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Abstract: This paper presents the methodology to detect and identify the type of fault that occurs
in the shunt compensated static synchronous compensator (STATCOM) transmission line using a
combination of Discrete Wavelet Transform (DWT) and Naive Bayes (NB) classifiers. To study this,
the network model is designed using Matlab/Simulink. Different types of faults, such as Line to
Ground (LG), Line to Line (LL), Double Line to Ground (LLG) and the three-phase (LLLG) fault,
are applied at disparate zones of the system, with and without STATCOM, considering the effect
of varying fault resistance. The three-phase fault current waveforms obtained are decomposed into
several levels using Daubechies (db) mother wavelet of db4 to extract the features, such as the standard
deviation (SD) and energy values. Then, the extracted features are used to train the classifiers, such as
Multi-Layer Perceptron Neural Network (MLP), Bayes and the Naive Bayes (NB) classifier to classify
the type of fault that occurs in the system. The results obtained reveal that the proposed NB classifier
outperforms in terms of accuracy rate, misclassification rate, kappa statistics, mean absolute error
(MAE), root mean square error (RMSE), percentage relative absolute error (% RAE) and percentage
root relative square error (% RRSE) than both MLP and the Bayes classifier.

Keywords: static synchronous compensator (STATCOM); discrete wavelet transform (DWT);
multi-layer perceptron neural network (MLP); Bayes and Naive Bayes (NB) classifier

1. Introduction

Restructuring and deregulation of a power system with increases in energy demand, environmental
hurdles, economic factors and right of way, forces the utilities to use the transmission lines to their
thermal limits. Also, some developed countries that have surplus power generation supply the load
demand through a large number of distribution companies, leading to transmission line overloading.
On the other hand, the connection of renewable energies into the grid causes an unbalance in the
system voltage. All of these problems can be resolved economically by enhancing the thermal stability
of the line through the placement of a flexible AC transmission systems (FACTS) device into the
system [1]. Generally, the shunt compensation device like the static compensator (STATCOM) is a
widely used FACTS device for increasing the transmission line capability of the system. STATCOM is a
parallel-connected device which controls one or more alternating current (AC) system parameters,
such as system stability, power quality and voltage control via the injection and absorption of reactive
power from the system by adjusting its control action [2–4].
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The reliability of power system operation is affected due to occurrences of faults in the transmission
lines, leading to equipment damage. In order to ensure the secure and safe operation of the power
system network, it is essential to implement an effective protection scheme within the shortest time span
to avoid the cascading failure of the system. This is achieved through an advanced fault classification
technique that supports an effective, reliable, fast and secured way of relaying operation in the
protective system [4]. A numerous study were made for the location of fault in the transmission lines as
presented in the literature, only a few of these studies consider the effect of a FACTS-compensated line,
and others fail to consider their effects [5–10]. The problem of over-reach and under-reach conditions
due to the injection and absorption of reactive power by STATCOM into the system leads to a false
tripping of the relay [11]. Therefore, the identification of a fault in the presence of the FACTS device is
a crucial issue in power system protection.

Over the years, distance relay-based transmission line protection schemes were adapted for secure
and reliable operation of power systems [12–14]. But the presence of series/shunt FACTS devices leads
to mal-operation of this conventional relay to detect and locate the fault [15,16]. Moreover, the fault
signal is non-stationary in nature, and the analysis of such a signal is a cumbersome process. Therefore,
researches proposed the numerical relays based on signal processing techniques, namely Fourier
Transform (FT), Fast FT, discrete FT and short time FT that are extensively used in the initial stage for
the analysis of the fault signal. It is observed through rigorous analysis that FTs are not suitable for
locating a time-varying fault transient signal, and also the information on the time of the occurrence
of transients cannot be obtained. To cater for this limitation, S-transform-based fault locations were
used for locating the time and frequency information of the fault signal. But it involves a large number
of mathematical computation and calculation time that results in degrading the performance of the
numerical relay [17–20].

The aforementioned drawbacks are overcome by the time–frequency-based discrete wavelet
transform (DWT) approach, which is broadly used for the classification and location of faults and
power quality mitigation problems such as sag and swell in the system [21]. One of the major problems
with DWT is the selection of mother wavelets for particular applications. However, many works in the
literature claimed that Daubechies 4 (db4) is the best suited mother wavelet for power system transient
signal analysis like a fault. The detailed explanation of this is portrayed in [22]. The rapid filtering of
the original signal from the noise signal with a minimum processing time makes the DWT analysis to
extract the features more accurately than other signal processing methods. Because of these reasons
the features are extracted using DWT analysis in this work. Then the obtained features are used to
train the artificial intelligence (AI) or machine learning (ML) classifiers. Numerous computational
intelligence classifiers were proposed in the literature for the location of faults in the system, such as
the multilayer perceptron (MLP) neural network, support vector machine (SVM), fuzzy logic, particle
swarm optimization (PSO), and so on. The Artificial Neural Network (ANN) and SVM classifiers
consume large time for training, and also the efficacy of fuzzy depends upon rules framed by the
expertise [6,7,13,23,24]. Besides, many different methods of classifier are proposed in the literature,
ranging from a heuristic rule of thumb to formal mathematics [24]. Despite all, the proposed work
uses a simple, efficient and sensitive type of a probabilistic neural network-based Naive Bayes (NB)
approach for the selection of features, and to classify the type of fault in the system.

