter [47], synchronous generator [48],
photovoltaic–wind interconnected microgrid system [49], and buck boost converter [50].

4. Asymptotically Stable Conditions by LMI Theory

In the above section, the single-phase output feedback controller has been proposed, which is
reduced the chattering for interconnected systems with unknown time-varying delays. In this section,
the stability of the overall systems will be proved by combining the well-known Lyapunov function
and Schur complement formula.

Theorem 4. Consider the mismatched uncertain interconnected systems (Equation (1)) with assumptions 1–3,
and the sliding surface σi(yi(t), t) = 0. If there exist symmetric matrix Ξi > 0, and scalars ϕi > 0, εi > 0
satisfying: 

Ψi ΞiM̃i ÑT
i

M̃T
i ΞT

i −ϕiIi 0
Ñi 0 −ϕ−1

i Ii

 < 0, (26)

where Ψi = A
T
ii11Ξi + ΞiAii11 +

L∑
j = 1
j , i

(
εiF

T
ji11Ξi + εiΞiF ji11 + ϕ−1

i εiΞiD̃ jiD̃T
jiΞ

T
i + ϕiεiẼT

jiẼ ji

)
, then the

resulting (ni −mi) reduced-order dynamics of the time delay systems (Equation (13)) to the sliding surface is
asymptotically stable.

Please refer to the detailed proof of this theorem in Appendix D.

Remark 13. Based on some benefits of the LMI technique [51] over traditional approach methods,
the asymptotically stable condition of the overall systems has been established as (Equation (26)). Compared
with the recently LMI methods [15,41], the LMI (Equation (26)) shows less conservative results and easily
implements by using the LMI Toolbox [52] in MATLAB software.

5. Numerical Simulation

To illustrate the proposed method effectiveness, we consider an interconnected time-varying
delay system composed of two subsystems model, taken from [53] with some changes, respectively:
Subsystem I: n1 = 3, m1 = 2, i = 1, j = 2, and the dynamics are given as:

.
x1 = [A11 + ∆A11(t)]x1 + B1[u1(t) +$1(x1(t), x1(t− d1(t)), t)] +

[
F12 + ∆F12d2 (t)

]
x2(t− d2(t))

y1 = C1x1,
(27)

where A11 =


−1 1 0
0 1 −1
−1 1 −0.75

, B1 =


0
1
0

, C1 =

[
1 1 −1
0 0 1

]
, and F12 =


−0.2 0 −0.1
0.1 0 0
0.2 0.1 0

. The

external disturbances input is ‖$1(x1(t), x1(t− d1(t)), t)‖ ≤ β21(‖x1‖+ ‖x1(t− d1(t))‖) with β21 = 0.22,
and the mismatched uncertainties in state matrix are M11Σ11(x1, t)N11 with M11 = [0 0 1]T, N11 =

[1 1 0], Σ11(x1, t) = 0.14 sin(0.1t) and in interconnections are D12Σ12(x1(t), x1(t − d2(t)), t)E12 with
D12 = [0 0 1]T, E12 = [1 1 0], and Σ12(x1(t), x1(t− d2(t)), t) = 0.23 sin(0.1t).
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Subsystem II: n2 = 3, m2 = 2, i = 2, j = 1, and the dynamics are given as:

.
x2 = [A22 + ∆A22(t)]x2 + B2[u2(t) +$2(x2(t), x2(t− d2(t)), t)] +

[
F21 + ∆F21d1 (t)

]
x1(t− d1(t))

y2 = C2x2,
(28)

where A22 =


−0.1 1 0.2

1 1 −1
0.5 1 0.1

, B2 =


0
1
−0.5

, C2 =

[
1 1 0
0 0 1

]
, and F21 =


−0.2 0 −0.1
0.1 0 0
0.2 0.1 0

. The

external disturbances input is ‖$2(x2(t), x2(t− d2(t)), t)‖ ≤ β22(‖x2‖+ ‖x2(t− d2(t))‖) with β22 = 0.21,
and the mismatched uncertainties in state matrix are M22∆Σ22(x2, t)N22 with M22 = [1 0 0]T, N22 =

[1 1 0], Σ22(x2, t) = 0.12 sin(0.1t) and in interconnections are D21Σ21(x2(t), x2(t − d1(t)), t)E21 with
D21 = [1 0 0]T, E21 = [1 1 0], and Σ21(x2(t), x2(t− d2(t)), t) = 0.24 sin(0.3t).

The related parameters required for the simulation are selected as η1 = 0.011, η2 = 0.021,
β11 = 1.015, β12 = 1.023, β21 = 0.25, β22 = 0.343, α1 = 1.012, α2 = 1.017, ε1 = 1.011, ε2 = 1.016,
γ̂1 = γ̂2 = 34.023,ν1 = ν2 = 0.042, and µ11 = µ12 = 1.02. For simulation, the initial values of two
subsystems are x1(0) = x2(0) = [0.01; −0.01 ; 0.02]T. In addition, let the unknown time-varying delay
be d1(t) = d2(t) = 0.15(1 + sin 0.5t) [19].

