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Abstract: Western China has good conditions for constructing large-scale photovoltaic (PV) power
stations; however, such power plants with large fluctuations and strong randomness suffer from
the long-distance power transmission problem, which needs to be solved. For large-scale PV power
stations that do not have the conditions for simultaneous hydropower and PV power, this study
examined long-distance delivery mode and energy storage optimization. The objective was to realize
the long-distance transmission of electrical energy and maximize the economic value of the energy
storage and PV power storage. For a large-scale PV power station, the energy storage optimization was
modelled under a given long-distance delivery mode, and the economic evaluation system quantified
using the net present value (NPV) of the battery was based on the energy dispatch optimization model.
By contrast, a lithium battery performance model was developed. Therefore, further analysis of the
economics of the energy storage and obtaining the best capacity of the energy storage battery and
corresponding replacement cycle considered battery degradation. The case study of Qinghai Gonghe
100 MWp demonstration base PV power station showed that the optimal energy storage capacity
was 5 MWh, and the optimal replacement period was 2 years. Therefore, the annual abandoned
electricity was reduced by 3.051 × 104 MWh compared with no energy storage. The utilization
rate of both the PV power station and quality of the delivered electricity were modelled to realize
a long-distance transmission to the grid net. This will have an important guiding significance to
develop and construct large-scale single PV power stations.

Keywords: large-scale photovoltaic power station; long-distance delivery; five-segment line; energy
storage capacity optimization; investment income analysis

1. Introduction

With the shortage of chemical resources and the increasingly serious environmental pollution,
the development and efficient utilization of renewable energy sources, represented by solar energy,
have gained attention worldwide [1–6]. The cumulative installed capacities of solar energy in the
world and China are shown in Figure 1. They indicate that the decade-long trend of strong increase in
solar energy installed capacity continued in 2018, with global additions of 94.8 GW and a 24.2% rise
compared to that in 2017. Globally, the total solar energy generation capacity reached 485.8 GW at the
end of 2018 [7]. In recent years, the photovoltaic (PV) installed capacity of China has developed at a
high growth rate, reaching 175 GW in 2018, accounting for nearly 36.03% of the total installed capacity
of the world [8]. The continuous increase in PV installed capacity plays a unique role in developing
clean energy and reducing environmental pollution.
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Figure 1. Cumulative installed capacity of the solar energy source from 2010 to 2018: (a) worldwide; 
(b) in China. 
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distribution of solar energy in China, exhibiting that the solar resources are unevenly distributed. 
Specifically, the western regions have more abundant solar reserves than other regions, with the 
former having annual radiation ranging from 6700 to 8370 MJ/m2, which is equivalent to the energy 
produced from continuously burning 230 kg of coal. In comparison, the annual radiation in the 
southeast regions such as the Sichuan and Guizhou provinces is scarce, being less than 4200 MJ/m2 
[11]. Owing to the concentration of abundant solar energy resources in western China, in recent years, 
some large-scale centralized PV power stations have been constructed to fully utilize the solar energy 
there. For example, a > 10 million kilowatt-class PV station has been established in Gonghe County, 
Qinghai province [12]. However, the power loads in western regions are relatively low so that it is 
insufficient to absorb all the electric energy generated by the large-scale PV stations. In fact, excess 
electric energy needs to be transported to the eastern load centre through long-distance (more than 
2000 km) and ultra-high voltage (UHV) (such as 800 kV DC) transmission lines. Owing to the 
characteristics of the solar energy distribution in China, a mode with “large-scale development and 
UHV transmission” and long-distance “west-to-east power transmission” is the only available 
approach to completely utilize the solar energy resources in the west [13].  
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Figure 1. Cumulative installed capacity of the solar energy source from 2010 to 2018: (a) worldwide;
(b) in China.

China is one of the countries with abundant solar energy resources [9]. Over two-thirds of the total
area in China receiving annual sunshine hours of more than 2000 h with annual radiation exceeding
5000 MJ/m2 is available for solar energy resource development [10]. Figure 2 presents the distribution
of solar energy in China, exhibiting that the solar resources are unevenly distributed. Specifically,
the western regions have more abundant solar reserves than other regions, with the former having
annual radiation ranging from 6700 to 8370 MJ/m2, which is equivalent to the energy produced from
continuously burning 230 kg of coal. In comparison, the annual radiation in the southeast regions
such as the Sichuan and Guizhou provinces is scarce, being less than 4200 MJ/m2 [11]. Owing to the
concentration of abundant solar energy resources in western China, in recent years, some large-scale
centralized PV power stations have been constructed to fully utilize the solar energy there. For example,
a > 10 million kilowatt-class PV station has been established in Gonghe County, Qinghai province [12].
However, the power loads in western regions are relatively low so that it is insufficient to absorb all
the electric energy generated by the large-scale PV stations. In fact, excess electric energy needs to
be transported to the eastern load centre through long-distance (more than 2000 km) and ultra-high
voltage (UHV) (such as 800 kV DC) transmission lines. Owing to the characteristics of the solar
energy distribution in China, a mode with “large-scale development and UHV transmission” and
long-distance “west-to-east power transmission” is the only available approach to completely utilize
the solar energy resources in the west [13].

