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Abstract: Accurate and timely fault diagnosis for the diesel engine is crucial to guarantee it works
safely and reliably, and reduces the maintenance costs. A novel diagnosis method based on variational
mode decomposition (VMD) and kernel-based fuzzy c-means clustering (KFCM) is proposed in
this paper. Firstly, the VMD algorithm is optimized to select the most suitable K value adaptively.
Then KFCM is employed to classify the feature parameters of intrinsic mode functions (IMFs).
Through the comparison of many different parameters, the singular value is selected finally because
of the good classification effect. In this paper, the diesel engine fault simulation experiment was
carried out to simulate various faults including valve clearance fault, fuel supply fault and common
rail pressure fault. Each kind of machine fault varies in different degrees. To prove the effectiveness of
VMD-KFCM, the proposed method is compared with empirical mode decomposition (EMD)-KFCM,
ensemble empirical mode decomposition (EEMD)-KFCM, VMD-back propagation neural network
(BPNN), and VMD-deep belief network (DBN). Results show that VMD-KFCM has advantages in
accuracy, simplicity, and efficiency. Therefore, the method proposed in this paper can be used for
diesel engine fault diagnosis, and has good application prospects.

Keywords: diesel engine; fault diagnosis; variational mode decomposition; kernel-based fuzzy
c-means clustering; empirical mode decomposition

1. Introduction

Diesel engine has been widely used for its excellent power and economic performance. However,
the complexities of diesel engines can easily lead to engine failure [1]. Once a part fails, it will inevitably
affect the working state of the whole machine resulting in deterioration in power performance or even
an accident. If a fault can be diagnosed in advance, and then can be appropriately repaired to avoid
further damage. This is the original intention of our research.

During the past few decades, the signal processing method based on vibration signal has received
increased attention in the field of fault diagnosis of rotating machinery. Especially in dealing with rolling
bearing faults, it has been successfully applied in the past reports, e.g., [2,3]. Fault diagnosis of engine
vibration signal is difficult due to the complex structure and precise components [4]. The response
generated by components is mixed nonlinearly, which makes it hard to extract the desired fault
information from vibration signal. For instance, the cylinder head vibration signal of diesel engine
contains abundant response of multiple forces, including in-cylinder combustion impact, intake valve
and exhaust valve closure impact, reciprocating inertia force of piston and various random excitation [5].
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A proper signal processing algorithm to extract the fault information plays a key role in machine
fault diagnosis.

At present, many effective algorithms are used to decompose vibration signals, such as wavelet
transform (WT), empirical mode decomposition (EMD) [6], local mean decomposition (LMD) [7], and so
on [8,9]. They can decompose signals to a certain extent and obtain intrinsic characteristic functions of
the signals. Since EMD has good self-adaptability and high computational efficiency, the improvement
and application of EMD-based algorithm emerge in endlessly [10,11]. However, both EMD and LMD
use recursive algorithm in principle, which will accumulate errors in envelope calculation during
iteration, resulting in mode aliasing phenomenon and end effect [12,13]. These shortcomings will
lead to the reduction of the diagnostic accuracy in the pattern recognition process. Huang et al. [14]
proposed the ensemble empirical mode decomposition (EEMD) algorithm, which effectively improved
the mode aliasing problem, but also brought new problems such as reduced computational efficiency
and white noise removal. Bi et al. [15] proposed a novel algorithm, which combining wavelet de-noising
algorithm and EMD to detect knock faults of gasoline engines and proved that it can achieve the same
effect as EEMD but the calculation speed is faster.

