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Abstract: In marine sediments, seawater influences the phase behavior of natural gas hydrate. As a
porous medium, the water distribution and physical properties of montmorillonite are influenced
by the salt ions in seawater. In this work, the bound-water content in, and crystal structure
of, montmorillonite is measured to investigate the effect of salt ions on the water distribution
in montmorillonite. It can be determined from the results that the bound-water content in
montmorillonite decreases as the salt-ion concentration increases. Salt ions affect the intercalation of
water molecules in montmorillonite, and they then inhibit the expansion effect of montmorillonite.
Next, the phase behaviors of methane hydrate in montmorillonite with NaCl solution are investigated
using high-pressure micro-differential scanning calorimetry. The phase behavior of hydrate in
montmorillonite with NaCl solution is discussed. In montmorillonite with NaCl solution, the phase
equilibrium temperatures and the conversion rate of methane hydrate both decrease with increasing
NaCl concentration. The results show that methane hydrate in montmorillonite is influenced not
only by the phase-equilibrium effect of salt ions, but also by the formation effect of the salt ions on the
bound-water content in montmorillonite.

Keywords: natural gas hydrate; montmorillonite; salt ions; bound water

1. Introduction

The hydrate formation behavior in porous sediments plays a pivotal part in reservoir research
and gas hydrate drilling. The phase equilibrium conditions of hydrate are influenced by capillary
forces and fluid properties in porous sediments [1–4]. In recent years, the phase behavior of hydrate in
quartz sand and other porous media have been studied through experiments and simulations [5–9].
Gas hydrate formation and decomposition is a kinetics process of multi-phase and multi-element
interaction. The formation of hydrate consists of two processes: nucleation and growth. The research
into the kinetics of bulk hydrate systems is carried out with respect to pressure, temperature, rate
constant, specific surface area, characteristics of host sediment, etc. [10]. Owing to the complex
properties and diverse conditions of natural sediments, it is difficult to directly study the conditions for
hydrate formation in it. Montmorillonite is an important component of natural gas hydrate reservoirs.
Analysis of Nanhai sea-mud samples shows that the content of montmorillonite in most areas is greater
than 20%, and the content of montmorillonite in the western continental slope and outer continental
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shelf of Dongsha is greater than 40% [11,12]. At the same time, montmorillonite is considered to be the
main carrier of methane hydrate formation, and its absorbability, hydrability, and expansibility exhibit
the corresponding characteristics of submarine submersibles. Therefore, studying the conditions for
the formation of hydrate in montmorillonite is of great significance to further exploring the formation
rules and influencing factors of hydrates in natural sediments.