Now, by using the LMI control Toolbox of MATLAB (R2014a, MathWorks, Torrance, CA, USA),
the LMI constraints (Equation (5)) are solved to find the following the matrices for two subsystems:

R11 =


103.8211 43.3650 −6.5634
43.3650 −15.8873 −6.2240
−6.5634 −6.2240 1.2763

,
R21 = 0.9509,

(29)

and:

R12 =


197.7259 132.5157 −149.3973
132.5157 69.4260 −149.5495
−149.3973 −149.5495 1.4154

,
R22 = 0.3796.

(30)

By solving the Equation (7) through the results (Equation (29)), (Equation (30)), and choose the
non-singular matrix K1 = K2 = I, the switching surface (Equation (4)) for each subsystem at the initial
time t = 0 are:

σ1(y1(t), t) = [1.0516 1.0516]y1 − [1.0516 1.0516]y1e−1.012t = 0 (31)

and:
σ2(y2(t), t) = [2.6344 0 ] y2 − [2.6344 0 ]y2e−1.017t = 0. (32)

Based on the Equation (14), the novel reduced-order sliding mode estimators (ROSMEs) for
subsystem I and subsystem II are respectively described by:

.
ẑ1(t) =

[
−2.0000 −0.0000
2.0000 −0.7500

]
ẑ1(t) +

[
−0.9509

0.9509

]
σ1(t) (33)

and:
.
ẑ2(t) =

[
−0.7190 −0.0641
0.7856 −0.6810

]
ẑ2(t) +

[
−0.0474
0.6690

]
σ2(t). (34)

In addition, the upper bounds of estimation errors for each subsystem are displayed as:

.
θ1(t) = − 0.5086θ1(t) + 0.3009‖ẑ1(t)‖+ 1.3694‖σ1(t)‖ (35)
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and: .
θ2(t) = − 0.3991θ2(t) + 0.2414‖ẑ2(t)‖+ 1.4618‖σ2(t)‖. (36)

Finally, according to the Theorems 2 and 3, the single-phase sliding mode control laws of
subsystems with or without the chattering is shown, respectively:

u1(t) = − 0.9509σ1(t) −
{
4.4794[‖ẑ1(t)‖+ θ1(t)] + 3.4708‖σ1(t)‖

+1.0000 + 1.9999 exp(− 1.012t)
} σ1(t)
‖σ1(t)‖

,
(37)

u1(t) = − 4.4794[‖ẑ1(t)‖+ θ1(t)]
σ1

‖σ1‖
− 0.9509σ1 − ρ21

0.9509‖Θ1‖

‖Θ1‖+ 34.023e−0.042t , (38)

and:
u2(t) = − 0.9509σ2(t) −

{
6.1005[‖ẑ2(t)‖+ θ2(t)] + 3.6583‖σ2(t)‖

+2.5050 + 2.5051 exp(−1.017t)
} σ2(t)
‖σ2(t)‖

,
(39)

u2(t) = −
{
2.4353[‖ẑ2(t)‖+ θ2(t)]

σ2

‖σ2‖
+ 0.3796σ2 + ρ22

0.3796‖Θ2‖

‖Θ2‖+ 34.023e−0.042t

}
, (40)

where ẑ1(t), θ1(t) and ẑ2(t), θ2(t) are solutions of the Equations (33)–(36) respectively. The constant
control gains ρ21

= 3.6500‖σ1(t)‖+ 1.0516 + 2.1032 exp(−1.012t) and ρ22
= 3.8472‖σ2(t)‖+ 2.6344 +

2.6792 exp(−1.017t) are used in the controllers (Equation (38)), (Equation (40)), for each subsystem,
respectively. The obtained results from the computer simulation are displayed in Figures 1–6.
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Figure 6. Simulation results of the controllers without the chattering: (a) The time history of the control
u1(t) (Equation (38)) of subsystem I without the chattering; (b) The time history of the control u2(t)
(Equation (40)) of subsystem II without the chattering.

Remark 14. Figures 1 and 2 are displayed the state trajectories of two subsystems. Figure 1a,b shows the state
variables x11 (solid), x12 (dashed), and x13 (dotted) of the first subsystems and state variables x21 (solid), x22

(dashed), and x23 (dotted) of second subsystem corresponding to the controllers u1(t) (Equation (37)) and u2(t)
(Equation (39)), respectively. Figure 2a,b presents the state variablesx11, x12, and x13 of subsystem I and state
variables x21, x22, and x23 of subsystem II for the controllers u1(t) (Equation (38)) and u2(t) (Equation (40)),
respectively. The initial conditions are the same for simulation when the proposed technique is utilized. From
these figures, we can see that the state variables for each subsystem are convergent to almost zero quickly. Thus,
the proposed ROSME—based the decentralized single-phase robustness sliding mode controller (DSPRSMC)
satisfies the asymptotic stability of the closed-loop time-varying delay systems with mismatched interconnections
and external disturbances.