Since Dragomiretskiy and Zosso [16] proposed the variational mode decomposition algorithm
in 2014, it has been applied in diverse areas of signal processing, especially in mechanical fault
diagnosis [17,18]. VMD was introduced as an alternative to EMD to decompose signals. VMD can
improve the mode aliasing and end effect of EMD greatly and be more robust to noise. Zhang et al. [19]
set up the rolling bearing fault signal calculating model of different location defect and made a
comparison of the bearing defect characteristic extraction performance between VMD and EMD.
The result verified that the VMD can accurately extract the principal mode and has better performance
than EMD. Similar comparisons have been made in references [20,21] and the same results have been
obtained. However, there are many parameters in VMD that need to be set in advance. At present,
these parameters do not have accepted selection criteria. Among them, the most important one is the
mode number K, which directly affects the correctness of decomposition. In addition, the quadratic
penalty factor α directly affects decomposition accuracy and has an important influence on the
de-noising performance of the algorithm [16]. Some scholars used various evolution algorithms to
optimize these two parameters. Zhang et al. [22] used the maximum weighted kurtosis index as the
fitness function of grasshopper algorithm to optimize VMD. Wang et al. [23] proposed a multi-objective
particle swarm optimization algorithm to optimize K and α in VMD. The symbol dynamic entropy and
power spectral entropy were selected as fitness functions. Ren et al. [24] used permutation entropy as
fitness function of genetic algorithm to optimize K and α of VMD and applied the optimized algorithm
to fault diagnosis of crankshaft bearings. However, the introduction of evolution algorithms will
reduce the computational efficiency of VMD, which makes it hard to optimize the parameters for each
signal. A correlation coefficient is a numerical measure meaning a statistical correlation between two
signals. It is also applied to the optimization of VMD [25–27]. Sun G et al. [26] proposed an improved
VMD algorithm based on the Newton method and used the correlation coefficient between IMF and the
original signal as the termination condition. Other scholars [25,27] who use the correlation coefficient
to optimize VMD mostly regard it as the standard of removing noise components. In this paper,
correlation coefficient is used to optimize VMD to find the stable state of decomposition, and then get
the optimized K value. The details are shown in Section 2.

Pattern recognition methods are usually including supervised learning and unsupervised learning.
Supervised learning methods, like the representative support vector machines (SVM) [28] and artificial
neural network (ANN) [29], need training data before classification. Chen Z et al. [30] used SVM
analyzing feature parameters extracted from noise signals of loader’s gearbox by independent
component analysis (ICA) to detect faults and got 92.5% recognition rate. Back propagation neural
network (BPNN) is mature in theory and performance and is widely used in pattern recognition [31].
However, it is easy to fall into local optimal value and cannot deal with nonlinear problems [32,33].
Hinton proposed the deep belief network (DBN) in 2006, which led to the research upsurge of deep
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learning algorithm [34]. Deep learning methods can extract and abstract low-level features to form
high-level features, and then discover the distributed feature representation of data. Prasanna et al. [35]
compare the diagnostic accuracy of DBN with the other four fault diagnosis methods including SVM,
BPNN, self-organizing maps, and Mahalanobis distance for four engineering classification problems
and found that DBN has obvious superiority. Deep learning methods can be well applied in data
classification. However, SVM, BPNN, and DBN all need a long training time, which is inefficient and
not suitable for massive data processing [36].

For unsupervised learning methods, clustering analysis such as k-means and fuzzy C-means
(FCM) is widely used in fault diagnosis because of its efficiency [37,38]. Kernel-based fuzzy C-means
clustering (KFCM) [39] is an advanced method that introduces kernel functions to the original FCM
algorithm. KFCM has better performance in a nonlinear problem and has been widely applied
in image segmentation and fault diagnosis [40,41]. Liu et al. used Gaussian KFCM to analyze
eigenvectors compared of normalized photovoltaic voltage, normalized photovoltaic current and
fill factor, and realized single faults and compound fault conditions diagnosing [42]. Unsupervised
learning method without data training is more suitable for real-time fault diagnosis of diesel engine.
In this paper, KFCM is used as the fault classification method after decomposition of VMD. However,
the classification accuracy of KFCM is closely related to the input feature vectors. Therefore, appropriate
selection of feature vectors is also the focus of later research.

The remainder of the paper is organized as followed. The second section gives a brief overview of
the VMD and KFCM algorithms. Then the optimized-VMD method is introduced. The decomposition
results of simulation signals by the optimized-VMD and other algorithms are compared. The third
section describes the experiments conducted to collect various faulty vibration signals of a certain
diesel engine. The fourth section presents the principle of the VMD-KFCM joint method and reports
the classification results of the proposed algorithm for the experimental signals and compares it with
the other methods. Finally, conclusions are given in the fifth section.