The remainder of the paper is organized as follows: Section 2 deals with the system model studied,
and Section 3 portrays the proposed method of fault classification with detailed explanation about
the extraction of features using DWT analysis. Section 4 describes the MLP neural network- and
probabilistic network-based classifiers, such as the Bayes and NB methods to classify the fault when
it occurs in the system. Section 5 presents the results and discussion of the proposed work of fault
classification with comparative analysis presented in Section 6. The conclusion and future work is
made in the last part of the paper.
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2. System Model Studied

To validate the proposed method of fault detection scheme, it is necessary to acquire the field
data from the real time power system network, as the real time data acquisition is a quite tedious and
cumbersome process. Therefore, the system under study for fault application considers real time Libya
power system data for simulation and the possibility of the occurrence of numerous faults are simulated
using Matlab/Simulink. Figure 1 depicts the shunt STATCOM compensated power system model
consisting of three phase supply, transmission line network, STATCOM and load. The parameters for
the simulation are as follows:

Generator: Base MVA rating of 300 MVA, 400 kV, frequency =60 Hz, internal Resistance (Rin) =

0.8929 Ω, internal source inductance (Lin) = 16.56 mH, short circuit MVA rating of 100 and base kV of
300 kV.

Transmission line: Positive and zero sequence resistance of 0.0279 Ω/km and 0.3046 Ω/km,
positive and zero sequence inductance of 0.828 mH/km and 3.820 mH/km, positive and zero sequence
capacitance of 11.66 ηF/km and7.03 ηF/km, respectively.

STATCOM: Voltage rating of 400 kV with 100 MVA base. The model consists of 48 pulses Voltage
Source Converter (VSC).

Load: The system consists of an active and reactive power load of 210 MW and 150 MVar respectively.
Circuit Breakers: During normal operation, the breaker is considered as closed. For simulation of

a fault, the fault is applied for the period of 6/60 to 7/60. The breaker resistance of 0.001 Ω, the Snubber
resistances and the capacitance of 1 MΩ and infinite value, are considered for simulation study.

The transmission line length of 300 km, considered for each zone (Z1, Z2 and Z3) of line, is
assumed to be 100 km. The detailed explanation of simulation parameters and STATCOM are also
presented in [11]. The dataset for the training of neural networks (NN) is obtained by introducing
the various faults, considering the effect of fault resistance and with/without STATCOM at different
locations like 100 km, 200 km and 300 km of the mid-point compensated power system.
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Figure 1. Power System Model.

The power system model is protected from fault by different zones of protection scheme Z1,
Z2 and Z3. Thus, the relay responds to various zones of protection, and the trip signal is obtained
from the intelligence relaying scheme developed using the NB classifier. In the proposed work, the
percentage of distance protection relay by different zones such as Z1, Z2 and Z3 are assumed to be 80%,
120% and 220% of the total line length, respectively.

Proposed Method of Fault Detection

This section presents the steps for the detection of faults in the power system using the NB method
of classification. The detailed steps are illustrated in Figure 2, and also presented as follows:

Step 1: Data Acquisition—The shunt compensated power system model is simulated using
Matlab/Simulink under various cases of disturbance, and the current signal is obtained for extracting
the features to train the NN.
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Step 2: Feature Extraction—The data for training are obtained by sampling the current signal
using advanced signal processing techniques like DWT, and the features such as SD and energy
values are obtained for the system with and without shunt compensation to study the effect of
STATCOM compensation.

Step 3: Training Phase—In this phase, the obtained SD and energy values are acquired for different
locations of faults and various values of fault resistance.

Step 4: Fault detection—Here, the trained NN is tested for the occurrence of different faults in the
system, and this process is repeated for every cycle of operation.
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3. Feature Extraction Using Discrete Wavelet Transform

Wavelet transform (WT) is a widely used signal processing tool for analyzing the high frequency
transient signal in applications like bearing fault detection, transmission line faults and power quality
disturbances, namely voltage sag and swell detections, as wavelet analysis overcomes the limitations of
FT by localizing the fault signal both in time and frequency domains. Fourier analysis does not provide
information about the time of occurrence of the fault/disturbance in the non-stationary current/voltage
waveform of the power system. In general, WT exists in two forms: a continuous and a discrete
method. The latter is extensively used in the literature, due to its resolution and its applicability in real
time. The detailed explanation on the application of WT in a power system is discussed in [21,22].

