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Abstract: In the proposed paper, non-equilibrium and equilibrium models of heat and moisture
transfer through wet building materials are presented and compared. In the former, the mass transfer
between liquid and gaseous moisture results from the difference between the partial pressure of
water vapor and its saturation value. In the second model, the equilibrium between both phases
is assumed. In the non-equilibrium model, liquid moisture can be in the continuous (funicular) or
discontinuous (pendular) form. The transfer of moisture for each proposed model is tightly coupled
with the energy transfer, which is assumed to be an equilibrium process. The time step and grid size
sensitivity analysis of both numerical models are performed primarily. The verification of the model
is based also on the numerical data available in literature. Finally, obtained with considered models,
temporal variations of moisture content in three locations in the computational domain are compared.
Reasonable conformity of results is reported, and discrepancies related to differences in formulations
of models are discussed.

Keywords: building material; drying; equilibrium model; heat and moisture transfer; non-equilibrium
model; numerical modeling; porous material

1. Introduction

Transfer of moisture in porous building materials is an important phenomenon related to the
drying building structures. It includes concurrent multi-phase transfer of water in the multi-scale
porous structure which is additionally accompanied by heat flow. Water may take the form of a gaseous
phase as well as a continuous (funicular) or discontinuous (pendular) liquid phase.

Numerical modeling of related processes is a focus of concern for many researchers around the
world. Several approaches to model combined moisture and heat transfer in various porous materials
may be found in literature.

Early attempts to derive coupled balance equations of moisture and energy were undertaken by
Whitaker [1]. The concept of representative elementary volume was utilized for the rigorous derivation
of transport equations. Salagniac et al. [2] proposed a numerical model of drying a porous material
during combined convective, infrared, and microwave heating. The one-dimensional model, based
on the approach proposed in [3], consisted of energy, dry air, and total moisture balance equations.
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The infrared and microwave heating affects were treated as the surface and volumetric sources,
respectively. Early models of combined heat, air, and moisture transfer in components of the building
were developed and validated by several authors as a part of the Heat, Air and Moisture Standards
Development (HAMSTAD) project [4].

A two-equation model of the process of drying wet building materials, which accounted for the
presence of water and vapor, was proposed by Van Belleghem et al. [4,5]. Capillary pressure and
temperature were assumed as independent variables. The model was utilized to study the concurrent
capillary water transfer and vapor diffusion in one-dimensional (1D) and two-dimensional (2D) domains.
This approach was found to be superior over those previously developed by the same authors [6,7],
where transported variables were the relative mass fraction of water vapor and temperature. It was
pointed out that the models presented in [6,7] were valid for the hygroscopic range only (i.e., for the
relative humidity below 98%) where the water was discontinuous across the domain (i.e., in funicular
form) and the diffusive transfer of water vapor was dominant. In all the models presented above,
the effect of the motion of dry air was neglected. In turn, Janetti et al. [8] presented a two-equation
model of moisture and heat transferred across porous building material (i.e., silicate brick). Relative
humidity and temperature were assumed as independent variables. The model was implemented
in the framework of the commercial package COMSOL. Results predicted with the proposed model
were positively validated with experimental data. Belleudy et al. [9] proposed a computational model
capable of accounting for the transfer of moisture and heat across walls of the complex structure
and for accompanying leakage air flow between components of the wall. In the model three main
phenomena were accounted for, namely vapor diffusion and capillary suction in the porous medium
and advective moist air transfer through thin channels. The transport equations were expressed in
terms of two parameters, namely the temperature of the medium and relative humidity. A model of
the moisture transfer in the clay brick was developed Allam et al. [10]. This model was based on the
same driving potentials used in [9].

The extended model of moisture and heat transfer in homogeneous porous building materials
was presented in [11,12]. It consisted of four transport equations, describing vapor, dry air, liquid
moisture, and energy transport. The densities of dry air and water vapor as well as liquid moisture
volume fraction and temperature were used as independent variables.