Remark 15. Figure 3a,b plots the variation in the sliding function with respect to time for two subsystems. By
using new switching functions (Equation (31)) and (Equation (32)), the response curve of the system’s states
moves into the sliding surface from the initial time whose the reaching time is equal to zero. In order words,
the robustness of the system is guaranteed when using the proposed sliding functions. This is one of the main
advantages of the improved variable structure control (IVSC) which is developed from the traditional variable
structure control (TVSC). It is the first key contribution of our study for the automation control area.
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Remark 16. Time responses of the estimated variables for each subsystem are shown in Figure 4. Figure 4a,b
depicts the time response of ROSMEs ẑ1(t) (Equation (33)) and ẑ2(t) (Equation (34)), respectively. It is clearly
seen that the unmeasurable states are rapidly regulated to zero after about 1.5 s. This demonstrates that the
state estimates ẑ1(t) and ẑ2(t) tended to the original statez1(t) and z2(t), respectively. Further, the upper
bound of estimation errors e1(t) = ẑ1(t) − z1(t) and e2(t) = ẑ2(t) − z2(t) for each subsystem also approaches
zero. Compared with the previous FOSMEs [14,24,25,28], our proposed ROSME without time-varying delay
guarantees that the robustness of the system is enhanced and the conservatism of the computer process is reduced.

Remark 17. Figure 5a,b is explored the time history of the proposed controllers (Equation (37)), (Equation (39))
of subsystem I and subsystem II, respectively. It is obvious to see that the DSPRSMC’s amplitudes are relatively
small. Thus, our proposed technique, which is called Moore-Penrose inverse, is better performance than other
approaches published in the existing researches [26–28,30,31]. The second task of this paper is finished. However,
the chattering oscillation phenomenon is occurred by the presence of the term σi(t)/‖σi(t)‖. And, they entirely
solved by new controllers (Equation (38)) and (Equation (40)) corresponding to the simulations as Figure 6a,b.

Remark 18. Unlike the recently published works [24–29], the proposed method is applied for complex
problems with unknown time-varying delays and mismatched uncertainties in the state matrix of system and
interconnections when the reaching phase is removed. This also is the third key result in the paper.

Remark 19. Figure 6a,b is showed the time response of the new controllers (Equation (38)), (Equation (40)) of
subsystem I and subsystem II, respectively. Comparing between Figures 5a and 6a for subsystem I, Figures 5b
and 6b for subsystem II, we can see that the chattering in control input is completely removed in Figure 6a,b,
which proves that the interconnected systems with the proposed control signals (Equation (38)) and (Equation
(40)) has better control performance. For subsystems I and II, the magnitudes of control signals are high but
acceptable. Thus, the proposed method solved the chattering phenomenon while the accuracy and robustness of the
systems were still ensured, which could not obtain the feasible solutions from the previous studies [32–34,36–38].
This is the last main achievement of our work.

6. Conclusions

In this paper, a decentralized robust stabilization and the chattering removal problem of
the interconnected systems with mismatched parameter uncertainties in the state matrix and
interconnections have been investigated in which time-varying delays are unknown. Especially,
this work presents the IVSC without reaching phase such that the system performance is ensured
when its entire trajectories always start from the sliding surface. The ROSME without time delay
is designed as decoupled dynamical systems has been proposed such that the system is increased
robustness and is reduced computation process. By using the ROSME, Moore-Penrose inverse
approach and the well-known Barbalat’s lemma, the DSPRSMC not only solves the single-phase
complex interconnected problem but also ensures the chattering reduction in control input. Further,
the reduced-order interconnected system in sliding mode is asymptotically stable under sufficient
conditions. Besides, computer simulation is provided to support the feasibility and effectiveness
of the main results. Based on the obtained achievements, it is obviously shown that the proposed
DSPRSMC is effective in solving the complex problem including mismatched uncertainty in the state
matrix of the plant and interconnections. Thus, the extension of the presented technique to other more
general systems involving mismatched uncertainty on B and C matrix parameters of the plants and
mismatched disturbance could be the future trend.
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Appendix A

Proof of the Theorem 1. By employing the result of the Lemma 1, the matrix Aii11 is stable. Thus, by solving the
Equation (17), the following statement is obtained:

‖ei(t)‖ ≤ ‖exp
(
Aii11t

)
‖‖ei(0)‖+

∫ t
0 ‖exp

[
Aii11(t− τ)

]
‖

×


L∑

j = 1
j , i

[
‖Fi j11‖‖e j(τ− d j(τ))‖

]
+

L∑
j = 1
j , i

[
‖Fi j11‖‖ẑ j(τ− d j(τ))‖+ ‖Fi j12‖‖σ j(τ− d j(τ))‖

]