DWT is a significant tool that analyzes the time varying, transient signal-like faults by decomposing
the min to an approximation (A) and detailed coefficients (D) through successive filtering of high-pass
and low-pass signals, as depicted in Figure 3.
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As the number of decomposition levels increases, the DC noise present in the fault signal can
be suppressed. In this work, a mother wavelet of db4 with eight levels is used to extract the features
by sampling the current signal of one cycle with the sampling frequency of 20 kHz and 333 samples
per cycle of the current waveform. Among various mother wavelets existent in literature, Daubechies
(db4) has been broadly used in power system fault locations because of its ability to locate the fast
transients in a low frequency sinusoidal signal. The bandwidths of each level of decomposition are
presented in Table 1.

Table 1. Detailed Coefficient Levels Frequency Band kHz.

Detailed Coefficient Levels Frequency Band in kHz

D1 20 to 10
D2 10 to 5
D3 5 to 2.5
D4 2.5 to 1.25
D5 1.25 to 0.625
D6 0.625 to 0.3125
D7 0.3125 to 0.15625
D8 0.15625 to 0.0781

3.1. Feature Extractions

The main aim of feature extraction is to provide the significant information for the classifier to
classify the type of event through the features calculated, using standard deviation (SD) and energy
values. The detailed information of this is discussed as follows.

3.1.1. Standard Deviation (SD)

The SD is defined as the statistical measure of variation or dispersion that exists in the original
signal and is given as follows,

SD =

√√
1

n− 1

 n∑
i=1

(xi − x)2

 (1)

where x = 1
n
∑n

i=1 xi, x represent the data vector and n is the number of elements in x.

3.1.2. Energy Value (E)

To test the effectiveness of the proposed classifier, this work uses another approach to calculate
features based on the energy of the decomposed current signal. The spectral energy of the decomposed
signal can be obtained using Equation (2),

E =
n∑

i=1

|xi|
2 (2)

where n is the number of detailed coefficient levels and x represents the data vector. To calculate the
features, a moving window of one cycle of current wavelet coefficient is passed and the features are
extracted for training the classifiers [25].

4. Fault Classifiers

This section presents Bayesian-based fault classifiers to identify and classify the type of fault that
occurs in the shunt STATCOM compensated transmission lines. The comparative study is made with
the conventional MLP neural network for the system with and without STATCOM. Here in this work,
each fault that occurs in the system is considered as a class, and the same is used for training theneural
network. The assumed classes for classification are: C1-Normal, C2-LG fault, C3-LL fault, C4-LLG fault
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and C5-LLLG fault. Moreover, the effectiveness of the method is also tested for occurrence of fault at
different locations of thetransmission lines.

4.1. Multi-Layer Perceptron (MLP) Network

Multi-Layer Perceptron (MLP) is the most widely used neural network for the identification and
detection of the types of fault in a power system in the literature. MLP is a supervised feed forward
network, as it requires learning the desired output to be classified. Figure 4 represents the MLP network
that consists of the input (u1, u2 and u3), hidden and output layers.
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The output [y] of the network is the weighted sum of input neurons and is defined as,

yi = Wio +
∑

j∈pred(i)

(
Wijaj

)
(3)

where aj represents the output of the previous layer neuron, Wij is the weight between the ith an d jth
neuron, and Wio is the input bias of this neuron. In this work, the MLP network is trained using the
back propagation method, and the detailed explanation is presented in [26,27].

4.2. Bayes and Naive Bayes Classifiers

The conventional MLP neural network performs the classification by adjusting the weight of the
network through a small penalty factor that sometimes leads to over fitting. This problem is overcome
using a principle approach called Bayes theorem by the Bayesian neural network (BNN). BNN was
invented by Israeli Judea Pearlin 1980s, a statistical-based, supervised classifier that determines the
variable to be classified in a more way relevant to the class, by evaluating the probability of how likely
is its occurrence in that class. This is achieved with the prior information obtained about the occurrence
of event that takes the form of prior probability density function [28–31]. Thus, the Bayes theorem can
be defined as

Posterior probability =
Class prior probability ∗ likelihood

Predictor prior probability
(4)

The simplified form can be expressed as,

P(C|L1, L2, . . . ., Ln) =
P(C)·P(L1, L2, . . . ., Ln

∣∣∣ C).

P(L1, L2, . . . ., Ln)
(5)

P(C|L) =
P(C)·P(L

∣∣∣C)

P(L)
(6)
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where P(C) is the class probability and P(L|C) represents the likelihood of datasets {L1, L2, . . . , Ln} of
variables in class C = [C1, C2, . . . , C5]. The classification problem can be defined as,

arg max
[
P(C|L) =

P(C)· P(L|C)

P(L)

]
(7)

Here the attribute P(L) does notvary with the class and can be assumed as constant, and the above
equation is approximated as,

arg max[P(C|L) = P(C)·P(L|C)] (8)

In Equations (7) and (8), the most probable output from the input arguments (data) is represented
as arg max. It is also called the global maxima of output.