The problem of concurrent moisture and energy transport was also solved in the context of
hygroscopic porous textiles or fibrous materials [13]. In the model proposed in [13], temperature,
water vapor concentration, moisture concentration in fibers, and water content in the fibrous batting
were used as independent variables. This model accounted for moisture flow driven by the partial
pressure of water vapor, the movement of liquid condensate, the existence of a supersaturation state
in the condensing region, and dynamic moisture absorption by fibers in fibrous materials. In turn,
in the model of hygrothermal behavior of protective garments subjected to high external radiative
heat flux presented by Łapka et al. [14,15], the governing equations for moisture and heat flow were
formulated using the volume fraction of bound water, vapor density, and temperature. The model
developed by Łapka et al. [14,15] also dealt with conductive and radiative heat transfer accompanied
by the diffusion of the vapor through fabrics and airgaps and with phase transition of moisture to or
from the bound state in fabric fibers.

Recently, both models proposed in this paper were investigated in [16], but no radiative heat
transfer at the dried surface was considered nor time step size or mesh density sensitivity analysis was
performed. Presented temperature variations at the selected point in the domain were compared with
the reference numerical data. A good coincidence of results predicted with the equilibrium model and
the reference was observed.

In this study two different approaches to the coupled moisture and heat transfer are investigated.
In the first one, the transfer of moisture has a non-equilibrium nature. To describe the transport processes
the multi domain approach is adopted, so separate mass transfer equations for liquid water and water
vapor are formulated, and interphase mass transfer processes are expressed as source terms, related also
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to microstructure of the porous medium. The mass transfer between liquid and gas phases is driven by
the difference between the partial pressure of moisture in the gas phase and its saturation value. The local
thermal equilibrium between all phases is assumed, so in the non-equilibrium model the independent
variables are vapor density, water volume fraction and temperature. The second considered approach,
the equilibrium one, assumes the existence of equilibrium mass and energy transfer between the phases.
Two independent variables are used: total moisture content and temperature. On this basis the total
moisture and energy transfer equations are formulated.

The former model is implemented as the in-house simulation code while the second one is
implemented in the framework of the commercial software ANSYS Fluent® (v.19.2, ANSYS Inc.,
Canonsburg, PA, USA) using customization interfaces like user-defined function (UDF), user-defined
memory (UDM), and user-defined scalar (UDS). Proposed approaches are justified by further plans
regarding the development of simulation codes. The simplified, equilibrium model will be used
for optimization of the drying process in the simple geometries considered only. This demands
development of fast, robust software, even if simplified physics of the process is taken into account.
The non-equilibrium model will be used in the future for full-scale simulations of the processes
involving real geometries and coupled transport phenomena in building material and ambient air,
thus it was implemented in the framework of the commercial software. This will allow for fast and
easy application of complex three-dimensional (3D) geometries.

In the next sections of the paper both models are presented with relevant boundary and initial
conditions as well as all closing relationships. Moreover, the considered case is described, and data needed
in numerical simulations are presented. Then the time step and mesh size sensitivity analyses were
carried out for both considered numerical models. Subsequently, the models are verified in the simplified
way and the results predicted by them are compared in three points in the computational domain.

2. Descriptions of Models

2.1. General Assumptions

The considered building material, namely brick, is treated as a porous material. The solid phase
is a material of brick in which pores, water, and humid air are present. Water can be in a continuous
(funicular) or discontinuous (pendular) state. The sum of volume fractions of the solid phase, εs, liquid
phase (funicular and pendular), εl, and vapor, εv, is equal to 1; so, εs + εl + εv = 1. Volume fraction of the
solid phase is constant, so volume fraction of pores is also constant (i.e., εp = εl + εv = const). The amount
of water in the pores of the building material changes due to transport driven by the gradient of the
capillary pressure as well as evaporation and condensation processes, while the amount of vapor
changes due to diffusion and phase change processes as well. The thermal equilibrium across phases is
assumed in both models, so the single equation of energy transfer is considered. In the non-equilibrium
model liquid and heat transfer are related to moisture movement, but in the pendular state of water they
are neglected. The total pressure, p, in the porous medium is assumed constant and equal to 101,325 Pa,
which allows for simplification of both mathematical models and elimination of the equation for balance
of air [11,12]. In the two subsequent sections both models of concurrent moisture and heat transfer,
namely the non-equilibrium and equilibrium ones, are presented. They are supplemented with closure
relations as well as boundary and initial conditions, which are also presented below.