With uncontrollable influence factors that arise from the day and night alternation and unstable
meteorology conditions, the PV power output inevitably exhibits intermittent, volatile, and strong
nonlinear characteristics [14]. These dramatically increase the difficulty for the grid connection of a PV
power station. The delivery line in a “large-scale and UHV transmission” mode has a large impedance.
Due to this, randomness characteristics of the PV power station will aggravate the peaking pressure
of a solar power generation system and cause fluctuations in the output power with the increase in
its capacity. Therefore, it is difficult to achieve long-distance transport and grid connection when the
power quality is not conducive for safe and stable operation [15]. Ensuring the power satisfies the
quality demand of UHV transmission under the specific delivery mode accepted by the grid net is a
prerequisite for a large-scale PV power station with a long-distance grid connection, which is significant
to research [16]. Recent studies and practices have shown that complementary energies, such as
energy storage and hydropower, are effective measures to reduce the output fluctuation of a PV power
plant and achieve complementary output to meet the grid connection requirements. Hydropower
is the most reliable complementary energy because of its low cost, high installed capacity, good
regulation performance, and high reservoir storage capacity [17–21]. However, hydropower stations
have higher requirements on the construction sites and environmental factors, such as abundant
water sources, rich precipitation, good geological foundation, and large difference in elevation. Thus,
not all PV power stations can support them to be complemented by hydropower stations nearby.
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Compared with hydropower stations, the constructions of energy storage batteries are more easy
and convenient. Energy storage batteries have strong charging and discharging abilities and power
regulation features, but the costs are relatively high. However, with the rapid development of
technology, the cost of batteries has shown a trend of rapid decline. The International Renewable
Energy Agency (IRENA) reported that the cost of lithium-ion batteries has decreased by 65% since
2010 [22]. In recent years, some unique subsidies have been implemented to encourage battery
development [23]. Intense price competition leads manufacturers to develop new chemistries and
reduce production costs. From Blooming New Energy Finance (BNEF), annual lithium-ion battery
observed prices and forecast prices are shown in Figure 3 [24]. Therefore, with the decrease in the
cost of batteries, energy storage will also become an effective measure to realize grid connection of
large-scale PV power stations [25].
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Figure 2. Distribution of solar energy in China (MJ/m2).

Energies 2019, 12, x FOR PEER REVIEW 3 of 20 

 

With uncontrollable influence factors that arise from the day and night alternation and unstable 
meteorology conditions, the PV power output inevitably exhibits intermittent, volatile, and strong 
nonlinear characteristics [14]. These dramatically increase the difficulty for the grid connection of a 
PV power station. The delivery line in a “large-scale and UHV transmission” mode has a large 
impedance. Due to this, randomness characteristics of the PV power station will aggravate the 
peaking pressure of a solar power generation system and cause fluctuations in the output power with 
the increase in its capacity. Therefore, it is difficult to achieve long-distance transport and grid 
connection when the power quality is not conducive for safe and stable operation [15]. Ensuring the 
power satisfies the quality demand of UHV transmission under the specific delivery mode accepted 
by the grid net is a prerequisite for a large-scale PV power station with a long-distance grid 
connection, which is significant to research [16]. Recent studies and practices have shown that 
complementary energies, such as energy storage and hydropower, are effective measures to reduce 
the output fluctuation of a PV power plant and achieve complementary output to meet the grid 
connection requirements. Hydropower is the most reliable complementary energy because of its low 
cost, high installed capacity, good regulation performance, and high reservoir storage capacity [17–
21]. However, hydropower stations have higher requirements on the construction sites and 
environmental factors, such as abundant water sources, rich precipitation, good geological 
foundation, and large difference in elevation. Thus, not all PV power stations can support them to be 
complemented by hydropower stations nearby. Compared with hydropower stations, the 
constructions of energy storage batteries are more easy and convenient. Energy storage batteries have 
strong charging and discharging abilities and power regulation features, but the costs are relatively 
high. However, with the rapid development of technology, the cost of batteries has shown a trend of 
rapid decline. The International Renewable Energy Agency (IRENA) reported that the cost of lithium-
ion batteries has decreased by 65% since 2010 [22]. In recent years, some unique subsidies have been 
implemented to encourage battery development [23]. Intense price competition leads manufacturers 
to develop new chemistries and reduce production costs. From Blooming New Energy Finance 
(BNEF), annual lithium-ion battery observed prices and forecast prices are shown in Figure 3 [24]. 
Therefore, with the decrease in the cost of batteries, energy storage will also become an effective 
measure to realize grid connection of large-scale PV power stations [25]. 

 
Figure 3. Annual lithium-ion battery observed prices and forecast prices from Blooming New Energy 
Finance (BNEF). 

Complementing PV power stations with energy storage can realize energy transfer on the time 
axis, control power effectively, improve the quality of electric energy, and enhance the planning 
tracking ability [26]. Recently, the complementary operation patterns of energy storage and PV power 
stations have been researched, which are generally classified into two categories: smoothening the 
output of PV power stations and achieving electrical energy transfer. Ma et al. [27] proposed that 
because an energy storage system can absorb and release electricity instantly, it could be used for 

2010 2015 2020 2025 2030
0

100

200

300

400

500

600

700

800

900

1000

Years

Li
th

iu
m

-io
on

 b
at

te
ry

 p
ra

ae
($

/k
W

h)

 

 

Observed values
Predictive values

Figure 3. Annual lithium-ion battery observed prices and forecast prices from Blooming New Energy
Finance (BNEF).

