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Abstract: Energy, water, and environment are inextricably interwoven in the complex social
and economic networks. This study proposes an optimization model for planning the
energy–water–environment nexus system (EWENS) through incorporating the linear autoregressive
integrated moving average model prediction model (ARIMA), Monte Carlo simulation,
chance-constrained programming (CCP), and type-2 fuzzy programming (T2FP) into one general
framework. This method effectively tackles type-2 fuzzy set and stochastic uncertainties. The proposed
model can quantitatively explore the interconnections between water, energy, and environment
systems and generate an optimized solution for EWENS. The proposed model was applied to a
coal-dominated region of China, i.e., Inner Mongolia. Several findings and policy implications were
obtained. First, the total water supply for energy-generating activities will range from 1368.10× 106 m3

to 1370.62 × 106 m3, at the end of planning periods. Second, the electricity for water supply will
range from 2164.07 × 106 kWh to 2167.65 × 106 kWh at the end of the planning periods, with a
growth rate of 46.06–48.72%. Thirdly, lifecycle carbon dioxide emission (LCDE) is projected to range
from 931.85 × 106 tons to 947.00 × 106 tons at the end of the planning periods. Wastewater and
SO2, NOx, and particulate matter (PM) emissions are projected to be 42.72 × 103–43.45 × 103 tons,
183.07 × 103–186.23 × 103 tons, 712.38 × 103–724.73 × 103 tons, and 38.14 × 103–38.80 × 103 tons at
the end of the planning periods. Fourthly, as the largest electricity-exporting city of China, Inner
Mongolia’s electricity outflows will export 1435.78 × 106 m3 of virtual water to other regions, implying
that Inner Mongolia is pumping its important water resource to support other regions’ electricity
demands. Finally, high carbon mitigation levels can effectively optimize the electricity power mix,
reduce consumption amounts of water and coal, and mitigate air pollutants, wastewater, and LCDE.
The obtained results provide useful information for managers to develop a sustainability plan for
the EWENS.

Keywords: energy–water–environment nexus system; type-2 fuzzy sets; lifecycle carbon dioxide
emissions; ARIMA; Monte Carlo simulation

Energies 2020, 13, 208; doi:10.3390/en13010208 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/13/1/208?type=check_update&version=1
http://dx.doi.org/10.3390/en13010208
http://www.mdpi.com/journal/energies


Energies 2020, 13, 208 2 of 40

1. Introduction

Water, energy, and environment are inextricably interwoven in the complex social and economic
networks. Approximately 90% of the energy activities in the world are water-intensive and used for
processes such as cooling, steam generation, and desulfurization [1]. Energy is demanded for a series
of water-related processes such as surface water extraction, groundwater pumping, water treatment,
water distribution, and wastewater treatment [2]. 15% of global withdrawal water is used for energy
and 8% of the world’s total energy is used for water [3]. In addition, considerable carbon emissions and
pollutants emitted from combustion of fossil fuels for providing water and energy supply, which cause
severe environmental pollution and worsen global warming [4]. The environment has become a key
factor in maintaining social sustainability [5]. Therefore, it is necessary to incorporate the environment
into the analyses of the energy–water nexus, as well as exploring the interconnections between energy,
water, and environment systems.

In recent years, many scholars have been devoted to studying the energy markets and the
relationships between energy and the economy [6–11]. For instance, Tvaronavičienė et al. [6] employed
long-range energy-forecasting software LEAP to predict the energy efficiency for selected European
countries (Poland, Lithuania, and Germany). Simionescu et al. [7] attempted to analyze the effects of
the share in electricity of renewable energy sources and assess the importance of GDP per capita. Their
findings indicate a positive but very low impact of GDP per capita on the share in electricity of renewable
energy sources in the period of 2007–2017 in the case of the EU countries. Shindina et al. [8] analyzed
economic and social properties of the energy market. Their findings show that the interrelationship
between heat and electricity acquires a complementary nature, and the rise in prices for one commodity
will not necessarily lead to a significant increase in demand for the other. Hnatyshyn [9] employed
econometric model to investigate the environmental consequences of economic growth. The results
indicate that the relationship between per capita income and emissions of both NH3 and NOx
falls into the Environmental Kuznets curve pattern. However, few of these studies considered the
interconnections between energy and water and environment systems.