2. Theories

2.1. Variational Mode Decomposition

Variational mode decomposition is based on the Wiener filter, one-dimensional Hilbert transform,
and variational method. The VMD can decompose any real time series signal f into K discrete number
modes uk(t) or called intrinsic mode function (IMF) [16], where each mode is mostly compact around a
center frequency ωk, and satisfies that the sum of all modes equals f . The bandwidth of each mode is
estimated through the L2 norm of the gradient. Details of the VMD algorithm can be found in ref. [16].
In order to search for uk(t) and ωk, VMD is required to solve the constrained variational problem
as follows: 

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t[(δ(t) +
j
πt ) ∗ uk(t)]e− jωkt

∥∥∥∥2

2
}

s.t.
∑
k

uk = f
(1)

where t is the time, δ(t) is the Dirac distribution, ‘*’ represents convolution symbol, and {ωk} =

{ω1,ω2, · · · ,ωk} indicates each center frequency.
The penalty parameter α and the Lagrange multiplication operation λ(t) are introduced to convert

the constrained variational problem to non-constrained problem. The α can guarantee the accuracy of
reconstructed signal in the presence of Gaussian noise and the λ(t) can keep the strict enforcement of
constraint. Then the augmented Lagrangian is described as below:

L({uk}, {ωk},λ) := α
∑
k

∥∥∥∥∂t[(δ(t) +
j
πt ) ∗ uk(t)]e− jωkt

∥∥∥∥2

2
+

∥∥∥∥∥∥ f (t) −
∑
k

uk(t)

∥∥∥∥∥∥2

2
+

〈
λ(t), f (t) −

∑
k

uk(t)
〉

(2)
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To solve this equation, the alternate direction method of multipliers (ADMM) is used here to get
the saddle point of (2). The mode number K is determined in advance. Then the frequency-domain

expression of mode {
_
u

1
k}, the corresponding center frequency {

_
ω

1
k}, and the Lagrangian multiplier {

_
λ

1
}

are initialized. The modes uk and their center frequency ωk are updated by (3) and (4) respectively.

_
u

n+1
k (ω) =

_
f (ω) −

∑
i,k

_
u i(ω) +

_
λ(ω)

2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫
∞

0 ω
∣∣∣∣_u k(ω)

∣∣∣∣2dω∫
∞

0

∣∣∣∣_u k(ω)
∣∣∣∣2dω

(4)

After each updating of modes and center frequencies, the Lagrangian multiplier is also updated
by (5).

_
λ

n+1
(ω)←

_
λ

n
(ω) + τ

_f (ω) −∑
k

_
u

n+1
k (ω)

 (5)

The updating process is executed iteratively until (6) is satisfied.

∑
k

∥∥∥∥∥_un+1
k −

_
u

n
k

∥∥∥∥∥2

2
/
∥∥∥∥_un

k

∥∥∥∥2

2
< e (6)

2.2. Kernel-Based Fuzzy c-Means Clustering

Pattern recognition is one of the most important tasks in mechanical fault diagnosis.
The kernel-based fuzzy c-means clustering (KFCM) [39] is an effect classification algorithm, which can
map low-dimensional data into high-dimensional space by kernel function to enlarge the difference
between samples. Moreover, KFCM has no learning process for a large amount of data in the previous
stage. The brief computational steps are as follows:

1. Select the cluster number c and input n dataset X = {x1, x2, · · · , xn}, X ⊆ Rp to be classified.
2. Perform an arbitrary non-linear mapping Φ from the original low-dimensional feature space K to

a space of higher kernel space F.
3. Assume that vi(i = 1, 2, · · · , c) is the cluster centroid of ith cluster, and uik(k = 1, 2, · · · , n) is the

membership degree of data point xk to ith cluster. Then the objective function of KFCM algorithm
is as below:

Jm(U, v) =
c∑

i=1

n∑
k=1

um
ik

∥∥∥Φ(xk) −Φ(vi)
∥∥∥2

, (7)

where U = {uik}, v = {v1, v2, · · · , vc}, m > 1, which is the weight index to membership matrix U.
4. Chose the radial basis function as the kernel function without prior knowledge, whose expression

is presented as (8):
K(xk, vi) = exp[−‖xk − vi‖

2/(2σ2)], (8)

where vi is the center of the kernel function and σ is the width parameter. After introducing a
kernel function, the (7) can be expressed as follow:

Jm(U, v) =
c∑

i=1

n∑
k=1

um
ik

∥∥∥2− 2K(xk, vi)
∥∥∥2

. (9)

5. Search the minimum valve of objective function (9) using the Lagrange multiplier optimization
method. Finally, the iteration formulas of uik and vi can be obtained:
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uik =

{
1/[K(xk, xk) + K(vi, vi) − 2K(xk, vi)]

}1/(m−1)

c∑
j=1

{
1/[K(xk, xk) + K(v j, v j) − 2K(xk, v j)]

}1/(m−1)
. (10)

vi =
n∑

k=1

um
ikK(xk, vi)xk/

n∑
k=1

um
ikK(xk, vi). (11)

