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Abstract: Despite the strengthening of vehicle emissions standards and test methods, nitrogen oxide
(NOx) emissions from on-road mobile sources are not being notably reduced. The introduction of
real driving emission (RDE) regulations is expected to reduce the discrepancy between emission
regulations and actual air pollution. To analyze the effects of RDE regulations on heavy-duty diesel
vehicles, pollutants emitted while driving were measured using a portable emission measurement
system (PEMS) for Euro 5 and Euro 6 vehicles, which were produced before and after RDE regulations,
respectively. NOx emissions were compared as a function of emissions allowance standards,
gross vehicle weight (GVW), average vehicle speed, and ambient temperature. NOx emissions from
Euro 6 vehicles were found to be low, regardless of GVW; emissions from both vehicular categories
increased with a decline in the average speed. To reflect real road driving characteristics more broadly
in the RDE test method for heavy-duty vehicles, it is necessary to consider engine power, which is
a criterion for classifying effective sections, in the moving average window (MAW) analysis method,
as well as including cold start conditions.

Keywords: NOx; heavy-duty diesel vehicles; vehicle emissions standards; real driving emissions;
in-service conformity; portable emission measurement system

1. Introduction

Emission allowance standards and test methods for vehicles are continuously being strengthened
to reduce the air pollutants emitted from diesel vehicles [1]. The Euro 6 standards have tightened the
limits for particulate matter and nitrogen oxide (NOx) by approximately 90% from the Euro 3 standards;
however, they have not contributed to the improvement of air pollution in large cities as much as
expected. The PM10 concentration in Seoul is more than twice that of Tokyo and London, and the PM2.5

concentration is more than double the World Health Organization’s (WHO’s) recommendation [2].
The PM10 concentration in Seoul has been continuously decreasing since 2001, but the NO2 concentration
has not shown a clear reducing trend [3]. The Joint Research Centre of the European Commission has
identified problems with NOx emissions of diesel vehicles produced under European regulations,
being 4 to 7 times higher than the indoor certification standards [4]. Considering that the main emission
source of NO2 in metropolises is on-road vehicles, vehicle emission regulations clearly have limited
effectiveness. Therefore, it is important to resolve the discrepancy between these emission regulations
and actual air pollution [3–5].

To reduce air pollutants, a portable emission measurement system (PEMS) for determining real
driving emissions (RDEs) for heavy-duty vehicles was implemented by the United States (U.S.).
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The U.S. Environmental Protection Agency (EPA) discovered a case in which seven heavy-duty vehicle
manufacturers manipulated the electronic control system (ECU) software to increase the fuel efficiency
of vehicles in high-speed driving conditions and imposed a penalty of approximately 1 billion USD [6].
As a measure to improve the system, the U.S. EPA developed the not-to-exceed (NTE) method, which
enforces RDE regulations via a PEMS, and enforced an in-use compliance test for heavy-duty vehicles
regarding gaseous substances starting with 2007 models [7,8].

In April 2019, the California Air Resources Board published a paper regarding lowering NOx
emissions, which includes three steps. Step 1 (2022–23) involves following the existing Federal Test
Procedure (FTP) Ramped Mode Cycle–Supplemental Emissions Test (RMC-SET) and idling standards.
Step 2 (2024–26) includes reinforcing the NOx reduction performance at low exhaust temperatures by
introducing a low-load test method. Step 3 (2027 and thereafter) regards further strengthening of the
NOx standards and test conditions and extending the useful life and warranty periods of engines [9].

In 2003, research in Europe led to the introduction of in-service conformity (ISC) for heavy-duty
vehicles using a PEMS. The European Commission Joint Research Centre conducted joint research
with the industry and implemented a moving average window analysis method, which they began
enforcing in 2013 when the Euro 6 standard was introduced [10,11]. The U.S. NTE method is used
to regulate NOx emitted excessively under high-speed, high-load conditions, whereas the RDE test
method for heavy-duty vehicles in Europe includes various driving conditions, such as urban road,
rural road, and motorways, as targets for regulation [12].

In September 2018, the European Union (EU) expanded the average output window of engines
from 20% or higher for Euro 6 step C to 10% or higher for Euro 6 step D and expanded the loaded vehicle
weight for test vehicles from 50–60% to 10–90%. In this way, they amended the related regulations to
enable tests under various real driving conditions [12,13]. Regarding the planned amendment of Euro
6 step E, the EU is considering the inclusion of a particle number (PN) measurement as well as a cold
start condition [14,15].