A growing number of studies aimed to study the interconnections between water and energy
systems. Input-output model and life cycle analysis have been extensively used to address the
energy–water nexus system. For instance, Li et al. [12] adopted the life cycle input-output analysis
to analyze the water consumption and CO2 emissions of wind power in China. Feng et al. [13] also
used life cycle analysis to provide a detailed account of the water consumption and total LCDE of
electricity generation. Nawab et al. [14] developed an extended input-output model to trace Shanghai’s
water and energy flows in an economic system from a consumption and production perspective.
White et al. [15] employed the input-output model to demonstrate the embodied flows of water,
energy, and greenhouse gases in Japan, China, and South Korea via tracing global value chains.
Recently, many researchers have analyzed the energy–water nexus based on optimization methods.
For instance, Tsolas et al. [3] proposed a systematic method to optimize the energy–water nexus by
minimizing the extraction and generation of water and energy resources from the environment and
maximizing water and energy yield to meet external demands. Lubega and Farid [16] developed an
engineered system model to optimize the coupling points between water and energy systems and
thus decrease the energy intensity of water supply and water intensity of energy processing activities.
Oke et al. [17] presented a mathematical framework for optimizing the energy–water nexus during
shale gas production, processing, distribution, usage, and transmission to maximize overall profit.
The majority of these studies focus on evaluating energy consumption for water subsystem, water
consumption for energy production and carbon dioxide (CO2) generated from energy–water nexus as
well as providing water- and energy-saving suggestions from the perspective of policymaking and
technology improvement. However, few of the above studies have taken the environment system
into energy–water nexus system. Furthermore, the above studies were based on assumptions that the
related parameters such as energy price, operation costs, and electricity demand may be reasonably
simplified as deterministic inputs [18]. Few of these studies considered uncertainties, widely existing
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in energy–water nexus system due to the input parameter measurement, immanent complexity of
systems, and subjectivity of human judgment.

Considerable efforts have been made to tackle the uncertainties of traditional energy systems.
CCP has been extensively adopted as one method for dealing with random uncertainties. For instance,
Wang et al. [19] presented a CCP method to deal with various uncertainties of energy systems and
facilitate risk-based management for climate change mitigation. Guan et al. [20] employed CCP method
tackle uncertainties in terms of various cost coefficients, and decision maker’s risk attitude which
was described by probability distributions. Generally, CCP can tackle the stochastic uncertainties
in the right-hand side of constraints and reflect the reliability of satisfying system constraints under
uncertainty, but it can hardly determine probabilities of random uncertainties. Monte Carlo simulation
is an effective tool for tackling such a problem, which can catch the randomness of available water
resources [21,22]. Furthermore, the CCP method is inefficient in addressing the ambiguity and
vagueness of subjective judgments. Many economic parameters of are not deterministic and often
shown as ambiguity, which are suitably expressed as fuzzy sets [23]. FMP can describe this fuzziness
in the energy system [24]. Moradi et al. [25] used an FMP method to deal with the uncertainties
regarding energy prices and energy demands to determine the optimum schemes for combined heat
and power capacities. Faddel et al. [26] employed an FMP to maximize benefits of aggregators with
low charging costs of EV owners, where uncertainties of EV mobility and electricity market were
considered. However, A traditional FMP can deal with the ambiguous uncertainties expressed as fuzzy
membership functions, but it encounters difficulties when the membership grades of fuzzy uncertainty
are also expressed as fuzzy sets (i.e., type-2 fuzzy sets) [27]. As one extension of the conventional FMP,
T2FP is more capable of tackling fuzzy uncertainty than conventional fuzzy sets, which is useful in
circumstances where it is difficult to determine the exact membership function for a fuzzy set [28].

Although the optimization methods can generate optimized solutions of energy–water nexus
system, they may be encounter difficulties when the optimization models need the input data with
anticipated prediction accuracy [22]. In particular, the electricity demands, as an important input
data of the optimization models, may mislead the optimization results if its prediction accuracy is too
low. Multiple linear regression analysis is frequently adopted for forecasting the electricity demands
and social economic factors, which is unavailable for reflecting the stochastic and dynamic features
of energy–water nexus systems. The ARIMA model is well-known time series prediction method,
which emphasizes on analyzing stochastic and probabilistic properties of time series data and has
been used for forecasting energy demands [29–31]. For instance, Erdogdu [29] used ARIMA model to
predict the electricity demand of Turkey. Wang et al. [31] employed ARIMA model to forecast China’s
foreign oil dependence.