2.3. A Parameter-Optimized Variational Mode Decomposition

During the research of conventional VMD algorithm, it was found that the mode number K
has significant influence on the decomposition results. The mode number K should be given in
advance in conventional VMD, which will inevitably lead to uncertainty of results. If K is too small,
multiple components of the original signal may be contained in one mode function. If K is too large,
one component may be decomposed into several mode functions. All of the above will lead to errors
in estimating IMF center frequency. Scholars have done a lot of research on the optimal selection of
K value. Some scholars choose the K value by experience e.g., [43–45], which are inefficient and not
applicable to large amount of data processing. Yan X et al. [34] used genetic algorithm to optimize the
mode number K in VMD and combined it with 1.5-dimensional envelope spectrum for fault diagnosis
of rotating machinery. However, the optimization method proposed in [22–24,46] will increase the
complexity of VMD algorithm and reduce the efficiency of fault diagnosis. Correlation coefficient was
introduced due to its effectiveness for measure the correlation degree of IMF and original signal and
distinguish the effective components from noise components [25–27]. It is found that the decomposition
results tend to be stable when K reaches a certain value in VMD. Therefore, a novel K selection method
based on the correlation coefficient analysis was proposed in this article. The detailed procedure is
as below:

1. Determine the range of K that needs to be optimized.
2. Decompose the original signal by VMD in the selected K range. For each K value, two parameters

are calculated, including the correlation coefficient between IMFs and the original signal and the
energy ratio of the residual to the original signal.

3. Any IMF with a correlation coefficient greater than the threshold C is called an effective IMF
(EIMF), and the number of EIMF is counted at each K. When the count of EIMF number keeps
steady in the range of K, the result of signal decomposition is considered stable.

4. After stable decomposition, when the energy ratio of the residual is less than 0.3 for the first time,
the corresponding K value is regarded as the optimal K value. Then, output the EIMFs at the
optimal K.

The correlation coefficient between the IMF and the original signal can be used to judge whether
the IMF is a false mode caused by noise. The correlation coefficient is calculated as follows:

r(x, y) =
Cov(x, y)√

Var[x]·Var[y]
, (12)

where x and y represent two different signals, Cov is the covariance symbol and Var is the variance
symbol. The calculation formula of the energy ratio R is as follows:

R =
Eo − Er

Eo
=

+∞∫
−∞

f 2(t)dt−
+∞∫
−∞

[
n∑

k=1
uk(t)

]2

dt

+∞∫
−∞

f 2(t)dt

, (13)
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where Eo and Er represent the original signal energy and the reconstructed signal energy respectively.
f (t) is the original signal. uk(t) are the IMFs of VMD.

R is the energy ratio of the residual to the original signal. Since the noise energy is large for
the actual diesel engine signal, when the energy of the reconstructed signal reaches more than 0.7
of the original signal, the decomposition is basically complete. This empirical value can be modified
according to the actual signal noise.

The quadratic penalty factor α affects the de-noise ability of VMD algorithm. Many scholars
optimized it with K together [22–24]. A similar analysis has been done for the vibration signal of diesel
engine, it is found that the decomposition effect is comparatively more sensitive to the k value by
analyzing the decomposition results under a series of different K and α. Therefore, the default value of
α, 2000, was used in this article.

To verify the effectiveness of the proposed method, the algorithm was used to decompose a set of
simulation signals. The reciprocating nature of diesel engine results in the periodic vibration signals
of cylinder head. In addition, the movement of the piston and the valve of the diesel engine will
cause different degrees of cylinder head impulse signals. Therefore, simulation signal y(t) consists
of three periodic sinusoidal signals x1(t), x2(t), and x3(t), which have different frequencies and a set
of composite impulse signals x4(t). In order to simulate the real vibration signal of diesel engine,
the random signal with amplitude ranging from –20 to 20 was added. The expressions of the constituent
signals are shown in (14) and the simulation signal is shown in Figure 1.

x1(t) = 60 ∗ sin(100πt)
x2(t) = 40 ∗ sin(800πt)
x3(t) = 40 ∗ sin(3500πt)

x4(t) =


100 ∗ sin(1200πt), 0.0045 < t < 0.011
50 ∗ sin(1000πt), 0.025 < t < 0.035
0, other

y(t) = x1(t) + x2(t) + x3(t) + x4(t)

. (14)
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Figure 1. Simulation signal.