Montmorillonite is a 2:1 type hydrated aluminosilicate, and each layer consists of a central
octahedral alumina layer and two outer tetrahedral silicate layers, which is a monoclinic crystal system,
as shown in Figure 1. Therefore, the clay is described as a tetrahedral octahedral tetrahedral (TOT)
layer mineral. The mineral formula of it is (Al,Mg)2[Si2O10](OH)2·nH2O. Due to the rich characteristics,
montmorillonite has been widely used in many industries such as construction, petrochemical,
medicine, agriculture, food and metallurgy. The central cations Si4+ and Al3+ in the tetrahedron and
octahedron of montmorillonite undergo plasmoid replacement, resulting in the negative charge of
the montmorillonite lamellar structure and the adsorption of exchangeable cations (H+, K+, Na+,
Ca2+, Mg2+) and water molecules between the layers to achieve charge balance [13]. The bound-water
content in some montmorillonite can be up to 60% of the mass of dry montmorillonite. The hydration
expansion of montmorillonite is mainly affected by the surface hydration force, osmotic hydration
force and capillary force. In addition, the water adsorbed by montmorillonite can be divided into
bound water and free water according to their different structures and properties. Bound water in
montmorillonite is dominated by hydrogen bonding forces and electrostatic attraction. Free water in
montmorillonite is mainly affected by the van der Waals force. In addition to particle surface hydrates,
intercalated hydrocarbon hydrates can also be formed in montmorillonite, and the layer spacing of
montmorillonite increases [14]. In the interlayer of montmorillonite, a part of Na+ are adjacent to the
tetrahedral negative charge sites and binding directly to the clay surface to form semi-clathrate hydrate;
the remaining Na+ are adjacent to the octahedral negative charge sites and form complete cages with
six water molecules [15]. The Na+ ions occupy the site of the network. So the cage is distorted, unlike
the cage of ideal hydrate clathrates [16]. The methane molecules transfer from the bulk solution region
into the montmorillonite region [17], and accommodate through a combination of hydration to about
13 water molecules and 6 siloxane oxygen atoms. The total coordination number is around 19 oxygen
atoms surrounding each methane particle [18]. The interlayer diffusion of methane depends strongly
on the water content and burial depth [15]. Montmorillonite behaves like good thermodynamic
promoters [19], but other than that, the formation of hydrate is affected by the swelling capacity and
the tetrahedral charge [20]. The swelling capacities of montmorillonite depend on physical-chemical
conditions such as salinity, interlayer cation composition, temperature, and pressure. At the same time,
its unique surface properties and layered structure have a certain influence on the phase equilibrium
conditions of hydrate formation [21,22]. Uchida et al. [23] found that the decomposition of hydrate in
montmorillonite can be divided into the high-temperature stage in free water and the low-temperature
stage in bound water. At the same time, the decomposition temperature of bound water hydrate
also depends on the initial water content and is controlled by the thickness of hydrate layer between
mineral layers [23,24]. Nguyen et al. [25] found that low-concentration montmorillonite solution had
a thermodynamic promoting effect on the formation of hydrate. Park and Sposito [26] studied the
methane hydrate on the surface of montmorillonite through molecular simulation, and obtained the
thermodynamic promoting effect of montmorillonite. Kotkoskie et al. [27] found that during the
formation of hydrate, the promoting effect of montmorillonite competes with the inhibiting effect of
electrolyte dissolved in mineral solution. With the increase of montmorillonite content, the promoting
effect gradually turns into inhibiting effect. Therefore, the measure of the bound-water content in
montmorillonite is important for research on hydrate formation.
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In marine sediments, there are some salt ions in the pore water of the sediments [29,30]. Owing to
the reduction of the chemical potential of the water by the ions in the brine solution [31], the salinity of
water affects the thermodynamic stability of natural gas hydrate [32,33]. At very low concentration,
it is likely to be a hydrate promoter to some extent [32,33]. In addition, the solubility of natural gas
in the solution decreases, while the salinity of water increases, and the promoting effect gradually
changes to an inhibiting effect and increases at the same time [31]. The chemical composition and
salinity in marine sediments not only affect the stability of marine gas hydrate, but also inhibit the
hydration of montmorillonite, so that the content of bound water changes significantly with the change
of salinity [34]. Bound water also exists in sand to some extent, but due to the absence of a layered
structure in sand, it is mainly adsorbed on the surface of the particles, and its content varies less with
the change of salinity. Therefore, in addition to the direct influence of salinity, taking consideration of
the influence of bound water content on hydrate phase equilibrium conditions is of great significance
in studying the stability of hydrate in natural saline sediments. The natural co-existence of gas hydrate,
free gas and hypersaline pore water can occur in shallow sediment on Hydrate Ridge, and in other
regions of high upward methane flux. Milkov et al. [35] found that gas hydrate formation can increase
salinity of surrounding pore water to the level when gas hydrates can no longer form, and they co-exist
with free gas. Salinity greatly affects the physical properties of bulk sediment and the formation of
hydrate. Therefore, this experiment is conducive to further studying the influence of salinity on the
physical properties of montmorillonite and exploring the influence rule of salinity on the hydrate
formation in montmorilonite, so as to provide better guidance for further exploration and estimation
of hydrate reserves. In this work, the bound-water content of montmorillonite in brine solution with
different concentrations is measured. The effects of salt ions on the dehydration of montmorillonite
and on the crystal structure are analyzed. The relationship between salt-ion content, bound-water
content, and hydrate phase behavior is discussed. High-pressure differential scanning calorimetry
(HP-DSC) is used to study the salt-ion effect on the phase equilibrium conditions of hydrate in the
montmorillonite system.
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2. Materials and Methods