Summarily, the previous studies mentioned above exists several research gaps that need to be
addressed. First, most studies focus on energy–water nexus. However, few of these studies considered
the environment system in the energy–water nexus system. Second, several studies were based on the
assumption that the related parameter may be reasonably simplified as deterministic inputs, but few
of these studies considered the uncertainties that widely exist in energy–water nexus systems. Thirdly,
a traditional CCP cannot determine the probability distribution of stochastic parameters, and the
traditional FMP encounters difficulties when the uncertainties shown as type-2 fuzzy sets. Fourthly,
the previous optimization methods may encounter difficulties when they require high prediction
accuracy of the input parameters.

Therefore, this study aimed to make the following contributions: (i) ARIMA model is employed to
predict the electricity demands, which is one of the most popular time series models and broadly used
for forecasting energy demands [29–31]. Monte Carlo is also employed to simulate the probability
distribution of electricity demands. The technique makes no assumptions about linear model
behavior and it is regarded as a reliable method of uncertainty assessment [32]. (ii) ARIMA–Monte
Carlo–chance-constrained–type-2 fuzzy programming method (AM-CT2FPM) is developed through
incorporating the ARIMA model, Monte Carlo simulation, CCP, and T2FP into a general framework,
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which can overcome the shortage of the traditional FMP and CCP methods and tackle type-2 fuzzy
sets and stochastic uncertainties. (iii) an AM-CT2FPM-based EWENS (AM-CT2FPM-EWENS) model
is proposed by considering environmental factors (i.e., LCDE, particulate matter (PM) nitric oxide
(NOX), sulfur dioxide (SO2), emissions and wastewater) in the energy–water nexus. The proposed
AM-CT2FPM-EWENS model can quantitatively explore the interconnection between water, energy, and
environment systems and generate the optimized solutions of EWENS, including energy production,
electricity generation, water for primary energy production (WPEP), water for electricity generation
(WEG), electricity for water supply (EWS), and management of LCDE, air pollutants (i.e., NOX, SO2,
and PM), and wastewater.

2. Methodology

2.1. ARIMA Model

The ARIMA model is well-known time series prediction method that is originally proposed by Box
and Jenkins [33], which emphasizes on analyzing stochastic and probabilistic properties of time series
data [29]. The ARIMA model, which has been extensively applied to forecast energy consumption,
is used to predict the electricity demands in this study.

The ARIMA model refers to converting a non-stationary time series into a stationary time series
and then, regressing only the dependent variable on its lag value, present value, and lag value of the
random error term [31]. The autoregressive process (AR) model is the autoregressive model of order p;
the moving average process (MA) model is the moving average model of order q; and the ARMA (p, q)
is the model with q moving average terms and p autoregressive terms [34]. MA(q), AR(p), and ARMA
(p, q) can be applied when the data are stationary. If they are non-stationary, an initial differencing step
need to be used to reduce the non-stationarity, namely an ARIMA (p, d, q), where d is the degree of
differencing [34]. The AR(p), MA(q) and ARMA (p, q) models are written as follows [35]:

The AR(p) model:
yt = c + a1yt−1 + a2yt−2 + . . . + apyt−p + ut (1)

where a1, . . . , ap are parameters; c is a constant; and the random variable ut is white noise.
The MA(q) model:

yt = ut + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2)

where θ1, θ2, . . . , θq are parameters; ut is white noise.
The ARMA (p, q) model:

yt = c + a1yt−1 + a2yt−2 + . . . + apyt−p + ut + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (3)

The rules of identifying AR(p), MA(q), and ARMA (p, q) are as follows. The sequence is suitable
for the AR model if the partial autocorrelation function (PACF) of the stationary sequence is truncated
and the autocorrelation function (ACF) is trailing. The sequence is suitable for the MA model if the
PACF of the stationary sequence is trailing and ACF is truncated. The sequence can be concluded to be
suitable for the ARMA (p, d, q) model if the PACF and ACF of the stationary sequence are trailing.