2.2. Non-Equilibrium Model

In the non-equilibrium model the finite rate of condensation and evaporation is assumed. Hence,
the following separated balance equations for condensed water and water vapor are taken into account:

∂
∂t

(
εgρv

)
+∇ · jv =

.
mlv (1)
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∂
∂t
(εlρl) +∇ · jl = −

.
mlv (2)

Mass fluxes of water vapor and water are related to density of vapor, ρv, and capillary pressure,
pc, respectively, by the following formulas:

jv = Dv,e f∇ρv (3)

jl = Kl∇pc (4)

where Dv,ef and Kl are the effective water vapor diffusivity and water permeability, respectively.
All closure relations are listed in Section 2.4 and material properties are listed in Table 1. Intensity of
evaporation and condensation, ṁlv, is driven by the difference between the actual and equilibrium
saturation density in pores of the wet building material and is given by the following equation:

.
mlv =

 hvlas
εl
εp
(ρv,sat − ρv) − for evaporation

hvlas(ρv,sat − ρv) − for condensation
(5)

The coefficient hvl is the mass transfer coefficient between water vapor and water, while as

describes pore area per unit volume. The mass flow rate per unit volume assumes a positive value for
evaporation, and negative one for condensation. The εl/εp ratio denotes the part of the pore volume
occupied by liquid moisture.

The equilibrium heat transfer between water, moist air, and solid material of brick is assumed, so
the locally averaged temperature is equal to its phase-wise averaged counterparts and the following
single energy balance equation is considered:

∂
∂t

[
(ρc)e f T

]
+∇ · ( jlhl) +∇ · ( jvhv) +∇ · ( jaha) = ∇ ·

(
ke f∇T

)
−

.
mlv∆hlv. (6)

where ∆hlv is the latent heat of evaporation.

2.3. Equilibrium Model

The equilibrium model of moisture and heat flow in the porous building material consists of
balance equations for total moisture and energy. The former is the sum of water and water vapor
contents. After summation of transport Equations (1) and (2), the total moisture transport equation
takes the following form:

∂W
∂t

+∇ · jl +∇ · jv = 0 (7)

while the energy transfer equation is as follows:

∂H
∂t

+∇ · ( jlhl) +∇ · ( jvhv) +∇ · ( jaha) = ∇ ·
(
ke f∇T

)
(8)

where the total volumetric moisture content and total enthalpy are given with the following equations:

W = Wl + Wg = ρlεl + ρvεg (9a)

H = ρsεshs + ρlεlhl + ρvεghv + ρaεgha (9b)

Mass fluxes of water and water vapor are driven with gradients of capillary pressure and density
of vapor, given by Equations (3) and (4), respectively. They can be expressed as functions of two
independent variables (i.e., total moisture content, W, and temperature, T) in the following ways:

jv = DT
v∇T + DW

v ∇W and jl = DT
l ∇T + DW

l ∇W (10)
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Thus, the moisture balance equation assumes the following form:

∂W
∂t

+∇ ·
[(

DT
v + DT

l

)
∇T +

(
DW

v + DW
l

)
∇W

]
= 0 (11)

Based on the above representation of moisture fluxes and definitions of specific enthalpies
(Section 2.4), the energy balance equation takes the following form:

∂
∂t

[
(ρc)e f T

]
+


(
DT

v cp,v + DT
l cl + DT

a cp,a
)
∇T

+
(
DW

v cp,v + DW
l cl + DW

a cp,a
)
∇W

 · ∇T = ∇ ·
(
ke f∇T

)
−

.
mlv∆hvl (12)

The transport coefficients present in Equations (10)–(12) are defined as follows:

DT
v = −DT

a = −MaMv
MgBT Dv,e f

∂pv
∂T and DT

l = Kl
∂pc
∂T

DW
v = −DW

a = −MaMv
MgBT Dv,e f

∂pv
∂W and DW

l = Kl
∂pc
∂W

(13)

The evaporation and condensation intensity is obtained from the equation:

.
mlv = dWv/dt (14)

where the water content in the gaseous and liquid phase can be determined with the equation:

Wv =
W/ρl − εp

1/ρl − 1/ρv
and Wl =

εp −W/ρv

1/ρl − 1/ρv
. (15)

The main difference between the presented models in this and previous sections is the way of
accounting for the mechanism of evaporation and condensation. In the non-equilibrium model, it
is driven by the difference between actual density of water vapor and its value corresponding to
the saturation state, so the finite rate of water transport between water and humid air is accounted
for. Rate of moisture transfer across the phase interface is also related to the local microstructure of
the porous medium (area density) which enables more accurate modeling of underlying processes
but also needs more specific closure relations. This statement of the problem requires at least three
variables, which account for water content in liquid and vapor phases as well as temperature. In the
fully equilibrium model, changes in the moisture content of the liquid and vapor forms are established
immediately, so water content in the liquid and vapor phases are tightly coupled. In this model two
variables are enough to capture concurrent moisture and heat transfer, namely total moisture content
and temperature. Moisture content in both phases can be immediately determined with Equation (15).

2.4. Material Properties and Closure Relationships

The systems of transport equations, Equations (1), (2), and (6) as well as Equations (11) and (12),
are closed by the following relationships [6]:

• Pore area per unit volume:

as =
6

dav(1− εs)
(16)

• Vapor diffusivity in pores:

Dv,e f =
2.61 · 10−5Mv(1−W/Wcap)

CdryBT
[
0.503(1−W/Wcap)

2 + 0.497
] (17)
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• Effective thermal conductivity of the moist brick:

ke f = ks + 0.0047W (18)

• Water permeability in the brick:

Kl =
1.1437 · 10−9[

1 + (1.76 · 10−5pc)
4.3]1.6

(19)

• Vapor saturation pressure:

pv,sat = 614.3 exp
(
17.06

T − 273.15
T − 40.25

)
(20)

• Modified saturation pressure:

pv = pv,sat exp
(
−

pcMv

ρlBT

)
(21)

• Liquid saturation:

s =
εl

1− εs
(22)

• Retention curve which was applied to find the capillary pressure:

W(pc) = Wcap


0.846

[
1 +

(
1.394 · 10−5pc

)4
]−0.75

+

0.154
[
1 +

(
0.9011 · 10−5pc

)1.69
]−0.408

 (23)

• Water vapor density for saturation conditions:

ρv =
pvMν

BT
(24)

• Effective heat capacity:

(ρc)e f = εsρscs + εlρlcl + εgρacp,a + εgρvcp,v (25)

• Specific enthalpies:

hs = cs
(
T − Tre f

)
and hv = cp,v

(
T − Tre f

)
+ ∆hvl

hl = cl
(
T − Tre f

)
and ha = cp,a

(
T − Tre f

) (26)

In addition to these relationships, the ideal gas relationship was applied for calculations of dry
and moist air as well as vapor parameters. Some closure relations, like for vapor diffusivity, effective
thermal conductivity, and water permeability, depend on the type of material and its microstructure.
Therefore, they are measured and presented in the form of correlations.

All simulations presented in this paper were carried out for ceramic brick, whose thermophysical
properties are presented in Table 1.



Energies 2020, 13, 214 7 of 13

Table 1. Thermophysical properties assumed during simulations [17].