The computation burden of BNN increases as the number of likelihood terms in the class raises
exponentially with the attributes L = {L1, L2, . . . , Ln}. To cater this limitation, all features in a class
are assumed to be independent, and that results in the Naive Bayes (NB) classifier that reduces the
number of parameters to be estimated from 2(2n − 1) to 2n [25,30,31]. NB is a linear classifier that
divides the input data set into the training and prediction step for identifying the type of class using
Bayes’ theorem. In the training phase, the classifier determines the probability distribution pertaining
to the features of any given class is independent. During the prediction phase, our classifier estimates
the posterior probability of the test sample data belonging to a respective class. Then the method
classifies the samples based on the maximum likelihood of posterior probability. The NB classifier has
been widely used because of its simplicity, being easy to implement with a high accuracy and sound
theoretical basis that guarantees the optimized results. The probability function defined in (8) can be
rewritten with the assumption of independent features as,

P(C|L 1, L2, . . . ., Ln) = P(C)·P(L1 |C )P(L 2 | C ) . . .P(Ln
∣∣∣ C) (9)

In this work, L is assumed to be the number of variables, i.e., the type of fault that occurs in the
system. Let L = {L1, L2, L3, L4, L5} = {Normal, LG, LL, LLG, LLLG}, then P(L) denotes the probability
distribution over the sesystem states, as represented in Figure 5,

P(L) = {x1, x2, x3, x4, x5}, xi ≥ 0; (10)

n∑
i=1

xi = 1 (11)

where xi is the probability of L for being in state Li. The assumed probability of each disturbance is as
follows: P(Normal) = P(L1) = 0.2, P(LG) = P(L2) = 0.2, P(LL) = P(L3) = 0.3, P(LLG) = P(L4) = 0.2 and
P(LLLG) = P(L5) = 0.2.
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The conditional probability for the proposed work considering different possible events is
portrayed in Table 2. It is seen that the classifier has (12 × 5) = 60 probabilities.

Table 2. Conditional Probability for the proposed work.

Cases Normal LG LLG LL LLLG

Without STATCOM

SDA 0.33 0.89 0.5 0.49 0.34
SDB 0.33 0.05 0.48 0.49 0.35
SDC 0.33 0.06 0.02 0.02 0.31
E-A 0.58 0.08 0.01 0.01 0.43
E-B 0.23 0.89 0.5 0.51 0.24
E-C 0.19 0.02 0.49 0.48 0.33

With STATCOM

SDA 0.33 0.22 0.12 0.13 0.34
SDB 0.34 0.56 0.46 0.44 0.34
SDC 0.33 0.22 0.42 0.43 0.32
E-A 0.54 0.39 0.03 0 0.43
E-B 0.15 0.42 0.08 0.44 0.24
E-C 0.31 0.19 0.89 0.56 0.32

4.3. Performance Indices of Classifier

The Kappa Statistic (K) is the statistical measure of classifiers that compute the constancy among
the predicted type of fault and the actual type of fault, and is defined as follows,

K =
P(OF) − P(EF)
(1− P(EF))

(12)

where P(OF) is the probability of the observed fault, P(EF) is the probability of the predicted type of
fault. It ranges between 0 and 1.

Mean Absolute Error (MAE)and Root Mean Square Error (RMSE)—MAE is the absolute mean of
the error calculated between the predicted and observed value, and is depicted as follows [21],

MAE =

∣∣∣∑n
i=1(EP − EO

)
|

n
(13)

RMSE is the square root of the mean of variance between the predicted and observed type of fault
detected by the classifiers, and is given by,

RMSE =

√∑n
i=1(EP − EO) 2

n
(14)

where EP is the predicted type of fault, and EO is the expected type of fault.

5. Results and Discussion

This section describes the simulation of a proposed probabilistic NB-based classifier to classify
the fault and the location of the fault in a transmission line. The effect of the probabilistic classifier
is studied for the transmission line with and without compensations. The simulation is carried out
for the power system model depicted in Figure 1, and various plausible faults such as LG, LL, LLG
and LLLG in the system, considering the variation in fault resistances. The simulation is carried out
for a time period of one cycle, and the fault is applied during 0.1 to 0.12 s. Figures 6 and 7 depict the
three-phase current waveform of the system without and with STATCOM, respectively. The minimum
and maximum values of the peak magnitude of this three phase current signal are captured for the
system with and without compensation that are illustrated in Tables 3 and 4. It is seen from the results,
the magnitude of current signal increases for the system with STATCOM device, and the same is
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presented in the form of a waveform; for the case of the LG fault in the system with and without
STATCOM, and these are portrayed in Figures 8 and 9 respectively.