+‖∆Aii12‖‖σi(τ)‖+
L∑

j = 1
j , i

[
‖∆Fi j12d j‖‖σ j(τ− d j(τ))‖

]


dτ,

≤ γi‖ei(0)‖ exp(λmaxi t) +
∫ t

0 γi exp[λmaxi (t− τ)]

×


L∑

j = 1
j , i

[
‖Fi j11‖‖e j(τ− d j(τ))‖

]
+

L∑
j = 1
j , i

[
‖Fi j11‖‖ẑ j(τ− d j(τ))‖+ ‖Fi j12‖‖σ j(τ− d j(τ))‖

]

+‖∆Aii12‖‖σi(τ)‖+
L∑

j = 1
j , i

[
‖∆Fi j12d j‖‖σ j(τ− d j(τ))‖

]


dτ,

(A1)

where:
∆Aii12(t) = B⊥T

i MiiΣii(xi, t)NiiBi(SiBi)
−1,

∆Fi j12d j (t) = B⊥T
i Di jΣi j(xi(t), xi(t− d j(t)), t)Ei jBi(SiBi)

−1.
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Now, both sides of the above equation are multiplied by exp(−λmaxi t), and we achieve:

‖ei(t)‖ exp(−λmaxi t) ≤ γi‖ei(0)‖+
∫ t

0 γi exp(−λmaxiτ)
L∑

j = 1
j , i

[
‖Fi j11‖‖e j(τ− d j(τ))‖

]

+
∫ t

0 γi exp(−λmaxiτ)


L∑

j = 1
j , i

[
‖Fi j11‖‖ẑ j(τ− d j(τ))‖+ ‖Fi j12‖‖σ j(τ− d j(τ))‖

]
+‖B⊥T

i Mii‖‖NiiBi(SiBi)
−1
‖‖σi(τ)‖

+
L∑

j = 1
j , i

[
‖B⊥T

i Di j‖‖Ei jBi(SiBi)
−1
‖‖σ j(τ− d j(τ))‖

]


dτ.

(A2)

In order to determine the upper bound of estimation error, we recall the following lemma.

Lemma A1. ([19]). Let r(t− d(t)) be delayed function of r(t). Assume c ≥ 0, w(t), h(t), and g(t) are non-negative valued
continuous functions. If:

‖r(t)‖w(t) ≤ c +
∫ t

0
‖r(τ− d(τ))‖h(τ)w(τ)dτ+

∫ t

0
g(τ)dτ, (A3)

then for a constantβ > 1,

‖r(t)‖w(t) ≤ c exp
{
β f (t)

}
+

∫ t

0
g(τ) exp

{
β f (t) − β f (τ)

}
dτ, (A4)

where f (t) =
∫ t

0 h(τ)dτ.

Now, by applying the Lemma A1 above, we symbolize:

‖r(t)‖ = ‖ei(t)‖, w(t) = exp(−λmaxi t), c = γi‖ei(0)‖, ‖r(t− d(t))‖ = ‖e j(t− d j(t))‖,
h(t) = γi‖Fi j11‖, β > 1, f (t) =

∫ t
0 h(τ)dτ = γi‖Fi j11‖t,

g(t) = γi exp(−λmaxiτ)


L∑

j = 1
j , i

[
‖Fi j11‖‖ẑ j(τ− d j(τ))‖+ ‖Fi j12‖‖σ j(τ− d j(τ))‖

]

+‖B⊥T
i Mii‖‖NiiBi(SiBi)

−1
‖‖σi(τ)‖+

L∑
j = 1
j , i

[
‖B⊥T

i Di j‖‖Ei jBi(SiBi)
−1
‖‖σ j(τ− d j(τ))‖

]


dτ.

We obtain:

‖ei(t)‖ exp(−λmaxi t) ≤ γi‖ei(0)‖ exp
(
µiγi‖Fi j11‖t

)
+

∫ t
0 µiγi exp(−λmaxiτ)

×


L∑

j = 1
j , i

[
‖Fi j11‖‖ẑ j(τ− d j(τ))‖+ ‖Fi j12‖‖σ j(τ− d j(τ))‖

]
+ ‖B⊥T

i Mii‖

×‖NiiBi(SiBi)
−1
‖‖σi(τ)‖+

L∑
j = 1
j , i

[
‖B⊥T

i Di j‖‖Ei jBi(SiBi)
−1
‖‖σ j(τ− d j(τ))‖

]


× exp
(
µiγi‖Fi j11‖t− µiγi‖Fi j11‖τ

)
dτ.