Property Symbol and Unit Value

Universal gas constant B (J/kmol/K) 8314
Dry air specific heat at constant pressure cp,a (J/kg/K) 1005.0

Water specific heat cl (J/kg/K) 4192.1
Brick specific heat cs (J/kg/K) 840.0

Vapor specific heat at constant pressure cp,v (J/kg/K) 1875.2
Water vapor resistance diffusion factor Cdry 24.79

Average pore diameter dav (m) 1.6 × 10−5

Mass transfer coefficient between vapor and water in the porous medium hvl (m/s) 10−4

Brick thermal conductivity ks (W/m/K) 1.0
Dry air molecular mass Ma (kg/kmol) 28.86
Vapor molecular mass Mv (kg/kmol) 18

Capillary moisture content Wcap (kg/m3) 130.0
Volume fraction of pores (brick porosity) εp 0.13

Latent heat of evaporation ∆hvl (J/kg) 2.5 × 106

Water density ρl (kg/m3) 1000.0
Brick density ρs (kg/m3) 2087.0

3. Numerical Implementation

3.1. Description of the Studied Case

Numerical calculations were carried out for drying ceramic brick with a thickness equal to L = 3 cm
which is schematically presented in Figure 1. Only the top wall of the sample was in contact with the
drying medium (i.e., air). The other walls (i.e., bottom and side walls) were adiabatic and impermeable
for moisture. Therefore, moisture and heat transfer in the considered computational domain may be
approximated by the one-dimensional (1D) transfer process. This case corresponds to an experimental
setup in which only one surface of the sample is exposed to drying medium, while the others are
insulated and sealed.
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The top wall of the computational domain was in contact with ambient air which maintained a
constant temperature and relative humidity equal to Tamb and ϕamb, respectively. On this wall boundary
conditions for moisture and energy transfer equations were imposed. The formulation of both boundary
conditions depends on the type of model, whether non-equilibrium or equilibrium, so details are
presented separately.

For the non-equilibrium model, the boundary conditions for the moisture balance equations are
related to the state of the water at the surface. For the first period of drying, in which water in the
pendular state was present at the boundary and evaporation from the surface occurred, mass fluxes of
gaseous and liquid moisture were as follows:(

Dv,e f∇ρv
)
w
= jv,w = 0 (27)

(−Kl∇pc)w = jl,w = hm

(
ρv,w

ρg,w
−Yamb

)
(28)

These boundary conditions are valid for s > smin = 0.25, when the liquid saturation is higher than
the minimal saturation for water in the pendular form. For the second period of drying, in which the
liquid saturation dropped below the minimum saturation level (i.e., s < smin = 0.25) mass fluxes of
gaseous and liquid moisture were as follows:

(
−Dv,e f∇ρv

)
w
= jv,w = hm

(
ρv,w

ρg,w
−Yamb

)
(29)

(−Kl∇pc)w = jl,w = 0 (30)

The thermal boundary condition for Equation (6) on the top wall was as follows:

(
−ke f∇T

)
w
= ht(Tw − Tamb) +

σ
(
T4

w − T4
amb,rad

)
1/εw + 1/εamb − 1

+ ∆hlvjl,w (31)

where the last term on the right-hand side of Equation (31) refers to liquid moisture evaporation or
condensation on the top wall. The second term accounts for the surface radiative heat transfer between
the heated surface and surroundings.