Then the current signal obtained for various cases of fault is analyzed using the db4 mother
wavelet of DWT analysis with eight level coefficients to extract the features, such as SD and energy
values for training the classifiers. Figures 10 and 11 represent the DWT analysis of current waveform
under the normal operation of the system without and with STATCOM, respectively. In general,
the magnitude of coefficients is high for the compensated system compared to the uncompensated
system. Figures 12 and 13 portray the DWT analysis of the LG fault current waveform considering
without and with STATCOM, respectively. Also, it is observed that the coefficients of the detailed
coefficient are low when a fault occurs after the location of the STATCOM (at 150 km) device. This effect
is due to the STATCOM, where the system fault current reduces as the distance of the fault increases
from the fault location point. Tables 5 and 6 represent the extracted features (SD and energy values) for
training the classifiers. The trained classifiers are tested with the test data, and the type of fault that
occurs in the system is detected by the classifiers. The performance of the classifier for classification of
various faults in the system for cases with and without STATCOM, using the features of SD and energy
values, are presented as different cases, as discussed in forthcoming subsections.

1 

 

 

Figure 6. Three-phase current waveform under normal condition without STATCOM compensation.

1 

 

 

Figure 7. Three-phase current waveform under normal conditions with midpoint compensation.
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1 

 

 

Figure 8. Three-phase current waveform during a Line to Ground (LG) fault (at 200 km) in Phase A
without STATCOM compensation.

1 

 

 

Figure 9. Three-phase current waveform during the LG fault (at 200 km) in Phase A with
STATCOM compensation.
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Figure 13. DWT analysis of Phase A during the LG fault with STATCOM compensation.
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Table 3. Current magnitude during normal conditions and faults at different locations without
the STATCOM-compensation.

Without STATCOM

Fault Distance Type of Fault Minimum Current Maximum Current

Ia kA I b kA I c kA Ia kA I b kA I c kA

No fault −0.205 −0.205 −0.205 0.205 0.205 0.205

100 km

LG −2.57 −0.34 −0.46 6.95 0.28 0.25
LL −4.11 −12.5 −0.25 12.6 4.05 0.25

LLG −4.19 −12.0 −0.71 1.34 4.3 0.65
LLLG −3.88 −12.0 −12.4 1.52 6.76 4.3

200 km

LG −1.23 −0.27 −0.39 3.67 0.19 0.18
LL −2.19 −7.01 −0.25 7.06 2.16 0.25

LLG −2.1 −6.78 −0.45 7.56 2.34 0.38
LLLG −1.97 −7.06 −7.16 8.32 3.78 2.82

300 km

LG −0.78 −0.294 −0.37 2.49 0.185 0.19
LL −1.56 −4.78 −0.25 4.93 1.47 0.25

LLG −1.51 −4.85 −0.51 5.08 1.62 0.37
LLLG −1.31 −5.17 −4.97 5.72 2.62 2.16

Table 4. Current magnitude during normal conditions and faults at different locations
with STATCOM-compensation.

Fault Distance Type of Fault With STATCOM

Minimum Current Maximum Current

I a kA I b kA I c kA I a kA I b kA I c kA

No f −1.22 −2.07 −2.08 2.51 1.26 1.21

100 km

LG −3.36 −1.04 1.17 6.95 1.23 0.8
LL −4.57 −11.7 −1.24 11.8 4.58 1.07

LLG −4.74 −11.4 −1.3 1.26 4.82 1.18
LLLG −4.57 −11.5 −1.1.9 1.43 7.02 4.91

200 km

LG −2.20 −1.12 −1.23 3.97 1.23 1.08
LL −2.80 −6.3 −1.25 6.38 2.71 1.07

LLG −2.85 −6.25 −1.36 6.76 2.99 1.09
LLLG −2.72 −6.47 −6.46 4.49 4.06 3.3

300 km

LG −1.85 −1.19 −1.28 3.18 1.22 0.84
LL −2.22 −4.56 −1.27 4.61 2.22 1.07

LLG −2.33 −4.61 −1.38 4.88 2.41 1.17
LLLG −2.22 −4.84 −4.79 5.32 3.24 2.68
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Table 5. Standard deviation (SD)-based feature values for classification.

Without STATCOM With STATCOM

Condition Type of Fault Location
km

SD-A
(×103)

SD-B
(×103)

SD-C
(×103)

SD-A
(×103)

SD-B
(×103)

SD-C
(×103)

Normal No fault
100 0.177 0.177 0.177 0.875 0.877 0.866
200 0.177 0.177 0.177 0.875 0.877 0.866
300 0.177 0.177 0.0177 0.875 0.877 0.866