(A5)
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According to the Lemma 3 of [9], then ‖σ j(t− d j(t))‖ ≤ µ1i‖σ j(t)‖, ‖ẑ j(t− d j(t))‖ ≤ µ2i‖ẑ j(t)‖, and γi‖ei(0)‖ ≤
θi(0). Next, moving the term exp(−λmaxi t) to the right-hand side for the above inequality, we have:

‖ei(t)‖ ≤ θi(0) exp
[(
λmaxi + µiγi‖Fi j11‖

)
t
]
+

∫ t
0 µiγi exp

(
λmaxi + µiγi‖Fi j11‖

)
(t− τ)

×


L∑

j = 1
j , i

[
‖Fi j11‖‖ẑ j(τ− d j(τ))‖+ ‖Fi j12‖‖σ j(τ− d j(τ))‖

]
+ ‖B⊥T

i Mii‖‖NiiBi(SiBi)
−1
‖‖σi(τ)‖

+
L∑

j = 1
j , i

[
‖B⊥T

i Di j‖‖Ei jBi(SiBi)
−1
‖‖σ j(τ− d j(τ))‖

]


dτ,

≤ θi(0) exp
[(
λmaxi + µiγi‖Fi j11‖

)
t
]
+

∫ t
0 µiγi exp

(
λmaxi + µiγi‖Fi j11‖

)
(t− τ)

×


L∑

j = 1
j , i

[
µ2i‖Fi j11‖‖ẑ j(τ)‖+ µ1i‖Fi j12‖‖σ j(τ)‖

]
+ ‖B⊥T

i Mii‖‖NiiBi(SiBi)
−1
‖‖σi(τ)‖

+
L∑

j = 1
j , i

[
µ1i‖B

⊥T
i Di j‖‖Ei jBi(SiBi)

−1
‖‖σ j(τ)‖

]


dτ.

(A6)

From the Equation (A6), and property:

L∑
j = 1
j , i

[
µ2i‖Fi j11‖‖ẑ j(t)‖+ µ1i‖Fi j12‖‖σ j(t)‖

]
=

L∑
j = 1
j , i

[
µ2 j‖F ji11‖‖ẑi(t)‖+ µ1 j‖F ji12‖‖σi(t)‖

]
,

L∑
j = 1
j , i

[
µ1i‖B

⊥T
i Di j‖‖Ei jBi(SiBi)

−1
‖‖σ j(t)‖

]
=

L∑
j = 1
j , i

[
µ1 j‖B

⊥T
j D ji‖‖E jiB j

(
S jB j

)−1
‖‖σi(t)‖

]
,

(A7)

it produces:

‖ei(t)‖ ≤ θi(0) exp
[(
λmaxi + µiγi‖Fi j11‖

)
t
]
+

∫ t
0 µiγi exp

(
λmaxi + µiγi‖Fi j11‖

)
(t− τ)

×


L∑

j = 1
j , i

[
µ2 j‖F ji11‖‖ẑi(τ)‖+ µ1 j‖F ji12‖‖σi(τ)‖

]
+ ‖B⊥T

i Mii‖‖NiiBi(SiBi)
−1
‖‖σi(τ)‖

+
L∑

j = 1
j , i

[
µ1 j‖B

⊥T
j D ji‖‖E jiB j

(
S jB j

)−1
‖‖σi(τ)‖

]
dτ,

≤ θi(0) exp
[(
λmaxi + µiγi‖Fi j11‖

)
t
]
+

∫ t
0 µiγi exp

(
λmaxi + µiγi‖Fi j11‖

)
(t− τ)

×


L∑

j = 1
j , i

(
µ2 j‖F ji11‖‖ẑi(τ)‖

)
+ ‖B⊥T

i Mii‖‖NiiBi(SiBi)
−1
‖‖σi(τ)‖

+
L∑

j = 1
j , i

µ1 j

(
‖F ji12‖+ ‖B⊥T

j D ji‖‖E jiB j
(
S jB j

)−1
‖

)
‖σi(τ)‖

dτ = θi(t),

(A8)
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where θi(t) satisfies (Equation (21)). Thus, we can see that ‖ei‖ ≤ θi(t) for all time. Thus, the proof of Theorem 1 is
completed. �

Appendix B

Proof of the Theorem 2. We first define a Lyapunov function candidate for the closed-loop system as follows:

V(σi) =
L∑

i=1

‖σi‖. (A9)

Then, by taking the derivative of Lyapunov function V(σi) along the trajectories of the closed-loop system,
we have:

.
V(σi) =

L∑
i=1

σT
i
‖σi‖

.
σi =

L∑
i=1

σT
i
‖σi‖

[ .
σi(yi, t) + αiPiyi(0) exp(−αit)

]
(A10)

Then, replacing the second equation of (Equation (13)) into (Equation (A10)), we have:

.
V(σi(xi(t), t)) =

L∑
i=1

σT
i
‖σi‖

{(
Aii21 + ∆Aii21

)
zi(t) +

(
Aii22 + ∆Aii22

)
σi(t) + (SiBi)ui(t)

+(SiBi)$i(xi(t), xi(t− di(t)), t) +
L∑

j = 1
j , i

[(
Fi j21 + ∆Fi j21d j

)
z j(t− d j(t))

+
(

Fi j22 + ∆Fi j22d j

)
σ j(t− d j(t))

]
+ αiPiyi(0) exp(−αit)

}
.