For the equilibrium model the unique boundary condition for the moisture and heat transfer were
defined as follows:

jv,w + jl,w = hm
(
ρv,w − ρv,amb

)
(32)

(
−ke f∇T

)
w
+ jv,whv,w + jl,whl,w = ht(Tw − Tamb) +

σ
(
T4

w − T4
amb,rad

)
1/εw + 1/εamb − 1

(33)

where mass fluxes and enthalpies are given by Equations (9) and (25), respectively.
Boundary conditions parameters assumed in simulations were as follows: the temperature and

relative humidity of drying air were equal to Tamb = 23.8 ◦C and φamb = 44%, respectively, the heat transfer
coefficient was ht = 22.5 W/m2/K, while the mass transfer coefficient was hm = 0.0258 kg/m2/s. The radiative
heat flux at the dried surface, present in boundary conditions, Equations (31) and (33), involved
emissivities at the top wall and surrounding surfaces equal to εw = 0.93 and εamb = 0.97, respectively
and the ambient radiation temperature was equal to Tamb,rad = 23.3 ◦C. The Stefan–Boltzmann constant
was equal to σ = 5.67 × 10−8 W/m2/K4. Initial conditions for transport equations were as follows:
the uniform brick temperature was T0 = 23.8 ◦C and the uniform water saturation was s0 = 97%, which
corresponded to the volumetric moisture content of W0 = 126.1 kg/m3.
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3.2. Numerical Implementation of Models

3.2.1. Non-Equilibrium Model

The non-equilibrium model defined by Equations (1), (2), and (6) with boundary and initial
conditions given by Equations (27)–(31), was implemented in the framework of the finite volume
method based commercial software ANSYS Fluent®. Development of the numerical model required
application of advanced customization interfaces, such as the user defined function (UDF), user
defined scalar (UDS), and user defined memory (UDM). The computational model was constrained to
two-dimensional (2D) geometry. Numerical calculations were conducted in the following way: For the
considered case the model was configured to simulate 1D moisture and heat transfer in the ceramic
brick (see Figure 1). The basic mesh had Nx = 60 elements along the brick thickness, while only one
element was used along the brick width. The basic time step size was equal to ∆t = 5 s, which allowed
for stable simulations to be carried out.

3.2.2. Equilibrium Model

The equilibrium model of moisture and heat transfer defined by Equations (11) and (12) with
boundary and initial conditions given by Equations (32) and (33), was implemented in the framework
of the in-house numerical code. The considered transport equations were discretized on the 1D
control volume mesh. To simplify implementation of the boundary condition on the top surface,
the “half” control volume was generated at this boundary and the outermost node was coincident
with the surface.

The basic simulations were carried out for the uniform spatial 1D grid which had Nx = 60 elements
across the computational domain. The implicit Euler scheme was applied for discretization of transient
terms in both equations. The time step of ∆t = 0.5 s was found to be enough to provide stable solutions.
The idea of a separated solver was utilized. This means that in each iteration the balance equation for
moisture, given by Equation (11), was solved first and then the supplementary material properties
(Equations (17)–(19)), mass fluxes (Equations (3) and (4)), as well as volumetric moisture contents in
gaseous and liquid phases (Equation (15)), were evaluated. In the last step the balance equation of
energy, given with Equation (12), was solved.

4. Results and Discussion

Primarily, the time step size and mesh density sensitivity analysis were carried out separately
for both considered numerical models. The main objective of this step was the assessment of the
correctness of numerical implementations of the models. Evolutions of the numerically predicted
temperature and total moisture content in the brick at 1 cm depth were predicted and compared for
three time step sizes (i.e., ∆t = 2.5, 5, and 10 s for the non-equilibrium model and ∆t = 0.25, 0.5, and 1.0 s
for the equilibrium model) and three mesh densities (i.e., Nx = 30, 60, and 120 divisions along the brick
thickness for both models). Simulations were carried out for data from Section 3.1 and considered only
the convective thermal and mass transfer boundary conditions at the top surface. The thermal radiation
was neglected in the sensitivity analysis. For different time step sizes, generally results with very good
matching were found and therefore these results are not presented. However, some small discrepancies
between predicted temperatures with the equilibrium model for various time steps were observed in
the second stage of drying. It was due to stiff coupling of many parameters in a nonlinear way, and the
equilibrium condition which had to be fulfilled at the end of each time step. Those conditions were
relaxed in the non-equilibrium model. Moreover, during tests of both models it was evident that the
equilibrium model required a much shorter time step than the non-equilibrium one. Slight differences
were observed for variable grid size. Therefore, Figures 2 and 3 present comparisons of the results
obtained for different meshes for both models. Very good conformity of temperatures is visible for
both models. However, comparison of moisture content shows that the coarsest mesh (i.e., Nx = 30) is
not enough for the non-equilibrium model, and a finer mesh should be used.
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Based on these observations the optimum mesh density chosen for subsequent simulations was
Nx = 60 for both models, while the time step size was set to ∆t = 5 and 0.5 s for the non-equilibrium
and equilibrium models, respectively.