2.1. Materials

99.999% pure methane and nitrogen were supplied by Foshan MS Messer Gas Co., Ltd. (Foshan,
China) and 99.8% pure NaCl was supplied by Shanghai Aladdin Bio-Chem Technology Co., Ltd.
(Shanghai, China). Deionized water with a resistivity of 18.25 mΩ/cm was prepared by an ultra-pure
water equipment that was produced by the Nanjing Ultrapure Water Technology, Co., Ltd. (Nanjing,
China). 98% pure Na-montmorillonite was produced by American NANOCOR Company (Chicago,
IL, USA). The elements of montmorillonite are as follows: 48.53 wt% O; 4.76 wt% Na; 2.36 wt% Mg;
12.32 wt% Al; 28.95 wt% Si; 0.01 wt% P; 0.13% S; 0.18 wt% K; 0.21 wt% Ca; 0.11 wt% Ti; 0.02 wt% Mn;
2.25 wt% Fe. Its cation exchange capacity is 145 meq/100 g, its aspect ratio is 200–400, and its average
particle size is 16–22 µm.

2.2. Procedure

To study the influence of the water salinity on the bound-water and free-water content of
montmorillonite, montmorillonite samples containing NaCl solution of different salinities were
prepared. First, the montmorillonite was dried in an oven at 100 ◦C. After drying, it was put into
the NaCl solution of corresponding mass and concentration, and sealed at room temperature (25 ◦C)
for 48 h to allow it to fully hydrate to obtain the water-dispersed samples. The hydrated samples
were placed in an oven at 75 ◦C for drying. The free water in the samples was removed, and then the
hydrated samples crushed to obtain the dried samples.

The thermogravimetric (TG) method is a kind of thermal analysis method used to measure the
component changes of samples by weighing the weight lost during heating. A thermal analysis–gas
chromatography system (STA 409 PC, NETZSCH, Selb, Germany) was used to determine the water
content in the montmorillonite samples. The temperature increased from 25 ◦C to 300 ◦C at a rate of
5 ◦C/min, and the atmosphere was N2. The samples used in TG are dried samples.

X-ray diffraction (XRD) is a research method used to obtain information such as the composition
of materials and the structure or morphology of atoms or molecules inside materials through X-ray
diffraction analysis of the materials. An X-ray diffractometer (X’Pert3 Powder, PANanalytical, Almelo,
The Netherlands) was used to determine the diffraction pattern of the montmorillonite samples, and
the interlayer spacing of montmorillonite crystals calculated using Bragg’s law according to d(001).
A Cu Kα ray was used, and the incident wavelength was λ = 0.15406 nm, the working voltage and
current were 40 kV and 40 mA, respectively, and the scanning range was 2θ = 5◦–90◦. Experimental
data were collected automatically by computer, and analytical scanning electron microscopy (SEM;
SU-70, Hitachi, Tokyo, Japan) was used to take SEM images of XRD samples at room temperature.

Differential scanning calorimetry (DSC) is a thermal analysis method used to measure the power
difference and temperature of a sample and its reference. HP-DSC (BT2.15, Setaram, Inc., Lyon, France)
was used to measure the phase equilibrium conditions of methane hydrate in the montmorillonite
samples. The hydrate is directly generated in the DSC sample cell. The volume of the sample cell is
12.5 mL, the pressure range is 0–60 Mpa, and the temperature range is −170–200 ◦C. A certain number
of samples were weighed for the DSC experiments, and the experimental procedure proceeded as
follows: The temperature decreased from 20 ◦C to −10 ◦C at a rate of 0.02 ◦C/min; the temperature
was then held constant for 6 h; finally, the temperature increased from −10 ◦C to 20 ◦C at a rate of
0.05 ◦C/min.