LG

AG
100 3.087 0.166 0.204 3.394 0.8 0.797
200 1.582 0.154 0.196 2.046 0.825 0.817
300 1.058 0.145 0.19 1.674 0.851 0.835

BG
100 0.3 3.17 0.267 0.793 3.49 0.835
200 0.245 1.63 0.198 0.821 2.11 0.836
300 0.238 1.1 0.196 0.838 1.72 0.859

CG
100 0.263 0.299 2.66 0.854 0.811 3.305
200 0.193 0.243 1.37 0.852 0.831 1.888
300 0.193 0.238 0.921 0.874 0.849 1.569

LLG

ABG
100 5.865 5.65 2.82 5.81 5.69 0.766
200 3.158 3.03 2.06 3.188 3.14 0.803
300 2.14 2.15 2.05 2.357 2.33 0.832

BCG
100 0.188 5.65 4.99 0.755 5.67 5.12
200 0.17 3.06 2.71 0.799 3.14 2.87
300 0.161 2.09 1.84 0.834 2.35 2.16

CAG
100 5.108 0.287 5.15 5.247 0.759 5.21
200 2.749 0.203 2.79 2.932 0.794 2.9
300 1.842 0.202 1.87 2.202 0.833 2.17

LL

AB
100 5.723 5.67 0.177 5.633 5.67 0.838
200 3.097 3.04 0.177 3.085 3.11 0.842
300 2.105 2.05 0.177 2.279 2.3 0.849

BC
100 0.177 5.255 5.691 0.851 5.281 5.245
200 0.177 2.868 2.832 0.856 2.944 2.905
300 0.177 1.964 1.929 0.86 2.204 2.164

CA
100 4.998 0.177 5.06 5.112 0.846 5.04
200 2.693 0.177 2.75 2.85 0.852 2.8
300 1.8 0.177 1.86 2.131 0.858 2.09

LLLG ABCG
100 6.254 6.48 5.69 6.224 6.43 5.75
200 3.368 3.51 3.1 3.397 3.37 3.19
300 2.263 2.39 2.1 2.493 2.58 2.36
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Table 6. Energy-based feature values for classification.

Without STATCOM With STATCOM

Condition Type of fault Location
km

E-A
(×108)

E-B
(×108)

E-C
(×108)

E-A
(×108)

E-B
(×108)

E-C
(×108)

Normal No fault
100 1.25 0.49 0.4 22.7 6.26 13.1
200 1.25 0.49 0.4 22.7 6.26 13.1
300 1.25 0.49 0.4 22.7 6.26 13.1

LG

AG
100 96.4 0.56 0.51 128 5.36 11.4
200 25.9 0.56 0.51 56.5 5.62 12.1
300 12 0.51 0.46 42.7 5.85 12.3

BG
100 1.64 57.1 0.51 21.3 70.7 13.2
200 1.44 15.3 0.41 25.8 27.5 12.3
300 1.5 7.08 0.37 22.3 18.8 13

CG
100 1.39 0.76 72.9 21.7 5.74 97.1
200 1.33 0.6 18.8 21.2 6.22 38.6
300 1.18 0.63 8.47 22.1 6.11 28.8

LLG

ABG
100 301 223 0.71 307 214 11.3
200 87.1 65 0.5 105 64 12.8
300 41.8 30.4 0.45 63.8 34.3 13.6

BCG
100 1.36 184 179 20.8 185 200
200 1.2 54.6 53.4 21.3 58.1 67
300 1.18 25 22.7 22.1 32.8 44.4

CAG
100 318 0.73 313 326 5.17 305
200 94.6 0.51 93 106 5.09 94.9
300 41.6 0.52 41.2 66.9 5.53 56.5

LL

AB
100 255 254 4.05 265 234 12.8
200 74.7 73.9 0.4 92.6 68.3 12.9
300 35.6 35 0.4 56.8 35.8 12.9

BC
100 1.24 174 169 22.4 170 186
200 1.24 53 50.2 22.4 49.5 62.4
300 1.24 23.5 22.3 22.4 30.2 40.8

CA
100 308 0.5 312 314 5.8 300
200 91.5 0.49 93.4 103 5.87 91.7
300 40.5 0.49 41.3 65.5 5.98 54.3

LLLG ABCG
100 425 241 315 414 236 315
200 125 70.5 94.7 130 71.9 97
300 57.5 33.3 40.7 76.6 38.6 59.1

Case-1: In this study, the transmission fault classification and identification in a transmission
network is done without STATCOM. Table 7 presents the confusion matrix for classification of different
states of the system, such as Normal, LG, LLG, LL and LLLG fault. Here, the fault in the system is
classified using the SD values obtained by the DWT analysis for different types of fault occurring at the
distances of 100 km, 200 km and 300 km of an overhead transmission line, and this is given in Table 5.
Then these data are used for training the neural network and the classification results obtained are
presented in Table 8.

The result shows that the proposed NB method of classifier is more accurate compared to the MLP
and Bayes methods of classification. Moreover, the % misclassification rate of the proposed method is
0%, whereas the rate is 20% and 80% for the MLP and Bayes approaches of classification, respectively.
The MLP method of classification fails to detect the LLG type of fault, and on the other hand, the Bayes
method fails to classify all types of fault and whose performance is inferior compared to other methods.
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It is inferred from Figure 14 and Table 8 that the NB classifier is the most significant method to classify
the various types of fault in the system compared to all other methods.