Complementing PV power stations with energy storage can realize energy transfer on the time
axis, control power effectively, improve the quality of electric energy, and enhance the planning tracking
ability [26]. Recently, the complementary operation patterns of energy storage and PV power stations
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have been researched, which are generally classified into two categories: smoothening the output of PV
power stations and achieving electrical energy transfer. Ma et al. [27] proposed that because an energy
storage system can absorb and release electricity instantly, it could be used for suppressing the output
fluctuation and improving the power quality of PV power stations. Ibrahim et al. [28] suggested that
an energy storage system could realize the transfer of energy on the time axis, by storing the electricity
of the PV power station during the low-power-load periods such as morning and evening. The stored
electricity could then be discharged to meet the load demand during the peak hours around 18:00.
Engels et al. [29] introduced the peak-shaving abilities of a battery energy storage system, and Jones et
al. [30] adopted an energy storage system instead of a thermal power plant to operate only during
the peak period to reduce greenhouse gas emissions. Akbari et al. [31] suggested that energy storage
batteries could store electricity at low demands and low power generation costs or when intermittent
energy sources are present. They could in turn release the electricity at a high demand and high power
generation cost or when other power generation is unavailable. Lucas et al. [32] applied energy storage
to both peak-shaving and planned-tracking modes.

Energy storage systems are mainly of two categories: high power storage (HPS) and high energy
storage (HES) [33]. HPS systems include supercapacitors (SC), flywheels, and superconducting
magnetic energy storage (SMES), which are suitable for smoothing out high-frequency fluctuations,
owing to their rapid response. However, the high cost of HPS systems restricts their large-scale
application. HES systems with relatively lower costs have high storage capacities and are suitable for
smoothing out low-frequency fluctuations. They include pumped hydro, compressed air, vanadium
redox flow batteries (VRBs), sodium–sulphur cells, lead–acid cells (PbAc), lithium-ion batteries, and
fuel cells (FCs) [34]. In practical applications, the type of energy storage battery can be determined
based on its characteristics and the needs. Some studies also adopted various combinations of energy
storage systems to maximize the utilization [35–38].

Currently, there are three main methods for optimizing the capacity configuration of an energy
storage battery: (1) establishing objective functions based on the stabilizing effect of energy storage:
Chen et al. [39] established an energy storage capacity optimization model for smoothing wind power
generation. They also proposed management strategies based on the variable characteristics between
the state of charge (SOC) and the terminal voltage of the battery, so that the fluctuation of the wind
farm output could be smoothed rapidly and effectively. Yu et al. [40] considered the influence of the
continuous hours of wind power generation and determined the energy storage capacity of a wind
farm based on the distribution law of the wind power generation, regarding average power as the
expected value. Khaki et al. [41] proposed some indices for measuring the fluctuation of the total
active power, considering the influence of different energy storage capacities. (2) Establishing objective
functions aimed at minimizing the energy storage capacity. Varshosaz et al. [42] adopted the saturation
control theory to calculate the minimum energy storage capacity to keep the system stable. The authors
of [43,44] used the discrete Fourier transform for analyzing the spectrum of renewable energy to
determine the compensation range of energy storage, and then proposed a capacity determination
method that satisfied the requirements. (3) Establishing objective functions with the objective of
minimizing the cost. In [45–47], the minimum sums of the investment costs, maintenance costs, and
pollution costs were used as the objective functions. The authors of [48–50] aimed at the lowest cost
and considered the power output and SOC constraints of a hybrid energy storage. Ban et al. [51]
constructed an energy storage capacity optimization model aiming at minimizing the operating costs,
considering the abandoned electricity rate and loss of energy storage.

The limitation of the first two above methods is that the capacity configuration of energy storage
is only considered from a technical perspective, without accounting for the impact of the current high
energy storage costs on the economies of PV systems. The shortcoming of the last method is that it
failed to consider the cost of replacing and maintaining equipment and equipment failures throughout
the life cycle when calculating the cost of energy storage. Therefore, energy storage optimization
also needs to include economic feasibility. Hoppmann et al. [52] summarized the main parameters



Energies 2020, 13, 27 5 of 20

of electric power costs including the PV installed capacity, energy storage battery capacity, technical
costs, subsidies and electricity prices, and financial indicators such as the net present value (NPV),
payback period (PB), and internal rate of return (IRR). Beltran et al. [53] constructed a multi-factor
economic evaluation model of an energy storage system using energy storage to reduce the risk of
wind power dispatching. Zhang et al. [54] optimized the energy storage capacity with the objective of
maximizing the benefit, considering different control modes. De et al. [55] analyzed the optimization
ratio technologies from economic and technical aspects.

In this investigation, the Qinghai Gonghe 100 MWp PV power station in China was taken as a
case study. To realize long-distance grid connection of large-scale PV power stations while maximizing
the benefits, the aim of the research was to develop a storage capacity optimization method that
considers three factors, including technology, economy, and energy storage battery characteristics.
The remainder of the paper is structured as follows: Section 2 explains the method of energy storage
optimization, including the long-distance delivery mode and energy storage optimization model.
The energy storage optimization model was composed of an energy dispatch optimization model,
a lithium battery performance model, and an economic evaluation system. Section 3 presented the
results and discussion, including the abandoned electricity and alternative energy storage capacity
analysis, optimal energy storage capacity, battery attenuation variation law, and replacement cycle.
Section 4 summarizes the conclusions of this study, which has important reference applications for the
development and construction of large-scale PV power stations.