In conclusion, ARIMA (p, d, q) model contains four steps: identification, estimation, diagnostic
checking, and forecasting [31]. Identification tests the of the sequence smoothness and determines
the parameter d. During the second step, the parameters p and q are determined according to the
characteristics of ACF and PACF and the models are compared according to the Schwarz’s Bayesian
information criterion (BIC) and Akaike’s information criterion (AIC). In the diagnostic checking step,
the model based on the results from the previous steps is constructed and estimated and the residuals
collected from the previous step are checked to determine whether they are individually statistically
significant [29]. Finally, electricity demands are forecasted according to the selected ARIMA (p, d,
q) model.
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2.2. ARIMA–Monte Carlo–Chance-Constrained–Type-2 Fuzzy Programming Method

Many parameters of EWENS show the characteristics of vagueness because of subjectivity of
specialists’ judgment [18,24]. T2FP can effectively cope with ambiguous information in objective and
constraint functions, which is useful when the exact membership grade is difficult to determine. T2FP
is effective for tackling fuzzy sets with membership grades ranging from 0 to 1 [28]. This characteristic
is useful when parameters are highly uncertainty [28,36–38]. However, the T2FP method cannot deal
with uncertainties expressed as random. In the real-world EWENS, electricity demands, which are
closely related to social development and economic growth, may be shown as stochastic variables
with probabilistic distribution. CCP can tackle the random uncertainties and analyze the risks of
violating constraints [39]. CCP method is especially useful for converting a stochastic programming
model into an equivalent deterministic version, and thus significantly reduce system complexities [22].
The detail formulations of T2FP and CCP are put into “Appendix A” section. However, CCP can
hardly determine probabilities of random uncertainties. Monte Carlo simulation is an effective tool for
tackling such a problem, which can catch the randomness of available water resources.

Therefore, this study aims to propose an AM-CT2FPM through incorporating the ARIMA model,
Monte Carlo simulation, CCP, and T2FP into a general framework. An AM-CT2FPM can be formulated
as follows:

Min f = C̃X (4)

subject to:
DX ≤ Ã (5)

KX ≥ B̃ (6)

RX ≤ Epi (7)

X ≥ 0 (8)

where coefficients C̃, Ã, and B̃ are mutually independent type-2 triangular fuzzy numbers defined by
C̃ = (C1, C2, C3; θl, θr), Ã = (A1, A2, A3; θl, θr), and B̃ = (B1, B2, B3; θl, θr); X represents the
non-fuzzy decision variable; D, K and R are the deterministic coefficients in the left-hand side of the
constraints; Epi is the set with random elements. pi is a given level of probability for constraints (7),
which implies that constraint (7) must be satisfied with at least a probability level of 1− pi. Constraint (7)
can be converted into the following constraint: Pr[{t|RiX ≤ Ei}] ≤ 1 − pi, Ri ∈ Ri, i = 1, 2, . . . , m,
where Epi = F−1

i (pi), given the cumulative distribution function of Ei, and the probability of violating
constraint i. Objective and constraints (5) and (6) can be solved through defuzzification methods [37,38].
α is the credibility levels, indicating the decision maker’s violation risk attitude toward imprecise
objective and constraints (5) and (6). A higher α level implies a high likelihood of satisfying fuzzy
confidence constraints and less uncertainty regarding imprecise constraints. Different pi and α can
directly affect the optimized results of AM-CF2FPM.

The major advantages of AM-CT2FPM include: (i) it is effective for reflecting the stochastic
uncertainties in right-hand side constraints, and handling the uncertainties shown as type-2 fuzzy sets
in objective and constraints. (ii) It is more capable of dealing with fuzzy uncertainties in real-world
applications than the conventional fuzzy sets because type-2 fuzzy set has more design degree of
freedom. (iii) It is especially useful for helping the decision makers make their decision based on given
probabilities of constraints violations. (iv) It can incorporate other uncertain optimization methods
within a general framework.