South Korea introduced Europe’s RDE test methods and emission allowance standards for light
diesel vehicles, which has been implemented simultaneously with the EU. However, heavy-duty
diesel vehicles (HDVs) have been introduced emission allowance standards with a time difference of
1–2 years, in contrast to the EU. With respect to the Euro 6 regulations for HDVs, South Korea has
introduced Europe’s RDE test method by enforcing ISC, which is an RDE test, for vehicles released in
or after January 2016. To respond to these RDE regulations, automobile manufacturers are developing
various engine technologies and improving the performance of existing aftertreatment systems, such as
the diesel oxidation catalyst, diesel particulate filter (DPF), lean NOx trap (LNT), and selective catalytic
reduction (SCR) [16–19].

The purpose of this study was to analyze the effects of introducing RDE regulations on HDVs.
The NOx emission characteristics of Euro 5 and Euro 6 HDVs that are in use in South Korea were
compared. Specifically, the characteristics of NOx emissions, gross vehicle weight (GVW), average
vehicle speed, and ambient temperature were analyzed. Notably, NOx emissions were calculated
as emissions per unit distance. This unit can be useful for calculating annual emissions of real road
driving vehicles in South Korea, using vehicle activity and emission factors [20,21]. In addition,
the effectiveness of the introduction of the RDE regulation can be verified by calculating the amount of
NOx reduction due to the introduction of the RDE regulation.

2. Materials and Methods

2.1. Test Vehicles and Driving Routes

The vehicles used for testing were HDVs satisfying the Euro 5 and Euro 6 emission allowance
standards with various mileages. The vehicles were classified as categories N2, N3, and M3 according
to their GVWs and the European classification method. Test vehicles included 4 Euro 5 and 50 Euro 6
vehicles. A total of 77 RDE tests were performed by repeating the tests on some vehicles.
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Figure 1 shows the test routes for the RDE of Euro 6 heavy-duty vehicles. The measurements for
Euro 5 were made while driving general roads instead of a given driving route. The driving routes
shown in Figure 1 were divided into route A and route B, which consist of general roads passing
through Incheon, Seoul, and Paju in South Korea. Seoul is the capital city of Korea, and Paju and
Incheon are the cities near Seoul. Route A is the test-driving route, consisting of urban roads (45%),
rural roads (25%), and motorways (30%) for the N2 and M3 categories. Route B is a test-driving route
consisting of urban roads (20%), rural roads (25%), and motorways (55%) for the N3 category. The trip
shares for Euro 5 and Euro 6 vehicles are listed in Table 1. The trip shares of the test vehicles were
less than 50 km/h for urban roads, 50–75 km/h for rural roads, and 75 km/h or higher for motorways,
with an error range of ± 5%. The Euro 5 test vehicles for RDE were meant for testing before the
implementation of the ISC test regulation in Korea (enforcement was initiated in 2016). Therefore, there
were differences among the urban road, rural road, and motorway ratios with Euro 6 vehicles tested
according to the ISC test regulations. The fuel used was the diesel fuel typical in Korean petrol stations
with less than 5 ppm sulfur. Despite the 10 ppm manufacturing standards, refineries voluntarily supply
high-quality automotive fuel with a sulfur content of 4–5 ppm.
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Figure 1. Real driving emission (RDE) test routes for heavy-duty vehicles. (a) RDE test route A for
trucks with gross vehicle weights (GVWs) less than 12 tons; urban (U): 45%, rural (R): 25%, motorway
(M): 30%. (b) RDE test route B for trucks with GVWs more than 12 tons and buses; urban (U): 20%,
rural (R): 25%, motorway (M): 55%.
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Table 1. Specifications of tested heavy-duty diesel vehicles.

Emission Regulations Vehicle Category Gross Vehicle
Weight (Ton) Driving Work Driving Route

(Trip Shares) Test Number

Euro 5
N2

7

ETC × 3
(U 4:R 3:M 3) 2

10 4

N3 33 (U 3:R 2:M 5) 4
M3 12 (U 4:R 3:M 3) 2

Euro 6 step C
N2 3.5–7

WHTC × 5
route A (U 4.5:R 2.5:M 3.0) 13

N3 7–40 route B (U 2.0:R 2.5:M 5.5) 48
M3 12–16 4

ETC: European Transient Cycle; WHTC: World Harmonized Transient Cycle; U: urban; R: rural; M: motorway;
category N2(truck): a maximum mass exceeding 3.5 tons but not exceeding 12 tons; category N3(truck): a maximum
mass exceeding 12 tons; category M3(bus): a maximum mass exceeding 5 tons.