Subsequently, both implementations of the proposed simulation models were verified with the
results of numerical simulations performed by Belleghem [18]. These results were obtained by applying
the simplified equilibrium model in the 1D geometry. The temperatures inside the brick at 1 cm depth
are compared in Figure 4. All simulations reflected the same initial and boundary conditions as well
as material properties, as listed in Section 2.4. Two options in boundary conditions were considered,
namely with and without radiative heat flux (i.e., the second term on the right-hand side of Equations
(31) and (33) was included or neglected, respectively). Presented results reveal good conformity of
the temperature predicted with all models. For the adjusted value of the mass transfer coefficient
between vapor and water equal to hvl = 2 × 10−5 s/m, which is required in the non-equilibrium model,
very good matching of the predicted temperature variation with both models and the reference one is
observed. Some discrepancies are observed for the equilibrium model at the end of the first period of
drying. That can be related to the lack of a predefined switching mechanism between the pendular
and funicular modes of moisture transfer in the equilibrium model.

Comparison of volumetric moisture contents predicted with both considered models at the top
surface of the brick and inside the building material at a depth of 1 and 2 cm, reveals similar behavior
in corresponding points in the first period of drying (see Figure 5). For this case the surface radiative
heat flux is neglected. When the total moisture content falls below the smin value, the mode of water
transfer is switched from pendular to funicular, so the rate of moisture transfer is considerably reduced.
That mechanism is implemented in the non-equilibrium model and neglected in the fully equilibrium
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model. This results in the difference of the total moisture content observed at the dried top surface in
the second stage of drying. The total moisture, predicted with the equilibrium model, continues its
diminution to zero, while the content of water predicted with the second model is maintained at a
level close to smin.

The total moisture contents in a considered wet brick sample with dimensions 0.01 × 0.01 × 0.03 m,
predicted with both proposed models was very close in the whole considered time range (see Figure 6).
It is expected that the difference between moisture contents will increase after the dry out region enlarges.
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5. Conclusions

The paper presents the development and investigation of the non-equilibrium and equilibrium
numerical models of concurrent moisture and heat transfer in the wet porous building material. The time
step size and mesh density sensitivity analysis reveal that stable and reliable simulations can be performed
for moderate time step sizes and mesh densities. Based on the example of a simple, one-dimensional
drying problem of uniform material (i.e., brick), both presented models were compared and their
implementations verified with reference data [18]. Presented plots of temperature at the three points
inside the brick, at the top surface and at the depth of 1 and 2 cm, show good conformity in the first
drying stage. At the beginning of the second drying stage some differences appear, but they can
be related to slight differences between models, like enforced change in mode of moisture transfer,
namely pendular vs. funicular, in the non-equilibrium model. Differences are more pronounced when
compared to variation of moisture content at the surface of the brick (Figure 5) in the second drying
stage. The origin of this behavior is related to the framework of the non-equilibrium model and its
procedure of switching between pendular and funicular mode of moisture transfer. A very good match
between predicted total moisture contents with two considered models points out that for relatively
short time periods, the simple equilibrium model can be used for preliminary analysis. However,
it requires more effort to include the mechanisms of switching between modes of moisture transfer.

The comparison of both models of concurrent moisture and heat transfer shows slight differences
between them. Their further development will also be related to their validation. It will be performed
with experimental stands which are under development and testing and which are described in recent
publications [19,20].
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