Table 7. Confusion Matrix for Classification.

Classes C1 C2 C3 C4 C5 System State

C1 1 0 0 0 0 Normal
C2 0 1 0 0 0 LG
C3 0 0 1 0 0 LLG
C4 0 0 0 1 0 LL
C5 0 0 0 0 1 LLLG

Case-2: Here in this study, the classification and identification of the fault is done without
STATCOM, as incase-1. But in this case, instead of SD values, the energy values obtained from DWT
analysis for different types of faults occurring at various distances of 100 km, 200 km and 300 km has
been taken for training the network, which is illustrated in Table 6. The results obtained reveal that
theNB method of classification is better than the other two methods, such as MLP and Bayes classifiers.
Figure 14 represents the % accuracy rate of the proposed method is 100%, whereas this is 60% and
20% for MLP and Bayes networks, respectively. The MLP method of classification fails to detect LG
and LLG faults, whilst the Bayes classifier is unable to detect all types of faults. It is seen that the
propounded NB has a 0% misclassification rate, the MLP has 40% and the Bayes method has 80% of
themisclassification rate, as depicted in Table 8.

Case-3: This case is similar to case-1, but in this study the STATCOM is connected at the midpoint
of the transmission line, and the occurrence of faults at different locations such as 100 km, 200 km
and 300 km, are studied. The SD values obtained are used to train the network, like the case-1,
and shown in Table 5. It is observed from Table 8 thatthe proposed NB classifier performance is
more predominant in terms of accuracy and % misclassification rate compared to the MLP and Bayes
methods of classification, and is also shown in Figure 14. The Bayes method fails to identify all types
of fault, except when the system is operating in normal conditions and MLP method fails to detect the
LLG type of fault as withcase-1. It is inferred from the results that both the MLP and Bayes classifier
performancesarethe same for the transmission line involving with and without STATCOM, and the
proffered NB method classifier outperforms compared to these approaches.

Table 8. Classifiers’ Accuracy and Misclassification Rate.

Accuracy Rate Misclassification Rate

MLP Bayes Naive Bayes

Cases MLP Bayes Naïve Bayes % Rate Type of Fault Rate Type of Fault Rate Type of Fault

Case-1 80 20 100 20 C3 80 C2-C5 0 0
Case-2 60 20 100 40 C2–C3 80 C2-C5 0 0
Case-3 80 20 100 20 C3 80 C2-C5 0 0
Case-4 100 20 100 0 0 80 C2-C5 0 0

Case-4: This case is analogous to case-2, with the incorporation of STATCOM connected at the
midpoint of the transmission line for supporting the reactive power and to improve the voltage profile
of the system performance. In this context, the energy values obtained from DWT analysis for different
types of faults at various distances of 100 km, 200 km and 300 km has been used for training the
network and this is portrayed in Table 6.

Figure 14 represents the proposed NB classifier is very efficient compared to the MLP and Bayes
methods. The % accuracy of NB and MLP are 100%, but the Bayes method is only 20% accurate.
On the flipside, the % misclassification rate is 0% for NB and the MLP method, and it is 80% for the
Bayes approach. It is deduced from the results, the proffered NB classifier gives accurate results for all
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cases and its performance is significantly predominant than the MLP and Bayes method as depicted
in Table 8.
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Figure 14. Accuracy rate of the classifiers.

Performance Evaluation of Classifiers

The robustness of the classifier is evaluated by various performance indices, such as Kappa
Statistics (KS), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Percentage Relative
Absolute Error (% RAE) and Percentage Root Relative Square Error (%RRSE) for classifiers, namely
Bayes, MLP and theNB approach. Firstly, the KS index for various classifiers is presented in Table 9
and Figure 15. The result shows that the indices are ‘1’ for the proposed NB classifier for all the cases
and the values lies in the range of 0.5–1 for the MLP classifier (for various cases) and is almost ‘0′

forthe Bayes method of classification. It is inferred from the KS index, the proffered method of classifier
outperforms for various cases compared to the other classifiers. Secondly, the MAE is less than 0.1 for
the proposed classifier, whereas the value lies in the range of 0.1–0.3 for the MLP method, and it is
greater than 0.3 for the Bayes approach under various cases. Moreover, the RMSE is also less than 0.1
for the NB method, and the value lies in the range of 0.2–0.4 for MLP, and it is almost 0.4 for the Bayes
classifier for case-1 to case-4. It is seen that the indices such as MAE and RMSE are comparatively very
low, as shown in Figures 16 and 17 for the intended NB method of classifier than other approaches
presented, proving that the proposed classifier is more robust and efficient.

Lastly, the % RAE and %RRSE is proven to be significantly less for the propounded NB method
compared to theMLP and Bayes classifiers, as depicted in Table 10 and Figure 18. It is observed
that the results outperform for all the cases by the NB approach rather than the MLP and Bayes
classifier methods.