≤

L∑
i=1

(
‖Aii21‖+ ‖∆Aii21‖

)
‖zi(t)‖+

L∑
i=1

(
‖Aii22‖+ ‖∆Aii22‖

)
‖σi(t)‖+

L∑
i=1

σT
i
‖σi‖

(SiBi)ui(t)

+
L∑

i=1
‖SiBi‖‖$i(xi(t), xi(t− di(t)), t)‖+

L∑
i=1

L∑
j = 1
j , i

[((
‖Fi j21‖+ ‖∆Fi j21d j‖

)
‖z j(t− d j(t))‖

+
(
‖Fi j22‖+ ‖∆Fi j22d j‖

)
‖σ j(t− d j(t))‖

]
+

L∑
i=1

αi‖Pi‖‖yi(0)‖ exp(−αit) ≤ −
L∑

i=1
ηi‖σi‖

(A11)

From the transformation matrix Πi in the Equation (8) implies that:

‖xi‖ ≤ ‖HiB⊥i
(
B⊥T

i HiB⊥i
)−1
‖(‖ẑi(t)‖+ θi(t)) + ‖Bi(SiBi)

−1
‖‖σi(t)‖,

‖xi(t− d j(t))‖ ≤ ‖HiB⊥i
(
B⊥T

i HiB⊥i
)−1
‖‖zi(t− d j(t))‖+ ‖Bi(SiBi)

−1
‖‖σi(t− d j(t))‖.

(A12)

Since ‖σ j(t− d j(t))‖ ≤ µ1i‖σ j(t)‖, ‖zi(t− di(t))‖ ≤ εi‖zi(t)‖, and the inequality (A12), the norm of the external
disturbance is described by:

‖$i(xi(t), xi(t− di(t)), t)‖ ≤ β1i + β2i

[
‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖+ εi‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖

]
×(‖ẑi(t)‖+ θi(t)) + β2i

[
‖Bi(SiBi)

−1
‖+ µ1i‖Bi(SiBi)

−1
‖

]
‖σi(t)‖

(A13)

From inequalities (A12), (A13) and:

L∑
i=1

L∑
j = 1
j , i

[
ε j

(
‖Fi j21‖+ ‖∆Fi j21d j‖

)
‖z j(t)‖+ µ1i

(
‖Fi j22‖+ ‖∆Fi j22d j‖

)
‖σ j(t)‖

]
=

L∑
i=1

L∑
j = 1
j , i

[
εi
(
‖F ji21‖+ ‖∆F ji21di‖

)
‖zi(t)‖+ µ1 j

(
‖F ji22‖+ ‖∆F ji22di‖

)
‖σi(t)‖

]
,

(A14)
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we have:

.
V(σi(xi(t), t)) ≤

L∑
i=1

[
‖Aii21‖+ ‖KiBT

i H−1
i Mii‖‖NiiHiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖ + β2i‖SiBi‖

×

(
‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖+ εi‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖

)

+
L∑

j = 1
j , i

εi

(
‖F ji21‖+ ‖S jD ji‖‖E jiH jB⊥j

(
B⊥T

j H jB⊥j

)−1
‖

)(‖ẑi(t)‖+ θi(t))

+
L∑

i=1

[
‖Aii22‖+ ‖KiBT

i H−1
i Mii‖‖NiiBi(SiBi)

−1
‖+ ‖SiBi‖β2i

(
‖Bi(SiBi)

−1
‖

+µ1i‖Bi(SiBi)
−1
‖

)
+

L∑
j = 1
j , i

µ1 j

(
‖F ji22‖+ ‖S jD ji‖‖E jiB j

(
S jB j

)−1
‖

)‖σi(t)‖

+
L∑

i=1

σT
i
‖σi‖

(SiBi)ui(t) +
L∑

i=1
β1i‖SiBi‖+

L∑
i=1

αi‖Pi‖‖yi(0)‖ exp(−αit)

≤ −

L∑
i=1

ηi‖σi‖ < 0, (A15)

which the system’s states stay the switching surface from the zero reaching time for all t ≥ 0. Hence, Theorem 2 is
proved. �

Appendix C

Proof of the Theorem 3. To effectively reduce the chattering, we denote a new control signal ui(t). By replacing
the second equation of the regular form (Equation (13)) into the derivative of Lyapunov function (Equation (A10)),
we have:

.
V(σi(xi(t), t)) =

L∑
i=1

σT
i
‖σi‖

{(
Aii21 + ∆Aii21

)
zi(t) +

(
Aii22 + ∆Aii22

)
σi(t) + (SiBi)ui(t)

+(SiBi)$i(xi(t), xi(t− di(t)), t) +
L∑

j = 1
j , i

[(
Fi j21 + ∆Fi j21d j

)
z j(t− d j(t))

+
(

Fi j22 + ∆Fi j22d j

)
σ j(t− d j(t))

]
+ αiPiyi(0) exp(−αit)

}
.