However, the AM-CT2FPM also has potential limitations should be addressed in future study. First,
the AM-CT2FPM can be further improved by combining other uncertainties programming methods
(e.g., as interval parameter programming and two-stage programming) into current AM-CT2FPM
framework to better address multiple uncertainties and complexities of EWENS. Second, the proposed
model aims to minimize system costs with considering a series of constraints of water, energy,
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and environment systems, which is infeasibility of tackle multi-objectives problems of EWENS.
Multi-objective optimization methods for EWENS will be studied in the further research. Figure 1
shows the framework of the proposed AM-CT2FPM.
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3. Case Study

3.1. Characteristics of the Study Region

Inner Mongolia Autonomous Region stretches broadly across northern of China, covers 12.28%
of the Chinese territory, has 1.82% of Chinese population, and generates 1.93% of the China’s gross
domestic product in 2018 [40]. Inner Mongolia is endowed with coal resources (i.e., 51.03 billion tons),
which makes it become the China’s largest coal producer. The region’s amounts of coal production
were 494.26 million tons of standard coal equivalents (SCE), which accounted for 19.81% of China’s
total coal production (2495.16 million tons) in 2017. Crude oil production cannot meet local demand,
and the shortage will be imported from other regions. Inner Mongolia has become the largest
electricity-exporting city of China. More than 25% of Inner Mongolia’s electricity is exported to other
regions such as Liaoning, Hebei, Beijing, and Tianjin. The installed power generation capacity of
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Inner Mongolia amounted to 118.25 GW, ranking third in China. Coal-based holds a dominant role in
the electricity-generation technologies, contributing to 69.09% of the total installed power generation
capacity in 2017 [41]. Inner Mongolia is China’s one of the first regions to develop wind power, which
has one fifth of total wind power potential [42]. Generation capacity of wind power increased from
8.2 MW in 1995 to 26.7 GW in 2017. Solar power has great development potential in the study region,
and its generation capacity was 7.3 GW in 2017. The electricity consumption sharply increased by
136.93% in the past 10 years (from 2008 to 2017) due to rapid social and economic development. Figure 2
presents the information of basic electricity generation, and electricity demands of Inner Mongolia.
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Inner Mongolia is a typical water-scarce area, and its total water availability amounted to
30.99 billion m3 in 2017 [43]. The water availability per person was 1335.38 m3, which was evidently
below the national average of 2069.03 m3 in 2017. The amount of water supply was 18.80 billion m3

in 2017, of which 52.79%, 45.40%, and 1.81% are surface water, groundwater, and recycled water,
respectively [43]. The water consumption ratios for household, industry, agriculture, and ecological
environment are 5.85%, 8.35%, 73.46%, and 12.29%, respectively. Electricity generation is one of the
main water resource consumers in the region, which accounts for approximately 50% of industrial
water consumption [43].

Currently, the increasing electricity demands, “high-coal” electric power mix, and expansion
of coal-fired power are intensifying the pressure on the environment [44]. CO2 emissions reached
to 858.80 million tons, which contributed to 7.40% of China’s national CO2 emissions in 2015 [45].
In 2017, SO2, NOx, and PM emissions, and wastewater reached to 546.25 × 103 tons, 505.46 × 103 tons,
536.19 × 103 tons, and 1042.51 × 106 tons, respectively [40]. Electricity generation is one of the main
contributors of LCDE and pollutants in the study region. The increasing frequent occurrences of serious
environmental pollution and gravity of global warming have aroused public awareness associated with
the mitigation of greenhouse gases and air pollutants as well as improvement of environmental quality.

3.2. Overview of This Study

Energy activities, including primary energy production (crude oil, coal, and natural gas) and
electricity generation, are incorporated in the AM-CT2FPM-EWENS model. Multiple energy resources,
such as coal, wind, water, and the sun, are supplied to electric power utilities. Four electricity-generation
technologies, namely coal-fired power, solar power, wind power, and hydropower, are employed
to meet the region’s electricity demands. Most of the generated electricity is distributed to meet
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local demands. Approximately 30% of Inner Mongolia’s electricity generation would be exported to
other regions, and a small portion is used for water subsystem for surface water and recycled water
extraction, groundwater pumping, water treatment, water distribution, and wastewater treatment [2].
Groundwater, surface water, and recycled water are supplied to electric power plants for steam
generation, cooling, and desulfurization [43]. Many air pollutants, wastewater, and CO2 are emitted
from electricity-generation processes.