The RDE test conditions consisted of 82.5 kPa or higher atmospheric pressure and 5–37 ◦C
ambient temperature. Loaded vehicle weight was configured to be 50–60% of the maximum proper
freight weight. The road driving time for Euro 6 vehicles was set on the basis of a driving work of
approximately five times the work of the World Harmonized Vehicle Cycle (WHTC), which was the
certification test mode. The road driving time for Euro 5 vehicles was set on the basis of a driving
work of approximately three times the work of the European Transient Cycle (ETC), which was the
certification test mode, taking 3–3.5 h. The work of three times the ETC of Euro 5 is known to be
equivalent to the work of five times the WHTC of Euro 6 [10,22].

2.2. On-Road Emission Test Equipment

During the RDE test for Euro 6 vehicles, the air pollutants were measured using
a Semtech–ECOSTAR gas analyzer, which consists of an exhaust flow meter (EFM) for measuring
the flow rate of the exhaust gas; devices for measuring gaseous substances, including non-dispersive
infrared (NDIR) detection for CO2, non-dispersive ultraviolet (NDUV) for CO and NOx, and a flame
ionization detector (FID) for total hydrocarbons (THC); and a power distribution control module, which
maintains constant flow rates and temperatures of the sampling gases. Each vehicle was equipped with
a controller area network (CAN) communication system for acquiring data such as the engine output
from the ECU; a global positioning system (GPS) for checking environmental conditions for driving;
and temperature, pressure, humidity, and altitude sensors. The PEMS equipment was installed as
shown in Figure 2.

An OBS-2200 gas analyzer was used for Euro 5 vehicle tests, consisting of a volume flow meter,
power supply unit, power control unit, external input unit, GPS, and gas concentration analyzer.
The gas concentration analyzer measures CO2, CO, THC, and NOx concentrations in 1 Hz cycles.
To convert the measured concentrations into masses, the exhaust gas volume flow rate is required.
Thus, the exhaust gas volume flow rate was measured using a Pitot tube flow meter [23]. The measured
flow rate was converted to a value of the standard condition using the temperature and pressure of
the exhaust gas. The performance of the PEMS was verified in accordance with CFR 1065, which is
the U.S. federal engine testing standard. The pollutant emission measurement results of the PEMS
were compared with the chassis dynamometer measurement results, and no statistically significant
differences were observed between the two [24,25]. Table 2 lists the specifications of the PEMS used for
RDE testing of the Euro 5 and Euro 6 vehicles.
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Figure 2. Schematic diagram of the experimental setup for Euro 6 heavy-duty vehicles (Euro 5
vehicles used a Horiba OBS-2200 analyzer). FID: flame ionization detector, ECU: electronic control
system, FEM: fuel economy meter, GPS: global positioning system, ICM: in-vehicle control module,
PDCM: power distribution and control module.

Table 2. Characteristics of portable emission measurement system (PEMS) analyzers.

Gas Analyzers Euro 6 Vehicles Euro 5 Vehicles

Manufacturer Sensors Inc. Horiba
Model Semtech–ECOSTAR OBS-2200

CO (Measuring range) NDUV (0–8 vol%) NDIR (0–10 vol%)
THC (Measuring range) FID (0–30,000 ppm C) FID (0–10,000 ppm C)
NOx (Measuring range) NDUV (0–3000 ppm) CLD (0–3000 ppm)

Exhaust flow EFM4 (Pitot flow meter) Volume sampler

NDIR: Non-dispersive infrared detection; CLD: chemiluminescence detection; NDUV: non-dispersive ultraviolet;
FID: flame ionization detector; EFM: exhaust flow meter; THC: total hydrocarbons; NOx: nitrogen oxide.