≤

L∑
i=1

(
‖Aii21‖+ ‖∆Aii21‖

)
‖zi(t)‖+

L∑
i=1

(
‖Aii22‖+ ‖∆Aii22‖

)
‖σi(t)‖+

L∑
i=1

σT
i
‖σi‖

(SiBi)ui(t)

+
L∑

i=1
‖SiBi‖‖$i(xi(t), xi(t− di(t)), t)‖+

L∑
i=1

L∑
j = 1
j , i

[((
‖Fi j21‖+ ‖∆Fi j21d j‖

)
‖z j(t− d j(t))‖

+
(
‖Fi j22‖+ ‖∆Fi j22d j‖

)
‖σ j(t− d j(t))‖

]
+

L∑
i=1

αi‖Pi‖‖yi(0)‖ exp(−αit).

(A16)
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From the Equations (22), (A12)–(A14) and (25), we have:

.
V(σi(xi(t), t)) ≤

L∑
i=1

[
‖Aii21‖+ ‖KiBT

i H−1
i Mii‖‖NiiHiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖ + β2i‖SiBi‖

×

(
‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖+ εi‖HiB⊥i

(
B⊥T

i HiB⊥i
)−1
‖

)

+
L∑

j = 1
j , i

εi

(
‖F ji21‖+ ‖S jD ji‖‖E jiH jB⊥j

(
B⊥T

j H jB⊥j

)−1
‖

)(‖ẑi(t)‖+ θi(t))

+
L∑

i=1

[
‖Aii22‖+ ‖KiBT

i H−1
i Mii‖‖NiiBi(SiBi)

−1
‖+ ‖SiBi‖β2i

(
‖Bi(SiBi)

−1
‖

+µ1i‖Bi(SiBi)
−1
‖

)
+

L∑
j = 1
j , i

µ1 j

(
‖F ji22‖+ ‖S jD ji‖‖E jiB j

(
S jB j

)−1
‖

)‖σi(t)‖

+
L∑

i=1

σT
i
‖σi‖

(SiBi)ui(t) +
L∑

i=1
β1i‖SiBi‖+

L∑
i=1

αi‖Pi‖‖yi(0)‖ exp(−αit)

≤

L∑
i=1

(
ρ1i

)
(‖ẑi(t)‖+ θi(t)) +

L∑
i=1

(
ρ2i

)
+

L∑
i=1

σT
i
‖σi‖

(SiBi)ui(t). (A17)

Substituting the controller (Equation (24)) into the above inequality (A17), we get:

.
V(σi(xi(t), t)) ≤

L∑
i=1

(
ρ1i

)
(‖ẑi(t)‖+ θi(t)) +

L∑
i=1

(
ρ2i

)
−

L∑
i=1

‖σi‖
σi

{
(SiBi)(SiBi)

−1
[
ρ1i (‖ẑi(t)‖+ θi(t))

σi
‖σi‖

+ ηiσi + ρ2i

‖Θi‖

‖Θi‖+γ̂ie−vit

]}
.

(A18)

It is noted that ‖Θi‖ = ρ2i
and ‖Θi‖

2 = ΘT
i Θi. Hence:

.
V(σi(xi(t), t)) ≤ −

L∑
i=1

ηi‖σi‖+
L∑

i=1

ρ2i
−

ΘT
i Θi

‖Θi‖+ γ̂ie−vit


≤ −

L∑
i=1

ηi‖σi‖+
L∑

i=1

 ρ2i
γ̂ie−vit

‖Θi‖+ γ̂ie−vit

. (A19)

Referring to the mathematical property 0 ≤ ab
a+b ≤ a, ∀a, b ≥ 0, we get:

.
V(σi(xi(t), t)) ≤

L∑
i=1

(
−ηi‖σi‖+ γ̂ie−vit

)
(A20)

Now we define κ̃i(t) =
L∑

i=1
ηi‖σi‖, we obtain:

0 ≤ V(t) = V(0) +
∫ t

0

.
Vdt

= V(0) +
∫ t

0

{
−κ̃i(τ) + γ̂ie−viτ

}
dτ

= V(0) −
∫ t

0

{
κ̃i(τ)

}
dτ+

γ̂i

vi

(
1− γ̂ie−vit

)
. (A21)
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Taking the limit as t approaches infinity on both sides of the above inequality, we get:

lim
t→∞

∫ t

0
κ̃i(τ)dτ ≤ V(0) +

γ̂i

vi
< ∞. (A22)