3. Results and Discussion

3.1. Water Content in Montmorillonite Samples

The sample preparation method of water content experiment is shown in Section 2.2, and the
concentrations of solution are shown in Table 1. 75 ◦C is the boundary point of the free water and
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bound water [36]. Thus, the montmorillonite samples that were fully hydrated for 48 h were dried
in an oven at 75 ◦C to remove the free water. Then, the weight-loss rate of montmorillonite samples
was determined with the TG system. The TG temperature increased from 25 ◦C to 300 ◦C. Figure 2
shows the TG curves of the dried montmorillonite samples. As shown in the figure, the mass of
samples began to decrease at approximately 30 ◦C, and then decreased with increasing temperature,
finally reaching equilibrium at approximately 150 ◦C. As can be seen from Figure 2, with increasing
solution salinity, the final residual mass of the montmorillonite samples increases. The weight-loss
ratio of each sample is listed in Table 1. It can be found from the table that the bound-water content
of the montmorillonite samples decreases continuously with increasing brine solution concentration.
When the external solution of montmorillonite contains Na+, the ion concentration difference inside
and outside the layer decreases, resulting in the osmotic potential difference decreases. Therefore,
the bound water content decreases with the increase of the salinity of solution. Figure 3 shows the DTG
curve obtained by the first-order differential of the TG experimental results. The DTG curve represents
the change of the weight-loss rate of samples with increasing temperature in the experiment. As can be
seen from Figure 3, the dehydration peak of the bound water in montmorillonite shifted to the direction
of lower temperature with increasing brine solution concentration. The inflection-point temperatures
of the DTG curves of each sample can be found in Table 1, which reflects the maximum reaction rate
of dehydration. The inflection point decreases with increasing brine solution concentration, which
indicates that the bound water in the montmorillonite sample is easier to remove at a lower temperature
at this condition. The results show that the bound-water content of montmorillonite is influenced
by the solution salinity. In montmorillonite, the sample surface and bound water are subjected to
hydrogen bonding and electrostatic attraction [37]. The presence of salt ions in the samples has a great
influence on the hydrogen-bond balance between the surface of the montmorillonite and the bound
water, and affects the dehydration process of montmorillonite to some extent. Therefore, the presence
of saline ions affects the ability of montmorillonite to bind with water. With increasing solution salinity,
the effect on the bound-water content becomes greater.

Table 1. Weight-loss ratios and inflection points of montmorillonite samples.

Number Sample Weight-Loss Ratio (%) Inflection Point (◦C)

1 pure water 5.85 90.94
2 0.1 mol/L NaCl 5.01 89.23
3 0.2 mol/L NaCl 4.28 86.75
4 0.3 mol/L NaCl 3.92 78.07
5 0.4 mol/L NaCl 2.07 76.27
6 0.5 mol/L NaCl 1.41 65.73
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3.2. Crystal Characterization of Montmorillonite Samples