2. Methodologies

2.1. Long-Distance Delivery Mode

UHV transmission has high requirements for power stability; however, the output of a PV power
station exhibits volatile and randomness characteristics, owing to the natural meteorological conditions.
To improve the stability of power grid operation and UHV transmission power, it is necessary to adopt
a multi-stage delivery mode in which the power is stable for each time segment [56], which means
that the PV power station’s power generation time is divided into several time segments, and the
grid-connected power of each time segment depends on the capacity of energy storage and actual
output of the PV power station.

Based on randomness characteristics of PV power station output and high requirements of power
quality for long-distance UHV transmission to ensure the frequency and voltage stability of power
grid systems, in this study, a five-segment line delivery mode was selected to realize long-distance
UHV transmission, as shown in Figure 4.
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2.2. Energy Storage Optimization Model

Figure 5 presents the frame of the energy storage optimization model. In the case study, 1, 5, 10,
15, 20, 25, and 30 MWh are regarded as the alternative capacities for energy storage batteries. In this
study, a lithium battery was taken as an example because it has strong power regulation characteristics,
declining prices, and a long service life.
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The research objective of the model was to select the optimal capacity to maximize the NPV during
the full life cycle. The NPV can be calculated by the economic evaluation system considering factors
such as the initial investment cost, maintenance cost, electric sales revenue, and maintenance operation
investment cost, as proposed in this paper. The initial investment cost and maintenance cost are related
to the alternative capacities of the lithium battery and unit prices. Electric sales revenue is obtained
by the annual abandoned electricity, which relies on the daily abandoned energies and ratios of the
weather types. Further, the daily abandoned energies can be calculated by the energy dispatch model
established in this study. Finally, the maintenance operation investment costs are related to the life loss
of batteries, which can be obtained by the lithium battery performance model built in this study.

2.2.1. Energy Dispatch Optimization Model

Figure 6 displays a schematic of the PV-energy storage system including large-scale PV power
stations and energy storage batteries that are connected to the electric grid. The charging/discharging
response of each battery is assumed to be practically instantaneous, so that energy from it may be
dispatched “on demand”. This assumption is justified because the response time of a Li-ion type battery
is 0 ms, and the energy dispatch from each battery was modelled in 5-min intervals. Each battery is
treated as a black box within the model, implying that its charging and discharging efficiencies do not
depend on the charge/discharge power, Pbess. Further, Pbess can take any values within the specified
limits of a nominal battery performance.
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The schemes for long-distance UHV transmission are determined by the capacity of energy storage
and output feature of the PV power station. According to the actual output of the large-scale PV power
station and the long-distance delivery mode proposed in the previous subsection, a mathematical
model was established for minimizing the daily abandoned electricity of a PV power station under
different capacities of an energy storage battery, respectively. Genetic algorithm (GA) is an optimization
algorithm inspired by the natural selection process, which belongs to an evolutionary algorithm.
Compared with traditional optimization algorithms, GA has the advantages of quick computing speed
and high convergence accuracy. Therefore, the model was formulated as a GA optimization problem
in this study and the model is explained in the following subsections.

(1) Objective function
Minimizing the daily abandoned electricity of PV power station is taken as the objective function.
(2) Decision variables
The power values Pdi (i = 1, 2, · · · , 5) of each time segment of the PV-energy storage battery system

are taken as decision variables.
(3) Constraints
The model is subject to constraints including power balance constraint, energy conservation

constraint, overcharge and overdischarge constraints.

min{ f (Pd1, Pd2, Pd3, Pd4, Pd5, ER)} =
N∑

t=1

E_abt
g, (1)

Such that
Pt

g = Pt
pv − Pt

b, (2)

Et
b = Et−1

b + Pt
bωc∆t, while Pt

g < Pt
pv, (3)

Et
b = Et−1

b + Pt
b∆t/ωd, while Pt

g > Pt
pv, (4)

Emin
b ≤ Et

b ≤ Emax
b or SOCmin

b ≤ SOCt
b ≤ SOCmax

b , (5)

Pmin
b < Pt

b < Pmax
b . (6)

In Equations (1)–(6), E and P are energy and power. Variables with subscript b are related to the
energy storage battery, subscript pv is related to the PV power output, and subscript g refers to the
PV-energy storage battery grid-connected power. Integer superscript t is the current timestep, ∆t is
the timestep size, and N denotes the maximum number of time steps in the scheduling range (e.g.,
N = 288 for a 24-h scheduling horizon at a 5 min sampling rate). Superscripts min and max indicate the
performance limits of the battery (i.e., maximum and minimum capacity or charging/discharging rate).

Equation (1) minimizes the net PV-energy storage battery system abandoned energy, E_abg.
In Equation (1), f is an objective function (or cost function) that corresponds to the energy storage
alternative capacity, ER, and the five characteristic values in the five-segment send mode.
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Equation (2) expresses the power balance constraint (i.e., the grid-connected power should be
equal to the combined output of the PV-energy storage systems at any time). In Equation (2), Pt

g is the
grid-connected power of the PV-energy storage power system, Pt

pv is the actual power output of the
PV power station, and Pt

b denotes the charging and discharging power of the energy storage battery.
Pt

b is positive when the energy storage battery is charged and a negative value when it is discharged.
Equations (3) and (4) express the energy conservation (Kirchhoff’s law). The energy storage battery

is charged under the condition: Pt
g < Pt

pv, whereas it is discharged under the condition: Pt
g > Pt

pv.
Equations (3) and (4) denote the remaining capacity of the energy storage battery, Et

b, which should
be enforced as equality constraints in the model, where ωc and ωd are the charging and discharging
efficiencies, respectively.