According to the Barbalat’s lemma, we achieve lim
t→∞

∫ t
0 κ̃i(τ)dτ = 0. That is σi(t)→ 0 as t→∞. Hence the

theorem is proved. �

Appendix D

Proof the Theorem 4. The sliding motion in the sliding surface σi(yi(t), t) = 0, is described by the following
motion dynamics:

.
zi(t) =

(
Aii11 + M̃iΣii(xi, t)Ñi

)
zi(t) +

L∑
j = 1
j , i

(
Fi j11 + D̃i jΣi j(xi(t), xi(t− d j(t)), t)Ẽi j

)
z j(t− d j(t)), (A23)

where M̃i = B⊥T
i Mii, Ñi = NiiHiB⊥i

(
B⊥T

i HiB⊥i
)−1

, D̃i j = B⊥T
i Di j, and Ẽi j = Ei jHiB⊥i

(
B⊥T

i HiB⊥i
)−1

.
Since:

L∑
j = 1
j , i

(
Fi j11 + D̃i jΣi j(xi(t), xi(t− d j(t)), t)Ẽi j

)
z j(t− d j(t))

=
L∑

j = 1
j , i

(
F ji11 + D̃ jiΣ ji(x j(t), x j(t− di(t)), t)Ẽ ji

)
zi(t− di(t)).

(A24)

The sliding mode dynamics (Equation (A23)) can be rewritten by:

.
zi(t) =

(
Aii11 + M̃iΣii(xi, t)Ñi

)
zi(t) +

L∑
j = 1
j , i

(
F ji11 + D̃ jiΣ ji(x j(t), x j(t− di(t)), t)Ẽ ji

)
zi(t− di(t)). (A25)

Now, to analyze the time-delay systems (Equation (13)) described by sliding mode dynamics (Equation
(A25)), we choose the following Lyapunov function candidate:

V =
L∑

i=1

zT
i Ξizi, (A26)

If we differentiate V with respect to time combined with sliding motion dynamics (Equation (A25)), then:

.
V =

L∑
i=1

(
zT

i (t)A
T
ii11Ξizi + zT

i (t)Ñ
T
i ΣT

ii (xi, t)M̃T
i Ξizi

)
+

L∑
i=1

L∑
j = 1
j , i

[
zT

i (t− di(t))F
T
ji11Ξizi

+zT
i (t− di(t))ẼT

jiΣ
T
ji(x j(t), x j(t− di(t)), t)D̃T

jiΞizi

]
+

L∑
i=1

zT
i Ξi

(
Aii11 + M̃iΣii(xi, t)Ñi

)
×zi(t) +

L∑
i=1

L∑
j = 1
j , i

(
zT

i ΞiF ji11zi(t− di(t)) + zT
i ΞiD̃ jiΣ ji(x j(t), x j(t− di(t)), t)Ẽ jizi(t− di(t))

)
.

(A27)
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In addition, it follows from the Lemma 3 of [9], it is clear that ‖zi(t− di(t))‖ ≤ εi‖zi(t)‖ for some scalars εi > 1.
Equation (A27) can be represented by:

.
V ≤

L∑
i=1

zT
i (t)

[
A

T
ii11Ξi + ΞiAii11 + ΞiM̃iΣii(xi, t)Ñi + ÑT

i ΣT
ii (xi, t)M̃T

i Ξi

]
zi +

L∑
i=1

L∑
j = 1
j , i

zT
i (t)

×

[
εiF

T
ji11Ξi + εiΞiF ji11εiΞiD̃ jiΣ ji(x j(t), x j(t), t)Ẽ ji + εiẼT

jiΣ
T
ji(x j(t), x j(t), t)D̃T

jiΞi

]
zi.

(A28)

Applying Lemma 1 of [41] to inequality (A28), we obtain:

.
V ≤

L∑
i=1

zT
i (t)

[
A

T
ii11Ξi + ΞiAii11 + ϕ−1

i ΞiM̃iM̃T
i ΞT

i + ϕiÑT
i Ñi

+
L∑

j = 1
j , i

(
εiF

T
ji11Ξi + εiΞiF ji11 + ϕ−1

i εiΞiD̃ jiD̃T
jiΞi + ϕiεiẼT

jiẼ ji

)zi(t).
(A29)

By applying Schur complement formula to inequality (26), we have:

A
T
ii11Ξi + ΞiAii11

+
L∑

j = 1
j , i

(
εiF

T
ji11Ξi + εiΞiF ji11 + ϕ−1

i εiΞiD̃ jiD̃T
jiΞ

T
i + ϕiεiẼT

jiẼ ji

)
+ ϕ−1

i ΞiM̃iM̃T
i ΞT

i + ϕiÑT
i Ñi < 0 (A30)

From the inequalities (A29) and (A30), it is obvious that
.

V < 0, which further implies that the sliding motion
(Equation (A25)) is asymptotically stable. The proof is finished. �
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