The decomposition temperature of interlayer hydrate depends on the initial water content and
is influenced by the thickness of the interlayer water [23]. Therefore, the study of the number of
water-molecule layers in the interlayers of montmorillonite is of guiding significance for further study
on the phase behavior of the interlayer hydrate. To study the effect of salt ions on the water content
in montmorillonite, crystal-structure measurements were carried out by XRD. Five montmorillonite
samples were used in the experiments, as shown in Figure 4. The contents of the pure water and NaCl
solution in samples are shown in Table 2. The ‘water content’ in the table represents the mass ratio of
the added solution to the dried montmorillonite. From Figure 4, it can be seen that sample 1 presents
a clay block. In sample 2, the montmorillonite powder combines with the small montmorillonite
particles for hydration agglomeration, but it is still relatively dry. Sample 3 is viscous clay that can
be compared with sample 1 to show that the water absorption of montmorillonite is significantly
weakened when salt ions are present. The state of montmorillonite in sample 4 is the same as that
in sample 2. The aggregate particles of montmorillonite in sample 4 are slightly larger than those in
sample 2. Sample 5 is montmorillonite dried at 100 ◦C. The montmorillonite powder is light gray and
extremely fine. Figure 5 shows SEM images of the samples, in which a rough surface with sharp edges
can be seen, which is caused by the irregular surface of the samples. The excess water that cannot
enter the interlayer makes the samples a sticky and viscous clay. When the water content is low, there
are many small protrusions on the sample surface. With increasing water content, the sample surface
tends to be flat and the number of small protrusions decreases. When the moisture content is the
same, the aggregate particles are smaller, but there are fewer small protrusions on the surface of the
samples with salt. At the same time, the dry montmorillonite samples showed the sharper edge of a
flake structure.
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Table 2. Montmorillonite samples for crystal characterization experiments.

Number Solution Concentration Water Content (%)

1 pure water 200
2 pure water 47
3 0.5 mol/L 200
4 0.5 mol/L 47
5 dry montmorillonite ≈ 0
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The X-ray powder-diffraction pattern of the montmorillonite samples is listed in Figure 6.
Montmorillonite is a kind of monoclinic system with crystal cell parameters of a0 = 0.523 nm,
b0 = 0.906 nm, c0 = 0.96–2.05 nm, α = γ = 90◦, β ≈ 100◦, and Z = 2 [38]. By comparing the results
of the samples, it was found that the diffraction-peak positions of the montmorillonite samples are
the same, except for the diffraction-peak position of (0 0 1). JADE software was used to calculate the
experimental results. The lattice constants a, b, and c of the samples were obtained, as shown in Table 3.
There are no significant changes in a and b with different samples, indicating that the basic pattern of
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shapes, sizes, and mutual positions of the tetrahedral and octahedral structures in the montmorillonite
samples do not change. However, the lattice constant c exhibits significant change in the samples,
which is due to the water absorption and expansion of montmorillonite. Water intercalated into the
montmorillonite with swelling of the basal spacing d(001) [39].
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Table 3. Lattice constants of XRD samples.

Number a (Å) b (Å) c (Å)

1 5.205 9.028 18.547
2 5.233 8.988 15.573
3 5.269 8.986 18.677
4 5.235 8.982 15.492
5 5.250 8.998 9.820

In the XRD result, d(001) refers to the layer spacing of layered minerals [40,41]. The number of
water-molecule layers in interlayers of montmorillonite can be estimated by d(001). As can be seen
from Figure 6, the diffraction peaks of d(001) are wide in samples 1 and 3 due to the abundant water
content. The value of d(001) cannot be obtained in these two samples. The peaks of d(001) of samples
2 and 4 are clear and sharp. Table 4 shows the values of d(001) in the samples. The basal spacing is
calculated according to Bragg’s law (λ = 2dsinθ). The thickness of a single water layer is approximately
2.8 Å. Therefore, the basal spacing of 1-water-layer montmorillonite is approximately 12.10–13.00 Å,
and the basal spacing of 2-water-layers montmorillonite is approximately 14.50–16.50 [42]. From
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Table 4, it can be seen that the two water layers intercalate into the montmorillonite in samples 2 and 4.
This indicates that water is absorbed in montmorillonite and expands its basal spacing. Compared
with samples 2 and 4, the basal spacing of sample 4 is less than that of sample 3. This means that the
salt ions influenced the water content of montmorillonite.

Table 4. XRD results of montmorillonite samples.