Equation (5) requires that the energy stored in the battery be bounded within the capacity of the
battery. SOC is the ratio of the energy stored in the battery to the rated capacity of battery. SOCmin and
SOCmax are the minimum and maximum SOC of the battery, respectively. Equation (6) constrains the
battery charging and discharging rate within the specified limits of the battery performance. Equations
(5) and (6) are modelled as inequality constraints to avoid overcharge and overdischarge. The GA
optimization model is solved in MATLAB.

2.2.2. Lithium Battery Performance Model

From an electrochemical perspective, as the number of charge and discharge cycles increases,
internal factors such as the electrolyte decomposition and electrode oxidation cause a slow decline
in the battery capacity and are irreversible. A reduction in the rated capacity of the energy storage
battery will result in a decrease in its annual storage capacity, and concurrently, the annual abandoned
electricity rate of the PV power station will increase. The energy storage battery needs to be updated
when it reaches its full life cycle, i.e., it is attenuated to a certain extent and cannot meet the energy
storage requirements of the PV power station.

The lithium battery life is the number of continuous charge and discharge cycles for which the
storage capacity retention rate is not lower than the specified capacity in a given ambient temperature
and charge and discharge modes. Battery performance degradation includes the life loss caused by the
deterioration of the battery material and change in the battery working state, which is closely related
to the battery service time, charging and discharging states, and temperature.

The battery life loss rate is divided into static loss and dynamic loss, expressed as the percentage
loss of life, which can be expressed as Equation (7).

X =XS + XD. (7)

In Equation (7), XS is the static loss and XD is the dynamic loss.
(1) Static loss
Static loss is the loss caused by the deterioration of the functional characteristics of the energy

storage battery material. This part of the loss is independent of the operating conditions and only
linearly related to the battery standing duration. The annual static loss is calculated from Equation (8).

XS =
100%

T
. (8)

In Equation (8), T is the shelf life of the battery, in years. In this paper, the shelf life of the lithium
battery is selected as T = 15 years according to the nominal life defined by the manufacturer.

(2) Dynamic loss
Dynamic loss is the loss caused by the change in the operating state of the energy storage battery,

including the depth and rate of charge and discharge, corresponding to the dynamic process of its
charging and discharging. As the actual working condition is a nonperiodic charging and discharging
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process, the resulting life loss is also nonlinear. The dynamic loss must be calculated in combination
with the actual working conditions. The dynamic loss is calculated from Equation (9).

XD =
n∑

i=1

1/ND. (9)

In Equation (9), ND indicates the maximum number of cycles allowed for the actual capacity
(i.e., actual remaining capacity) of the energy storage battery corresponding to its discharge depth
remaining between 60% and 100% of the nominal capacity (i.e., rated capacity shown on the nameplate)
within a certain charge and discharge interval.

The main influence factor of ND is the depth of discharge (DOD). According to international
regulations including the cycle life test conditions and requirements of lithium batteries, the energy
storage battery should be charged and discharged at a constant current and constant voltage mode 1C
charging system at the room temperature of 20 ± 5 ◦C. An 80% discharge depth is the indicator of each
charge and discharge cycle, and the cycle life of the lithium battery is the number of cycles in which
the actual capacity is maintained at 60% of the nominal capacity. According to the performance of
lithium battery shown in Table 1, the lithium battery can be charged and discharged for 10,000 cycles
when the discharge depth is 10%, but only for 400 cycles when the discharge depth is 100%.

Table 1. Lithium battery performance.

Discharge Depth 0.1 0.25 0.5 0.75 1
Cycles 10000 4000 1000 800 400

The relationship between the discharge depth and cycle life is approximately e-exponential.
The function relationship: ND = f (DOD) can be obtained by exponentially fitting the measured data
of the cycle life and DOD. It can represent the relationship between the DOD of the energy storage
battery and the maximum number of cycles allowed when its actual capacity is 60%–100% of the
nominal capacity.

Based on e-exponential fitting, the functional relationship between the maximum cycle number,
ND, and DOD of the lithium battery is described as Equation (10). The corresponding fitting curve for
95% confidence interval is presented in Figure 7.

ND = 18696× e−6.3DOD + 42.98× e2.21DOD. (10)

In summary, the annual life loss of the energy storage battery is calculated from Equation (11).

X =XS + XD =
1
T
+

n∑
i=1

1
ND

=
1
T
+

n∑
i=1

1
18696× e−6.3Dbess,i + 42.98× e2.21Dbess,i

, (11)

where n is the total number of charge and discharge cycles of the energy storage battery in one year.
The energy storage battery will reach the retirement condition when the process of the energy storage
operating life loss will become 100%, which is expressed as Equation (12).

N∑
i=1

X(i) = 100%. (12)

In Equation (12), N is the annual operating cycles of the energy storage battery.
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Figure 7. Relationship between the number of cycles (ND) and discharge depth of the lithium battery
(DOD).