Next, the simulation signal was decomposed simultaneously via the optimized-VMD, EMD,
LMD and EEMD algorithm. For the proposed algorithm, the range of K value was set to 1–10, and the
correlation coefficient threshold C was 0.35. Some correlation coefficient results between the IMFs and
the original signal at each K is shown in Table 1. The curves of effective K value and energy ratio is
shown in Figure 2. It can be inferred from the Figure 2 that the decomposition results were stable when
the mode number was over 6, where EIMF number remained at 4. At the same time, the energy ratio
was also below 0.3, so the optimal K value was 6.
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Table 1. The correlation coefficient between intrinsic mode functions (IMFs) and the original signal.

C K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9

IMF1. 0.76 0.65 0.65 0.63 0.63 0.63 0.63
IMF2 0.45 0.63 0.63 0.52 0.52 0.52 0.48
IMF3 0.12 0.43 0.43 0.43 0.43 0.43 0.37
IMF4 - 0.07 0.07 0.44 0.44 0.43 0.42
IMF5 - - 0.06 0.06 0.11 0.11 0.34
IMF6 - - - 0.05 0.06 0.05 0.10
IMF7 - - - - 0.05 0.05 0.05
IMF8 - - - - - 0.04 0.05
IMF9 - - - - - - 0.04
EIMF

Number 2 3 3 4 4 4 4
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The VMD decomposition results at K = 6 are shown in Figure 3. It can be seen from the figure that
these four components are well restored and the false noise components are filtered out at the same time.
Figure 4 shows the EMD decomposition results of y(t), in which the simulation signal is decomposed
into five IMFs and a residue. Figure 5 shows the decomposition results of y(t) by LMD, where the
simulation signal was decomposed into three product functions (PF). In comparison, the results of
EMD and LMD appeared that an obvious mode aliasing phenomenon and signal distortion led to
incomplete sinusoidal waveform. This is due to the accumulation of error in envelope estimation.
The decomposition results of EEMD are shown in Figure 6. As an improved version of EMD, EEMD
effectively suppressed the mode aliasing problem of EMD. It had better decomposition effect for
shock signal x4(t). However, there still existed the mode aliasing problem in IMF2–IMF4. In addition,
the increase of white noise led to the low computational efficiency of EEMD. The variational structure
of VMD had better robustness to noise and improved the mode aliasing of the recursive decomposition
algorithms. Moreover, it can be seen that the end effect of EMD/LMD was more serious than that
of VMD.
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To further verify the superiority of VMD decomposition algorithm, the correlation coefficients
were calculated between decomposition results of each algorithm and four components of original
signal. Then the maximum correlation coefficients with each component of original signal were
recorded. The results are shown in Table 2. It can be seen that the correlations between the result
components of EMD/LMD and the original signal components was significantly lower than that
of EEMD/VMD. The correlation of optimized-VMD was the highest among these four algorithms.
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VMD had a good decomposition effect not only for single frequency sinusoidal components, but also
for mixed impulse signals, which were difficult to decompose.

Table 2. Statistical table of maximum correlation coefficient.

Maximum Correlation Coefficient EMD LMD EEMD VMD

x1(t) 0.459 0.437 0.994 0.996
x2(t) 0.113 0.708 0.909 0.937
x3(t) 0.004 0.950 0.957 0.991
x4(t) 0.055 0.694 0.880 0.915

As mentioned above, there are two parameters, the range of K and correlation coefficient threshold
C, that need to be set in advance in the proposed method. The range of K values needs to be large
enough to make the decomposition result stable. Experiments show that when the mode number was
more than twice the signal component number, it was easy to cause over-decomposition. Excessive
K value will increase unnecessary calculation cost. Over-decomposition will reduce the accuracy of
pattern recognition. For signals with less components (≤6), the range of K can be empirically set
from 1 to 10 or twice the number of components. The empirical K-value range could ensure that
most decomposition results are stable. For the cylinder head vibration signal in this paper, the main
components of the signal include the combustion impulse, opening and closing impulse of the intake
and exhaust valve, reciprocating impact of piston, and so on. However, due to the periodicity of diesel
engine vibration signals, the number of components is usually no more than 6. Therefore, this range is
also suitable for the cylinder head vibration signal.