Number Peak d(001) 2θ (◦) Basal Spacing (Å) Number of Water Molecules

1 - - -
2 5.89 14.98 2
3 - - -
4 6.13 14.41 2
5 9.12 9.64 0

3.3. Phase Behavior of Methane Hydrate in Montmorillonite Samples

Owing to their adsorption characteristics and layered structure, the montmorillonite samples
contain bound water. The hydrate formation in the montmorillonite samples is different from other
porous media because of the presence of bound water, which changes the P-T curve of hydrate
formation and decomposition [23]. The promotion effect of montmorillonite and the inhibition effect
of electrolyte compete in the mineral solution, causing the promotion of the formation of hydrate
thermodynamics with increasing montmorillonite content when the concentration of montmorillonite
is low [25]. At the same time, hydrate formation would be inhibited by a high concentration of
montmorillonite [27]. In this work, the formation of methane hydrate in the montmorillonite samples
with different concentrations of NaCl solution was carried out. The samples used in this experiment had
a mass ratio of montmorillonite to brine solution of 2:1, with the concentration of brine solution shown
in Table 5. DSC is used to measure the heat flow during the formation and decomposition process
of hydrate in the montmorillonite samples. In the experiment, sufficient water content, sufficient
hydration time and sufficient agitation before the experiment were carried out on the samples to
ensure the uniformity of the samples as far as possible. Of course, there were also partial differences
in water content and salinity, but they had little impact on the experimental results. Figure 7 shows
thermograms of the methane hydrate formation and dissociation in the montmorillonite samples.
To some extent, the integral value of the hydrate peak represents the amount of hydrate. During
the cooling stage, there are two major exothermic peaks that correspond to ice freezing and hydrate
formation. From Figure 7, it can be seen that there are several irregular peaks of hydrate formation. It is
speculated that the presence of the TOT structure in montmorillonite makes water exist in the form of
small independent droplets similar to water-in-oil dispersions. Each small drop acts as an independent
system, and hydrates are successively formed in each system [43–46]. In the interim, as the solution
salinity increases, the ice peak temperature moves to the left, which means that water freezes at a lower
temperature. The decomposition peak of hydrate also shifts to low temperature with increasing brine
solution concentration, while the decomposition peak value decreases at the same time.

Table 5. DSC experimental results of montmorillonite samples soaked in NaCl solution of
different concentrations.

Number Solution
Concentration

Reaction
Heat (j/g)

Onset
Point (◦C)

Freezing
Point (◦C)

Conversion
Rate (%)

1 pure water 216.083 12.718 −2.318 65.4
2 0.1 mol/L NaCl 159.007 12.065 −3.501 63.6
3 0.3 mol/L NaCl 153.252 9.778 −5.708 60.1
4 0.5 mol/L NaCl 135.534 10.774 −5.439 58.3
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12.81 °C, which is only 0.1 °C different from the phase equilibrium temperature of hydrate 
decomposition in sample 1. Moreover, in the pure montmorillonite samples, the phase equilibrium 
temperature is approximately 13.41 °C at 10 MPa, which changes slightly to the pure-water system. 
At this concentration, montmorillonite appears to be a weak promoter of hydrate formation. Figure 
8 illustrates that the NaCl solution with a concentration similar to seawater (0.5 mol/L) affects 
methane hydrate phase equilibrium conditions slightly. When the pressure is 10 MPa, the phase 
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Figure 7. Thermograms of methane hydrate formation and dissociation in montmorillonite samples:
(a) sample 1, (b) sample 2, (c) sample 3, and (d) sample 4.

By analyzing the thermogram of each sample, the freezing point, water conversion rate, and initial
extrapolation temperature can be obtained, as shown in Table 5. It can be found from the table that, the
reaction heat of hydrate decomposition decreases with increasing brine solution concentration. CALIST0
was used to obtain the extrapolated initial temperature of the hydrate decomposition peak and freezing
point. As shown in Table 5, with increasing brine solution concentration, the freezing point keeps
decreasing, and the extrapolation initial temperature also decreases to some extent. The conversion
rate of water also decreases at the same time. The results show that the salt ions influence the stability
of hydrate in montmorillonite. At the same time, we find that when montmorillonite is present
the conversion rate of water increases with a salt-free system under the same pressure [47,48]. This
indicates that the presence of montmorillonite at this concentration could promote hydrate formation.