Considering an irreversible decay of the energy storage battery capacity, the actual capacity of the
energy storage at the end of the previous year is taken as its rated capacity for the next year. Moreover,
the performance loss of the energy storage battery for the next year will be calculated accordingly.
During the operation period of the energy storage battery, its actual capacity can be calculated by
Equation (13). 

E = ER i = 1

E(i) = ER ×
N∏

i=2
[(1−X(i− 1)] i ≥ 2

, (13)

where i represents the ith year of the energy storage battery operation, ER is its rated capacity, E is the
actual capacity of the energy storage battery, and X is the loss rate of the energy storage life.

In summary, we can analyze the relationship between the number of cycles of the lithium battery
(ND) and depth of discharge (DOD) to obtain the function relationship: ND = f (DOD). Then, the life
loss of the energy storage battery is calculated in any of its charging and discharging intervals under
the actual working conditions with the lithium battery performance model.

2.2.3. Economic Evaluation System

The NPV is taken as the index of the economic evaluation system, considering the aspects
of the electricity sales revenue, maintenance operation investment cost, operating investment cost,
maintenance cost, and initial investment cost.

In this study, the life cycle of the energy storage battery is unified for five years. The energy
storage loss cost is used as the maintenance operation investment of the energy storage batteries.
In comparison, the cost of purchasing energy storage batteries is distributed over the whole life cycle,
in terms of the operating loss costs, to eliminate the influencing factors of the different service lives.

(1) Electricity sales revenue.
The revenue from the energy storage batteries is mainly achieved by the sale of electricity.

Under the five-segment-line sending mode, the application of an energy storage battery can effectively
reduce the amount of abandoned electricity of the PV power station compared with that without the
energy storage. The reduced abandoned electricity by the application of energy storage is the source of
electricity sales revenue, which can be calculated by Equation (14).

Ie(i) = Ig × [r(i) − r(0)] ×Q(i), (14)
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where i represents the ith year during the life cycle of the energy storage battery, Ie is the total annual
electricity sales revenue, Ig represents the unit price for the on-grid electricity, r is the annual abandoned
electricity rate of the PV power station, r(0) is the annual abandoned electricity rate of the PV power
station when there is no energy storage under the same delivery mode, and Q is the annual generation
of the PV power station.

(2) Maintenance operation investment cost.
For a large-scale PV power station under given long-distance delivery mode, the storage batteries

of different capacities are different in both cycles and depths of charge and discharge during operations,
which results in different life cycles of energy storage batteries with different storage capacities. The life
cycles of energy storage batteries with different capacities are unified to five years in this paper, the
energy storage loss costs are taken as the maintenance operation investment costs of energy storage
batteries, and the purchase cost of energy storage batteries is distributed into the life cycle in terms of
operating loss cost, so as to eliminate the influence factors of different service lifespans.

Maintenance operation investment cost is the quantitative measurement of the investment cost
incurred by the energy storage battery life loss, which can be calculated by Equation (15).

Ic(i) = X(i) ×$× E(i). (15)

In Equation (15), X is battery annual life loss rate, E is the actual capacity of the energy storage
battery, which can be calculated in Equation (13), and $ is the unit price of the energy storage battery.

(3) Maintenance cost.
The energy storage battery needs to be maintained once it is under operation. The annual

maintenance cost is calculated by Equation (16).

Im(i) = ∂×$× E(i), (16)

where Im is the annual maintenance cost and ∂ is the proportion of the maintenance cost in the unit
price of the energy storage battery. As the technology of energy storage batteries is getting better and
the battery costs are gradually decreasing, the maintenance costs also tend to decrease. According to a
lithium battery manufacturer in China, the unit price of lithium batteries is 2000 RMB/kWh while the
annual maintenance cost is 200 RMB/kWh, that is, the annual maintenance cost is 10% of the unit price.
Assuming that the proportion of the maintenance cost in the unit price of the energy storage battery is
constant, the maintenance costs of batteries related to different unit prices can be better predicted in
future, taking ∂ = 10% in this study.

(4) Initial investment cost.
The initial investment of the energy storage power station mainly refers to the construction cost of

the energy storage battery, which is expressed in Equation (17).

Is = $× ER, (17)

where Is is the initial investment cost, which is a one-time construction cost, and ER is the initial
capacity of the installed energy storage battery.

The NPV of the energy storage battery life cycle is estimated from Equation (18).

NPV =

N∑
i=1

Ie(i) − Im(i) − Ic(i)

(1 + I)i − Is, (18)

where N is the life cycle of the energy storage battery and I is the discount rate.
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3. Results and Discussion

3.1. Energy Dispatch Optimization Model Output

The daily grid-connected dispatching scheme for the PV-energy storage power station under
each alternative energy storage capacity can be optimized by the energy dispatch optimization model,
described in Section 2.2.1. The grid-connected schemes of the alternative energy storage capacities, in a
typical sunny, rainy, and cloudy day in May 2018, are shown in Figure 8.
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Figure 8. Grid-connected schemes on the typical days of the different energy storage capacities.
(a) sunny day; (b) cloudy day; (c) rainy day.