2.3. Data Analysis

The moving average window (MAW) analysis method, which is the calculation method for the
RDE test in Europe, was used to calculate the value corresponding to the 90 percentiles. The emissions
for HDVs are regulated by the average emissions per engine work; however, 1 km unit sections were
set to compare the pollutants emitted during the real driving of Euro 5 and Euro 6 vehicles. The data
were analyzed by classifying the emissions at average vehicle speeds in 10 km/h increments within
each section [21,26].

3. Results and Discussion

3.1. Euro 5 and Euro 6 Vehicle Emissions

The vehicles used in the RDE test were heavy-duty trucks and buses, and the loaded vehicle
weight generally increased with GVW. The loaded vehicle weight of the test vehicles was set to 50–60%
of the maximum loaded vehicle weight. Figure 3 shows the RDE measurement results (CO, THC, NOx)
of HDVs. The mileage of the vehicles used for this test was about 50,000 to 300,000 km. Thus, due to
aging, their air pollutant emissions recorded during the test period could be higher than at the time
they were certified. The CO and THC emissions satisfied the indoor emission allowance standards in
real driving conditions on the road. The NOx emissions allowance standards of ISC for HDVs in South
Korea was 0.92 g/kWh from 2016 to 2017, which is twice the engine test standard (WHTC: 0.46 g/kWh),
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and was revised to 0.69 g/kWh in 2017 [27]. Herein, NOx emissions from some models exceeded
the standards. Compared with the Euro 5 HDVs, NOx emissions from these vehicles decreased by
approximately 89% [28,29].
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Figure 3. Specific on-road emissions from Euro 6 heavy-duty vehicles in comparison with Euro 5 tested
vehicles of trucks and buses. Vehicles are categorized on the basis of their GVWs.

The larger the GVW, the higher the NOx emissions from Euro 5 HDVs on all road types; however,
the Euro 6 HDVs showed extremely low NOx emissions despite their high GVWs. Thus, the NOx
emissions from Euro 6 HDVs with ≥ 10 ton GVWs significantly improved compared to those from
Euro 5 HDVs. Furthermore, Euro 6 HDVs generally showed relatively low NOx emissions regardless
of GVW [30].

3.2. Driving Distance and Gross Vehicle Weight

Figure 4 shows the real driving condition NOx emissions per driving distance (g/km) for the Euro
5 and Euro 6 test vehicles. Even though the emissions per driving distance are different from those in
the certification standard unit of heavy-duty vehicles, these are more direct in terms of evaluating the
actual contribution of vehicle exhaust gases to air pollution. The average real driving condition NOx
emissions from Euro 6 HDVs was 0.310 g/km, which is approximately 88.5% lower than the 2.692 g/km
of the Euro 5 HDVs. The Euro 5 diesel vehicles with higher GVWs showed higher NOx emissions,
but the Euro 6 vehicles showed generally low NOx emissions, regardless of GVW [30]. The reason for
this observation can be attributed to the technological improvement of the engine and aftertreatment
system in response to RDE regulations [16–19].
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Figure 4. On-road NOx emissions from Euro 5 and Euro 6 heavy-duty diesel vehicles (HDVs) as
a function of GVW.

3.3. Average Vehicle Speed and Gross Vehicle Weight

Figure 5 shows a comparison of NOx emission characteristics under various average vehicle
speed conditions between Euro 5 and Euro 6 HDVs. Data analysis was performed for trucks with 7
and 10 tons of GVW using the 1 km average window method. As verified by the characteristics of the
road types, it was found that the NOx emissions decreased under all driving conditions due to the
application of the Euro 6 regulations. The trucks with a GVW of 10 tons had a higher NOx reduction
effect than the trucks with a GVW of 7 tons did. In particular, the NOx emissions from the 10 ton
trucks decreased to approximately 90% of the Euro 5 level under urban driving conditions of less than
40 km/h [30].

Figure 6 shows the NOx emissions under various average vehicle speed conditions for Euro 6
HDVs. The NOx emissions from trucks with GVWs of 15 and 40 tons were lower than those of trucks
with GVWs of 7 and 10 tons at all the average speed ranges. The trucks and large buses with GVWs
of 40 tons or higher, which were often driven under high-speed conditions, showed no significant
differences compared to the 7–15-ton trucks. SCR systems applied to Euro 6 HDV can maintain low
levels of NOx emissions regardless of GVW due to the improved low temperature performance of
SCR catalysts and the insulation of exhaust lines [31,32]. The current vehicle emission factors were
calculated as a function of the average vehicle speed by driving in various modes separately from
the certification test mode in the chassis dynamometer. Figure 6 shows the RDE results determined
through the 1 km average window analysis method, which can be sufficiently expressed in the form
of current vehicle emission factors. Furthermore, as they consider real driving on urban roads, rural
roads, and motorways in the Seoul Metropolitan Area, they can reflect the realistic conditions in a more
effective manner. It is expected that reliability and reality could be enhanced by using enormous
quantities of real driving test results for emission factor calculations [21,33].
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Figure 6. On-road NOx emissions from Euro 6 HDVs as a function of the average vehicle speed.