The onset point of the decomposition peak of hydrate in the DSC test can be considered to
be at approximately the phase equilibrium temperature of the hydrate [49,50]. Figure 8 shows
the phase equilibrium curve of methane hydrate in a pure water system, 0.5 mol/L NaCl solution,
and montmorillonite with a water content of 76% [23,51]. As illustrated in Figure 8, the phase
equilibrium temperature of methane hydrate in a pure water system under 10 MPa pressure is 12.81 ◦C,
which is only 0.1 ◦C different from the phase equilibrium temperature of hydrate decomposition
in sample 1. Moreover, in the pure montmorillonite samples, the phase equilibrium temperature
is approximately 13.41 ◦C at 10 MPa, which changes slightly to the pure-water system. At this
concentration, montmorillonite appears to be a weak promoter of hydrate formation. Figure 8
illustrates that the NaCl solution with a concentration similar to seawater (0.5 mol/L) affects methane
hydrate phase equilibrium conditions slightly. When the pressure is 10 MPa, the phase equilibrium
temperature of methane hydrate in 0.5 mol/L NaCl solution is 12.23 ◦C, but that of the NaCl solution
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montmorillonite system under the same concentration and experimental pressure is approximately
10.705 ◦C, which is a decrease of approximately 1.5 ◦C. Therefore, the salt solution (without porous
media) and the montmorillonite system with pure water both have little effect on the hydrate phase
equilibrium conditions. It means that the effect of salt ions on the stability of hydrate is enhanced by the
presence of montmorillonite, which is the result of the combined effect of salt ions on the dehydration
of montmorillonite and the direct effect on the stability of hydrate.
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Figure 8. Phase equilibrium curves of methane hydrate in montmorillonite [23,51].

PEAKFIT was used to fit the hydrate decomposition peak of the DSC curve. The fitting results
are shown in Figure 9, with separated peak 1 being the endothermic peak of bound water hydrate
and separated peak 2 being the endothermic peak of free water hydrate [36,52]. As shown in Figure 9,
the area of peak 1 decreases continuously with increasing NaCl concentration, while peak 2 increases
continuously. As the brine solution concentration increases, the hydration expansion of montmorillonite
is inhibited, and the bound water in the sample decreases continuously. With a porous medium to
water ratio of 1:2, the free-water content increases as the bound-water content decreases. At the same
time, with increasing brine solution concentration, both peaks shift to lower temperature. The variation
law is consistent with TG experimental results.
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4. Conclusions

In the work described in this paper, the bound-water content, basal spacing, crystal cell parameters,
and heat flow during hydrate formation and decomposition in hydrated montmorillonite samples
with different solution salinities were measured. The effects of NaCl solution concentration on the
expansion properties of montmorillonite and the phase equilibrium conditions of methane hydrate in
the montmorillonite are discussed. The effects of water content and brine solution concentration on the
crystal characteristics of montmorillonite are compared. The results show that the bound-water content
decreases with the increase of salt-ion concentration in the water dispersed samples, and approaches a
minimum value near 0.2 mol/L. it is due to the influence of salt ions on the hydrogen-bond balance
between the surface of the montmorillonite and the bound water. In addition, to some extent, it affects
the dehydration process of montmorillonite. However, the number of interlayer water molecules is
not affected obviously by the change of brine solution concentration and the water content. A large
amount of bound water is adsorbed on the surface of the montmorillonite particles in other forms.
Ions have a great influence on the moisture content of porous media. The change of initial water
content and the influence of salt ions on the stability of methane hydrate together affect the phase
equilibrium condition of methane hydrate. The phase equilibrium temperature of hydrate decreases
with increasing brine solution concentration. Therefore, the hydrate in marine sediments is not only
influenced by the stability-influence of salt ions, but also impacted by bound-water content, which is
influenced by solution salinity. This work can provide fundamental information for the investigation
of the formation and exploitation of natural gas hydrate in deep-sea sediments.
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