Energies 2020, 13, 27 13 of 20

3.2. Capacity-Abandoned Electricity Analysis

When there is no energy storage, the daily grid-connected schemes of the PV power station
mainly depend on its output, and the output above the dispatch line has to be abandoned. Therefore,
different weather patterns have different effects on the abandoned electricity rate of a PV power station.
Under the same long-distance delivery mode, the daily abandoned electricity rate without the energy
storage in different typical weather patterns is listed in Table 2. For the daily abandoned electricity rate
of a PV power station, the relationship between the different weather patterns obtained from Table 2 is
sunny day < rainy day < cloudy day.

Table 2. Daily abandoned electricity rate without energy storage in the typical weather patterns.

Typical Days Sunny Day Cloudy Day Rainy Day
Daily Abandoned Electricity Rate/% 16.57 37.83 29.83

Compared with the determination of the PV power station, the abandoned energy is mainly from
the following two aspects: (1) the power loss caused by the charging and discharging efficiencies of the
energy storage battery; (2) these is a condition that the actual output of the PV station is larger than
that of the power of the grid-connected (Pt

g < Pt
pv) case. The latter occurs when the energy storage

battery reaches its maximum allowable capacity, so that the power has to be abandoned. The daily
abandoned electricity rate can be calculated from the energy dispatch optimization model.

The annual abandoned electricity of a PV power station depends on the daily abandoned electricity,
local ratios of the weather patterns in a year, energy storage capacity, and delivery mode. Among them,
the ratios of the weather patterns are affected by the local geographical conditions and climatic factors
(e.g., the proportion of the different weathers in the case study, as presented in Figure 9).
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Figure 9. Weather ratios in the case study.

In the case study, the actual annual generation of the PV power station is 2.2598 × 105 MWh.
When there is no energy storage station, the annual abandoned electricity of the PV power station is
6.0437× 104 MW, so that the annual abandoned electricity rate reaches 26.74%. Under the delivery
mode, the annual abandoned electricity rates of the PV power station with different energy storage
capacities are shown in Figure 10.
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Figure 10. Annual abandoned electricity rates of the PV power station with different energy
storage capacities.

Figure 10 shows that with the increase in the energy storage capacity, the annual abandoned
electricity rate gradually decreases; it decreases from 26.74% when there is no energy storage to 3.42%
when the energy storage capacity is 30 MWh. Therefore, the application of energy storage batteries is
of tremendous significance for reducing the abandonment of electricity and improving the utilization
rate of PV power stations. The relationship between the annual abandoned electricity rate and energy
storage capacity is satisfied by a polynomial fitting to Equation (19).

rab = (−0.0001xc
3
− 0.0024xc

2
− 0.0354xc + 0.2595) × 100% xc ∈ [1, 30]. (19)

In Equation (19), xc is the energy storage capacity and rab is the corresponding annual abandoned
electricity rate of the PV power station.

3.3. Optimal Energy Storage Capacity

According to the economic evaluation system, which is described in Section 2.2.3, when the
on-grid price is 0.50 RMB per kWh and the full life cycles of energy storage batteries with different
capacities are uniformly assumed to be five years, the NPV in the same life cycle (i.e., five years) of
energy storage batteries with different unit prices and different capacities is shown in Figure 11.
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Figure 11. Net present value (NPV) of the energy storage battery in a full life cycle.
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In Figure 11, with the increase in the energy storage capacity configuration, the NPV of the energy
storage battery in the entire life cycle presents a tendency that first increases and then decreases.
When the energy storage capacity is low, the initial investment is less, whereas when the annual
abandoned electricity rate is high, and the energy storage battery is mostly in a deep charge and deep
discharge state, the battery life loss is large. When the energy storage capacity increases, the annual
abandoned electricity rate decreases, but the initial investment increases.

For the same unit price of energy storage, the energy storage capacity corresponding to the
maximum value of the NPV of the entire life cycle is the optimal energy storage capacity with
the energy storage unit price ω: (1) when 1000 ≤ ω ≤ 1100 RMB per kWh, the optimal energy
storage capacity is 10 MWh, which is 10% of the installed capacity of the PV power station; (2) when
1200 ≤ ω ≤ 1600 RMB per kWh, the optimal energy storage capacity is 5 MWh, equaling 5% of the
installed capacity of the PV power station. According to the current market price of lithium batteries,
under the given delivery mode, in the case study, the optimal energy storage capacity is 5 MWh.

When the optimal energy storage battery is configured, the annual abandoned electricity of the PV
power station is reduced by 3.051× 104 MWh compared with the initial annual abandoned electricity
when there is no energy storage, which equals 6.0437× 104 MWh. According to the thermal power
consumption of a 305-g standard coal per kWh, a total of 9305.5 t of standard coal can be saved in a
year. Moreover, the production process does not produce any waste gas, waste water, waste liquid, and
waste solid. According to the emission standards of a thermal power station (the dust is 1.8 g/kWh,
sulphur dioxide is 6.2 g/kWh, carbon dioxide is 814 g/kWh, nitrogen oxides are 2.1 g/kWh, ash is
119.45 g/kWh), the total emission of smoke can be reduced by approximately 54.92 t/a. Sulphur dioxide
is about 189.16 t/a, carbon dioxide is about 24,835.14 t/a, nitrogen oxide is approximately 64.07 t/a, and
ash is about 3644.42 t/a. Therefore, the utilization of energy storage can make a major contribution to
the optimization and transformation of the local environment.