3.4. Ambient Temperature

Figure 7 shows the real driving condition NOx emission characteristics of Euro 6 HDVs as
a function of the ambient temperature. During the testing period, the ambient temperature ranged
from 5 to 37 ◦C. Some N2 category vehicles with a GVW of 7 tons or less showed high NOx emissions at
an ambient temperature of 30–37 ◦C. The NOx emissions in the range of 30–35 ◦C were slightly higher
than in the normal test temperature range (15–25 ◦C). Although the number of measured vehicles
was insufficient, the NOx emissions at 5–10 ◦C were slightly higher than at normal test temperatures
(15–25 ◦C) [33,34].
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As is evident from Figure 7, NOx emissions were found to be high when the temperatures were
less than 10 ◦C and when these were higher than 30 ◦C. Low temperatures were found to have no
significant effect on NOx emissions because most HDVs have insulated exhaust pipes; the temperature
of the exhaust gas did not fall below the activation temperature of the catalyst under the influence of
the external environment. Increasing the utilization rate of the exhaust gas recirculation apparatus at
an ambient temperature of 30 ◦C or higher may cause high temperature exhaust gases to enter the
combustion chamber, resulting in unstable combustion of the engine. In these cases, manufacturers
usually reduce the EGR rate to protect the engine [19]. However, as shown in Figure 7, most vehicles
showed significantly lower values than the emission allowance standards at high temperatures, except
for select models. Therefore, even at low or high ambient temperatures, aftertreatment devices, such as
SCR devices, can sufficiently reduce NOx emissions. Various test results are needed to confirm the
correlation with the ambient temperature. In Korea, the ISC regulation of HDVs has been in effect
since 2016, and the Euro 5 HDV was not subject to ISC regulation. Most Euro 5 HDVs in use in Korea
are currently out of their warranty periods, and finding ISC target vehicles is a challenge [27]. Due to
this reason, there are fewer tests conducted for Euro 5 HDVs. The number of test vehicles cannot be
used as a representative value as there are very few test vehicles, and therefore only Euro 6 vehicles are
considered. For this reason, the Euro 5 HDV is not included in Figure 7, as the data of ISC test results
of Euro 5 HDV is insufficient.

4. Conclusions

In this study, air pollutants emitted during on-road driving of Euro 5 and Euro 6 HDVs were
compared. To reduce excessive NOx emissions from these vehicles under real driving conditions,
the effect of an RDE management system was studied. The conclusions of this study can be summarized
as follows:

• HDVs produced after the introduction of the Euro 6 emission allowance standards and RDE
management system generally satisfied the real driving emission allowance standard. Compared
with the Euro 5 HDVs, NOx emissions from these vehicles decreased by approximately 89%.
The RDE average NOx emissions for the Euro 6 HDVs were lower than the RDE average for
light-duty diesel vehicles (Euro 6b, 0.56 g/km) [16,35].

• NOx emissions from Euro 5 HDVs increased with increasing GVW; however, Euro 6 HDVs
showed low NOx emissions regardless of the GVW.

• NOx emissions from both Euro 5 and Euro 6 HDVs increased with a decrease in the average
vehicle speed. NOx emissions from HDVs weighing 15 and 40 tons were lower than those from
vehicles, weighing 7 and 10 tons on average.

• The introduction of emission allowance standards reduced the difference in NOx emissions from
indoor certification tests and real road driving, thereby it will be expected to reduce the NOx
emissions in the transport sector.

To reflect real road driving characteristics more broadly in the RDE test method for heavy-duty
vehicles, it is necessary to consider engine power, which is a criterion for classifying effective sections,
in the MAW analysis method, as well as including cold start conditions. Application of these suggestions
could improve NOx emissions under low-speed urban driving conditions.
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