To validate the threshold of correlation coefficient, 40 sets of simulation signals with known
components were decomposed by optimized-VMD in which C was varied from 0.25 to 0.4. According
to the comparison of maximum correlation coefficients between the IMFs of the decomposition results
and the components of the original signal, the correct rate of decomposition is shown in Figure 7.
It can be seen that the correct rate of different C within the range was significantly different, but there
was an obvious peak, where the decomposition accuracy reached the maximum 97.5% when C = 0.35.
Therefore, the value of C was set to 0.35 in this paper.
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3. Fault Simulation Bench Test

To verify the effectiveness of the proposed algorithm for real vibration signals decomposition,
the real cylinder head vibration signals of a certain diesel engine were analyzed in this section.
The six-cylinder diesel engine is an in-line, water-cooled four-stroke engine with four valves per
cylinder. Figure 8a shows the diesel engine tested on the bench, and the technical parameters of
the diesel engine are listed in Table 3. Vibration acceleration sensors (PCB-621B40, PCB Piezotronics
Inc., New York, NY, USA) were fixed on the cylinder head of 1-6th cylinder and cylinder block of
1-6th cylinder as the Figure 8b shown. Vibration signals were collected by the LMS-SCADAS Mobile
multi-channel high-speed data acquisition system.
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Table 3. Main parameters of a certain type of diesel engine.

Contents Parameters

Number of cylinder Inline 6 cylinders
Valve number/cylinder 4

Displacement 7.14 L
Cylinder diameter/length 108 mm/130 mm
Power rating/rated speed 220 kW/2300 r/min

Maximum torque 11,600 Nm (1200–1600 r/min)

The frequency of diesel engine vibration signal generally distributes in the range of 0–6000Hz.
When rough combustion occurs, high frequency vibration will propagate, but still not more than
12,000 Hz. So, the analysis frequency was set to 12,800 Hz in the test, the sampling frequency was
25 and 600 Hz. The test stimulated three typical types of faults including abnormal valve clearance,
abnormal common rail pressure, and insufficient fuel supply, where details are described in Table 4.
The steady vibration signal of diesel engine was measured with speed increment of 100 rpm beginning
from 800 rpm (idle speed) to 2300 rpm (rated speed). We chose the vibration signal when the speed of
diesel engine was stable at 2000 rpm.

Table 4. Simulated faults details.

Abnormal Valve Clearance/mm Abnormal Common Rail Pressure/bar Insufficient Fuel Supply

Reduce (0.25, 0.45) Normal 1500 Normal 100%
Normal (0.30, 0.50) Reduce 1300 Reduce 75%
Increase (0.35, 0.55) Reduce 1100 Reduce 25%
Increase (0.40, 0.60) - -

Where ‘(0.25, 0.45)’ means that the inlet valve clearance is 0.25 mm, the exhaust valve clearance is
0.45 mm, and so does the rest.

4. Fault Diagnosis Based on Optimized-VMD and KFCM

As mentioned above, the signal components can be obtained ideally by decomposition of the
optimized-VMD algorithm. However, only using VMD is not clear enough to reveal the occurrence of
the faults. In order to identify the faults effectively and improve the diagnosis speed, we combined
VMD and KFCM to unite the advantages of these two algorithms. KFCM is a pattern recognition
algorithm without supervised learning. Three-dimensional KFCM has a better visualization effect and
higher classification accuracy than the two-dimensional ones. The concrete steps for joint diagnosis are
as follows:
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1. The optimized-VMD algorithm was used to decompose the cylinder head signal adaptively and
output the IMFs.

2. The parameters of three IMFs with relative maximal correlation coefficient to the original signal
were extracted. The appropriate parameters were selected to form a three-dimensional feature
vector group.

3. The three-dimensional feature vectors were input into the KFCM for classification and obtained
the results.

To verify the effectiveness of fault diagnosis method, the optimized-VMD was used to decompose
the valve clearance fault signals including three different states here according to Table 4, including
reduction (0.25, 0.45), increase (0.35, 0.55), and increase (0.40, 0.60). The optimum range of K value
of mode number was set to 1–10. The threshold of correlation coefficient was set to 0.35. Figure 9
shows the curves of EIMF number and energy ratio R of valve clearance reduction (0.25, 0.45). It can
be inferred that when K was greater than 3, the decomposition was stable and the energy ratio R was
also below 0.3. Therefore, the optimized K value was 3. Figures 10–12 show the VMD decomposition
results of the above three signals respectively, where the left column represents IMFs and the right
column are the corresponding power spectral density (PSD) in the frequency domain. It can be seen
from these figures that the main vibration frequency was about 2000 Hz when a valve clearance fault
occurred. When the valve clearance was increased to (0.4, 0.6) state, a peak appeared at the frequency
of 2500 Hz. However, it was difficult to distinguish between reduced valve clearance (0.25, 0.45) and
increased valve clearance (0.35, 0.55). It is important to choose appropriate parameters to describe the
characteristics of signals and to amplify the differences.