3.4. Battery Attenuation Variation Law and Replacement Cycle

For a large-scale PV power station under given long-distance delivery mode, the storage batteries
of different capacities are different in both cycles and depths of charge and discharge during operations,
which results in different life cycles of energy storage batteries with different storage capacities. The full
life cycles of energy storage batteries with different capacities are all assumed to be five years in
Section 3.3, which cannot represent the real replacement cycles of energy storage batteries with different
capacities during actual operations. Therefore, the battery real replacement cycle, i.e., the actual
operation life cycle of the battery, should be determined based on its performance degradation during
the actual operation period and by its corresponding annual abandoned electricity rate.

It should be noted that “the battery replacement cycle” mentioned here does not represent the
scrap cycle, that is, after a period of operation, when the battery performance decays to a certain
degree and the costs become great, the battery cannot meet the demand for a large-scale PV power
station connected to the grid under given long-distance delivery mode. Thus, the battery should be
functionalized under another set of conditions such as smooth fluctuations of PV power output to
warrant its continued use.

There is only one-year operating data at the PV power station in the case study. Therefore, it is
assumed that the output and the grid connection scheme of this PV power station in future are same
as this one-year data. The rated capacity attenuation of the energy storage battery during operation
and the corresponding annual abandoned electricity rate under different energy storage capacities are
listed in Table 3.

In Table 3, Ca is the actual capacity of the energy battery storage that is attenuated in the operation
periods, and Ra is annual abandoned electricity rate of the PV power station with the actual capacity
of energy storage battery. The capacity of the energy storage battery is attenuated yearly with the
increase in the running time, and the attenuation speed is gradually decreased. When the battery is
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attenuated to a certain extent, the annual abandoned electricity rate is extremely high, which means
the benefits cannot support the maintenance cost of the battery, and the battery needs to be replaced.

Table 3. Attenuation of the energy storage battery and annual abandoned electricity rate.

Operation
Time Ca/MWh Ra/% Ca/MWh Ra/% Ca/MWh Ra/% Ca/MWh Ra/%

1st year 1 22.66 5 13.24 10 7.81 15 5.67
2nd year 0.50 25.79 1.30 21.41 2.67 17.31 6.05 11.69
3rd year —— —— 0.59 25.13 0.83 23.61 1.51 20.83
4th year —— —— —— —— 0.37 26.62 0.68 24.30
5th year —— —— —— —— —— —— 0.29 26.70

Operation
Time Ca/MWh Ra/% Ca/MWh Ra/% Ca/MWh Ra/%

1st year 20 4.46 25 3.86 30 3.42
2nd year 10.14 7.70 14.19 5.94 18.96 4.65
3rd year 2.69 17.28 5.71 12.01 9.29 8.23
4th year 0.84 23.48 1.38 21.12 2.20 18.72
5th year 0.43 26.59 0.60 25.13 0.83 23.61
6th year —— —— —— —— 0.43 26.59

In the case study, when PV power station’s annual electricity rate is more than 25%, the benefits
are insufficient to support its maintenance cost, and the batteries should be replaced. Table 3 indicates
that the attenuation processes are various with different capacities of energy storage batteries. The
replacement cycles of different energy storage capacities are shown in Figure 12. In the case study, the
energy storage battery with optimal capacity proposed in Section 3.3 (i.e., 5 MWh) should be replaced
one time in two years.
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Figure 12. Replacement cycles of the different energy storage capacities.

As electrical energy demand is generally rising, the technologies of energy storage batteries are
getting better, battery lifetime is increasing, and the costs are decreasing. At present, there are many
categories of energy storage batteries and the properties of energy storage batteries are various in
different types of batteries. This paper only focused on lithium batteries, which cannot represent all
types of future energy storage batteries. However, the method proposed in the paper can be applied to
all batteries according to the performance of batteries. The calculation results such as optimal capacity,
NPV of full life cycle and replaced cycle of energy storage are various with different battery categories.
By this method, more types of batteries can be examined, so as to choose the most suitable type of
battery with optimal capacity and replace cycle.
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4. Conclusions

In order to realize long-distance transmission to the grid net, this paper proposed a methodology
for optimizing the energy storage capacities for large-scale PV power stations, which provided a
reference for the application of energy storage batteries in large-scale photovoltaic power stations. The
main conclusions were summarized as follows:

(1) Five-segment long-distance delivery mode was proposed to meet the power stability requirements
for UHV transmission of large-scale PV power stations.

(2) Energy storage capacity optimization system included energy dispatch optimization model,
lithium battery performance model, and economic evaluation system, considering technology,
economy, and energy storage battery performance.

(3) The optimal capacity of energy storage was 5 MWh in the case study, according to the values of
NPV in the unified life cycle (i.e., five years) with different unit prices and capacities of energy
storage battery.

(4) Based on attenuation variation law and annual abandoned electricity rate during the actual
operation period, actual replacement cycle of the battery was proposed.

(5) In the case study, the energy storage battery with the optimal capacity (i.e., 5 MWh) was suggested
to be replaced once in two years.

Specially, three factors were considered in this methodology, including weather factors, output
characteristics, and power requirements for long-distance power transmission of large-scale PV power
stations. Owing to its good performance in the case study, this methodology could be considered as an
objective reference for determining the optimal capacity of energy storage for large-scale PV power
stations. More sizes and kinds of energy storage batteries configured for large-scale PV power stations
will be compared in future study.
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