Table 9. Performance comparison of various Classifiers.

Kappa Statistics MAE RMSE

MLP Bayes Naive Bayes MLP Bayes Naive Bayes MLP Bayes Naive Bayes

Case-1 0.75 0 1 0.159 0.32 0.025 0.236 0.4 0.088
Case-2 0.5 0 1 0.201 0.32 0 0.292 0.4 0
Case-3 0.75 0 1 0.172 0.32 0.033 0.248 0.4 0.097
Case-4 1 0 1 0.155 0.32 0 0.227 0.4 0
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This section describes the comparative analysis of various power system fault classification 
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Table 10. Percentage root relative square error (% RRSE) comparison of various classifiers.

Cases
%RAE %RRSE

MLP Bayes Naive Bayes MLP Bayes Naive Bayes

Case-1 49.89 100 7.85 59.23 100 22.21
Case-2 62.86 100 0 73.22 100 0
Case-3 53.74 100 10.29 62 100 24.46
Case-4 48.46 100 0 56.89 100 0

6. Comparative Analysis

This section describes the comparative analysis of various power system fault classification
methods portrayed in the literature works, summarized considering the significant features of %
accuracy, and illustrated in Table 11. The comparative performance of the % accuracy of the proposed
NB method is made with other existing methods. The results indicate that all of the techniques have
an error in identifying the type of faults because of the over-reach/under-reach of relay, due to presence
of STATCOM in the transmission line. However, few literatures fail to compare the performance
oftheclassifier without compensation.

Table 11. Performance comparison with literature work.

Type of Fault Considered

Authors Methods LG LL LLG LLL LLLG Fault
Resistance STATCOM %Accuracy

Singh. A.R [1] Synchronized Measurements
√ √ √ √ √ √ √

99.6

Ghazizadeh A. [3] Synchronized Measurements
√ √ √

×
√

×
√

99.07

Mishra. S.K [4] DWT
√ √ √

× ×
√ √

-

Gupta. O.H [8] Superimposed sequence components-based
integrated impedance (SSCII).

√ √ √ √ √ √
SVC -

Albasri. F.A [10] Impedance Measurements
√ √

×
√

× ×
√

-

Hussain. S [15] Unsynchronized Measurements
√ √

×
√

×
√ √

99

Proposed Work DWT &NB
√ √ √

×
√ √ √

100

“
√

” represents the occurrence of fault, “×” represents the fault type is not considered for classification.

But in this paper, the identification and classification is done considering with and without
STATCOM by the proffered NB classifier, and also comparison is made with MLP and theBayes neural
network. It is observed that the NB method of classification outperforms to give superior results for
both the cases of system model with and without STATCOM. Also, the performance indices of the
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classifier, such as Kappa statistics, MAE, RMSE, %RAE and %RRSE are evaluated to show the accuracy
of presented classifiers, which is elsewhere presented in the literature.

7. Conclusions

This paper presents a novel probabilistic-based Naive Bayes approach to locate the fault in a
shunt STATCOM compensated transmission line. In this work, a high voltage power system model of
400 kV has been simulated using MATLAB/Simulink, and various faults such as LG, LL, DLG and
LLLG, are applied. The current waveform obtained under different cases of normal and fault cases are
analyzed using DWT to extract the features for locating the type of fault. The fault current signal are
sampled with different band of frequencies that depict the 1st, 2nd, 3rd, 4th, 5th, 6th,7th and 8th level
of the detailed coefficient and its approximation coefficient at the 8th level. The SD and Energy values
have been obtained for different faults with a fault resistance of 0.001 Ω. The obtained features are used
to train the classifiers to classify the type of fault. The obtained results showed that the proposed NB
classifier outperforms to give a 100% accuracy rate in the case of with and without STATCOM. On the
flipside, the MLP method gives an average accuracy rate of 80%, with Bayes of 20%. It also inferred
from the performance indices such as Kappa statistics, MAE, %RAE and %RRSE, that the proffered NB
approach gives the predominant result compared to the MLP and Bayes classifier method.

In the proposed work, though the system is specific, it is subjected to fault occurrence for various
scenarios of being with and without STATCOM. Also, to test the robustness of the proposed classifier,
two different features, such as standard deviation (SD) and energy values, are taken for the system
with and without STATCOM. In all of the four cases presented in this paper, the proffered method of
classifier outperforms to give better results than other classifiers. This claim proves even the system
considered is the same, but the trained data features have the ability to give better results for various
cases. So, this method can also give better results for other power system models, too. Further, the
location of the fault and detection of its zones of occurrence considering with and without STATCOM
is the future scope of the work.

Moreover, the presented work with the Internet of Things (IoT) paves the way for the smart
relaying scheme that helps the utility to locate and isolate the faulty section from the healthy part of
power system, thereby minimizing the cascading failures of the system.
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