We compared the classification results of ten more parameters such as mean value, standard
deviation, kurtosis, permutation entropy, and so on. However, the classification effect of most
parameters was not good. Here we selected four representative parameters to show the classification
results, including root mean square value (RMS), kurtosis (Kur), Shannon entropy (SE), and singular
value (SV). Seventy-five sets of experimental signals were intercepted from each fault state data for
testing. Each signal was intercepted for 0.06 seconds, which is the time of about a cycle for the diesel
engine at the speed of 2000 rpm.
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Figure 9. Curves of two main parameters of valve clearance reduction (0.25, 0.45). Figure 9. Curves of two main parameters of valve clearance reduction (0.25, 0.45).
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Figure 10. The VMD result of valve reduction (0.25, 0.45). 
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Figure 11. The VMD result of valve increase (0.35, 0.55). 

Figure 10. The VMD result of valve reduction (0.25, 0.45).
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Figure 12. The VMD result of valve increase (0.40, 0.60).

The three-dimensional feature vectors in are input into KFCM for classification. The fuzzy
weighted index m of KFCM was set to 1.5, and the square of radial basis function width σ2 was set to
250. The classification results of KFCM algorithm are shown in Figure 13a–c. Figure 13a shows that the
classification effect of RMS was not satisfactory. Three valve clearance reduction states could not be
well distinguished. Many points of increase (0.35, 0.55) and increase (0.40, 0.60) were misclassified
into the reduction (0.25, 0.45). The total classification accuracy was 86.2%. From Figure 13b, it can be
seen that Shannon entropy as the feature vector had a worse classification effect than RMS. Since the
difference between the two types of fault data was small, the reduction (0.25, 0.45) points and the
increase (0.40, 0.60) points were misclassified into one class. When kurtosis was used as the feature
vector for classification, three kinds of faults were clustered together and could not be distinguished at
all, so the results are not shown here. Figure 13c shows the KFCM classification result when singular
values were used as feature vectors. From Figure 13c, we could see that the data of three different
states were well distinguished, and the boundaries were obvious. Compared with the previous
parameters, the classification effect was greatly improved, and the correct rate was significantly
improved. Only four of 225 data points were misclassified, and the correct rate had reached 98.2%.
For comparison, Figure 13d shows the classification results of abnormal valve clearance fault signals
and normal signals. The VMD-KFCM joint algorithm could still distinguish four kinds of data points
very well. Based on the above results, the singular values were used as feature vectors in the next
fault diagnosis.

In order to further verify the effectiveness of VMD-KFCM algorithm, the common rail pressure
abnormal fault data and insufficient fuel supply fault data were then diagnosed. Fifty sets of data
were used to diagnose each fault. The range of K values was set to 1–10, and the threshold of
correlation coefficient was set to 0.35. Singular values were still selected as the feature parameters here.
The parameters of KFCM were set as above. Figure 14a,b show the diagnostic results of insufficient fuel
supply signals and abnormal common rail pressure signals, respectively. For the final fault diagnosis
accuracy, the two kinds of faults were 98.7% and 96%. Obviously, the proposed VMD-KFCM algorithm
could obtain good decomposition results for three different fault state signals of the diesel engine.
It has a high diagnostic accuracy rate for different degrees signals of a certain fault.
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Figure 13. VMD-kernel-based fuzzy c-means clustering (KFCM) classification result of abnormal valve
clearance signals: (a) root mean square value (RMS) as feature vector; (b) Shannon entropy as feature
vector; (c) singular value as feature vector; and (d) distinction between normal signals and abnormal
valve clearance signals using singular value as feature vector.
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Figure 14. VMD-KFCM classification results: (a) classification result of insufficient fuel supply signals
and (b) classification result of abnormal common rail pressure signals.