EWENS is complicated due to the complex relationships between energy subsystem (i.e., primary
energy production, electricity generation, and capacity expansion), water subsystem (surface water,
groundwater, and recycled water), and environment subsystem (CO2, SO2, NOX, PM, and wastewater)
and their interactions with other factors, such as socioeconomic factors, policies, and the ecosystem.
In addition, many uncertainties exist in a practical EWENS due to the subjectivity of human judgment,
input parameter measurement, and simplifications in model formulation [46]. These uncertainties
should be incorporated into the system planning processes. Generally, this study aims to (i) explore
the interconnection between energy, water, and environment systems, (ii) employ the developed
AM-CT2FPM to tackle the uncertainties of EWENS; and (iii) propose an AM-CT2FPM-EWENS model
which can generate optimized solutions for primary energy production, electricity power generation,
WPEP, WEG, EWS, and environment management (management of wastewater, LCDE, SO2, NOX,
and PM emissions). The study horizon covers a 5-year period (2019–2023), and t = 1 is 2019, t = 2 is
2020, t = 3 is 2021, t = 4 is 2022, and t = 5 is 2023. This study focused on the medium-term planning of
Inner Mongolia’s EWENS. Thus, yearly aggregate time data is enough to obtain such a goal. Hourly or
daily resolutions will be emphasized in the further research. Figure 3 depicts the framework of the
AM-CT2FPM-EWENS model for planning the EWENS.

3.3. Modeling Formulation (AM-CT2FPM-EWENS).

Based on the proposed AM-CT2FPM, an AM-CT2FPM-EWENS model was proposed for the
sustainability planning of Inner Mongolia’s EWENS. The decision makers can formulate the above
problem as to minimize system costs, which include coal resource allocation, electricity importation,
water consumption for electricity generation and primary energy production, variable and fixed costs
of electricity generation, variable and fixed costs of electric expansion, primary energy production, and
pollutant treatment. A series of constraints are considered to be a set of linear equalities or inequalities
for defining the relationships of electricity supply and demand; electricity capacity and peak load;
primary energy production; water and energy resources availability; WPEP, WEG, and EWS; and
LCDE, air pollutant (i.e., NOX, SO2, and PM), and wastewater management. The proposed model is
formulated as follows:

Objective:
Min f = f1 − f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10 (9)

(1) Cost of fossil energy allocation:

f1 =
5∑

t = 1

ÑSt ·XCt (10)

(2) Benefit of electricity exported:

f2 =
5∑

t = 1

NEt · EDt (11)
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(3) Cost of water consumption for electricity generation:

f3 =
4∑

i = 1

5∑
t = 1

[(Wit + Yit) + (ECWESt + ECWEGt + ECWERt

+ECWTt + ECWDt + ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt)] · (1 + LREt) · (QCWit · PQCWit
+QBWit · PQBWit + QDWit · PQDWit + QRWit · PQRWit)

(12)

(4) Cost of water consumption for primary energy production:

f4 =
5∑

t = 1

(PECWt ·CECWt + PEOWt ·CEOWt + PENWt ·CENWt) (13)

(5) Variable cost of electricity generation:

f5 =
4∑

i = 1

5∑
t = 1

PṼit ·WXit · (1 + LREt) +
5∑

t = 1
PṼ1t · (ECWESt + ECWEGt

+ECWERt + ECWTt + ECWDt + ECWWt + PCWESt

+PCWEGt + PCWERt + PCWTt + PCWDt) · (1 + LREt)

(14)

(6) Fix cost of electricity generation:

f6 =
4∑

i = 1

5∑
t = 1

Ãit ·RRCit (15)

(7) Variable cost of electric expansion:

f7 =
4∑

i = 1

5∑
t = 1

PṼit ·Yit · (1 + LREt) (16)

(8) Fix cost of electricity generation:

f8 =
4∑

i = 1

5∑
t = 1

Ãit ·Zit (17)

(9) Cost of primary energy production:

f9 =
5∑

t = 1

(CP̃Pt ·CPAt + OP̃Pt ·OPAt + NP̃Pt ·NPAt) (18)