For comparison, EMD/EEMD and KFCM were combined to diagnose the same signals above.
EMD/EEMD was used to adaptively decompose the original signal into multiple IMFs. The parameter
setting of KFCM algorithm was the same as above. Three IMFs with the highest correlation to original
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signal were used to compute feature vectors to input KFCM algorithm. Here, we still chose singular
values as feature vectors. Figure 15a–c shows the classification results of the EMD-KFCM method for
abnormal valve clearance, insufficient fuel supply, and abnormal common rail pressure, respectively.
Obviously, the classification effect of EMD-KFCM was not as good as VMD-KFCM. The boundaries
between different types of data points were not clear enough, and data points of the same fault
were not centralized. The accuracy of EMD-KFCM fault classification was much lower than that
of the proposed method. In addition, the result of EEMD-KFCM fault diagnosis was better than
EMD-KFCM. Especially for insufficient fuel supply, the accuracy of diagnosis increased obviously.
However, the overall accuracy was still lower than the proposed algorithm. The comparison of the
accuracy of three algorithms is shown in Table 5.
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Figure 15. EMD-KFCM classification results: (a) classification result of abnormal valve clearance;
(b) classification result of insufficient fuel supply signals; and (c) classification result of abnormal
common rail pressure signals.
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Next, supervised learning methods, BPNN and DBN, were used to classify the same faults for
comparison. BPNN was combined with the optimized-VMD, which means that the BPNN were
trained and tested by the three-dimensional feature vectors of VMD. In this paper, layer of BPNN
was set as 3 and the number of neurons in the hidden layer was 10 [34]. Here, another 50 sets of
data in different condition respectively were selected for training. After that, the same input data as
VMD-KFCM example were classified by trained BPNN and classification accuracy is shown in Table 5.
The classification accuracy of abnormal common rail pressure fault was only 74.7%, but the accuracy
of the other two kinds of fault was high. DBN has an excellent feature abstraction and data mining
ability, so 100 sets of original data in different condition respectively were used to train DBN directly.
There are two restricted Boltzmann machine (RBM) layers in DBN, and the number of neurons in
each hidden layer is 100. The momentum of each RBM was set to 0.5 [36]. The size of “mini-batches”
was set to 10 [47]. The learning rate was set to 1. However, DBN cannot effectively separate the
faults without VMD. This may be due to the complexity of engine vibration signals, or the insufficient
samples. Therefore, three-dimensional maximum singular values of IMFs were used to train and test
DBN. As shown in Table 5, the results were still not ideal. Next, more feature vectors were selected
to train DBN. For the three IMFs with relative maximal correlation to original signal, we calculated
seven kinds of parameters: the maximum singular value, kurtosis, Shannon entropy, root mean square
value, energy, fourth-order cumulant, and multi-scale sample entropy. At last, 21 dimensional feature
vectors were used to train DBN, and the final classification accuracy is shown in Table 5. For abnormal
valve clearance data, VMD-DBN was better than VMD-KFCM, and the classification accuracy was
100%. However, for the other two types of faults, VMD-KFCM still had a higher accuracy. The results
show that the deep learning method may need higher dimensions and more data for complex training
to get better results. Obviously, the proposed method had advantages in calculation efficiency and
algorithm simplicity.

Table 5. Comparison of classification accuracy.

Fault Classification Accuracy Abnormal Valve
Clearance

Abnormal Common
Rail Pressure Insufficient Fuel Supply

VMD-KFCM 98.2% 96% 98.7%
EMD-KFCM

EEMD-KFCM
68.8%
68.4%

82%
82%

83.3%
98%

VMD-BPNN 90% 74.7% 94%
DBN / / /

VMD-DBN (3D) 66.7% 34.7 65.3%
VMD-DBN (21D) 100% 81.3% 94.7%

5. Conclusions

To achieve accurate, efficient, and adaptive identification of diesel engine faults, a novel
fault diagnosis method based on optimized-VMD and KFCM was proposed in this paper. Firstly,
the correlation coefficient and energy ratio were used to optimize the mode number K, so that the VMD
algorithm could adaptively select the best K value for decomposition. Through the verification of
simulation signals, the decomposition effect of optimized-VMD was better than EMD, LMD, and EEMD.
Then VMD was combined with the KFCM algorithm. After comparing various parameters, maximum
singular values were input into KFCM as feature vectors for classification. Then three different kinds
of diesel engine faults were simulated in a bench test, and the vibration signals of the machine surface
were collected. To prove the effectiveness of VMD-KFCM, the proposed method was compared with
EMD-KFCM, EEMD-KFCM, VMD-BPNN, and VMD-DBN. The experimental results show that the
proposed method had obvious advantages in classification accuracy, simplicity, and efficiency. Finally,
the diagnosis accuracy of abnormal valve clearance, abnormal common rail pressure and insufficient
fuel supply were 98.2%, 96%, and 98.7%, respectively.
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However, there were still some further works to finish. Other parameters in VMD, such as
quadratic penalty, and the structure of the algorithm could be optimized to improve the effectiveness
of decomposition. Besides, the comparisons with supervised learning methods in this paper was
insufficient, the advantages of BPNN and DBN might not be fully exploited.
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