(10) Cost of air pollutants and wastewater treatment:

f10 =
4∑

i = 1

5∑
t = 1

PSOit · TSOGit · ηs +
4∑

i = 1

5∑
t = 1

PNOit · TNOGit · ηN

+
4∑

i = 1

5∑
t = 1

PPMit · TPMGit · ηPM +
4∑

i = 1

5∑
t = 1

PWWit · TWWit

(19)
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(1) Electricity supply and demand balance. Constraints (20) can ensure the total local generated
electricity should more than or equal to the sum of local electricity demands and exported electricity.
The optimized electricity-generation schemes can be obtained from Equations (21) and (22).
The optimized amounts of exported electricity can be obtained from constraints (23) and (24).

Pr{
4∑

i = 1
(Wit + Yit) + ECWESt + ECWEGt + ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt + PCWERt + PCWTt + PCWDt − EDt)

≥ Dt} ≥ 1− pi, ∀t

(20)

AX1t = (W±1t + Y1t + ECWESt + ECWEGt + ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt + PCWERt + PCWTt + PCWDt) · (1 + LREt)
(21)

4∑
i = 2

AXit =
4∑

i = 2

(Wit + Yit) · (1 + LREt), ∀i, t (22)

EDt ≤ LEDt ·Dpi ,∀t (23)

EDt ≤ UEDt ·Dpi ,∀t (24)

(2) Constraints of electricity capacity. Constraints (25) and (26) can guarantee that the capacity of each
electricity power technology is greater than the generation amounts of electricity. Constraints (27)
and (28) ensure the capacity of each electricity power technology should be greater than its the
lower bound and lower than its higher bound.

(W1t + Y1t + ECWESt + ECWEGt + ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt + PCWERt + PCWTt + PCWDt)

·(1 + LREt) ≤ CF1t · (RRC1t + Z1t)

(25)

(Wit + Yit) · (1 + LREt) ≤ CFit · (RRCit + Zit), ∀i = 2, 3, 4 (26)

Zit ≤ ŨZt; ∀i, t (27)

Zit ≥ L̃Zt; ∀i, t (28)

Yit = CFit ·Zit, ∀i, t, h (29)

(3) Constraints of electricity peak load balance. Constraint (30) can guarantee that the electricity load
is greater than the electricity peak load of each period.

4∑
i = 1

(RRCit + Zit) − EDt/24 · 365 ≥ PELt, ∀t (30)

(4) Constraints of primary energy production. Constraints (31)–(33) require the primary energy
lower than their upper limitation.

LCPAt ≤ CPAt ≤ UCPAt (31)

LOPAt ≤ OPAt ≤ UOPAt (32)

LNPAt ≤ NPAt ≤ UNPAt (33)
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(5) Water resources availability. The following constraint ensures the water resource consumption
for energy activities must be lower than the available water resource amounts for electric power
sector and primary energy generation sector.

4∑
i = 1

(TQCWit + TQBWit + TQDWit + TQRWit) + (PECWt + PEOWt + PENWt) ≤WAt,∀t (34)

(6) Water consumption for electricity generation and primary energy production. In detail, the water
consumption amounts for each electricity-conversion technology for cooling, steam generation
and desulfurization and renewable power can be calculated by the Equations (35)–(38). The water
consumption for primary energy production (crude oil, coal, and natural gas) can be obtained by
the Equations (39)–(41).

TQBWit = (W±it + Yit + ECWESt + ECWEGt

+ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt) ·QBWit,∀i, t

(35)

TQBWit = (W±it + Yit + ECWESt + ECWEGt

+ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt) ·QBWit,∀i, t

(36)

TQDWit = (W±it + Yit + ECWESt + ECWEGt

+ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt) ·QDWit,∀i, t

(37)

TQRWit = (W±it + Yith + ECWESt + ECWEGt

+ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt) ·QRWit,∀i, t

(38)

PECWt = CPAt ·CWt,∀t (39)

PEOWt = OPAt ·OWt,∀t (40)

PENWt = NPAt ·NWt,∀t (41)

(7) Electricity consumption for water supply. The electricity consumption amounts for surface
water supply of electricity generation and primary energy production can be calculated by
the Equations (42) and (48); the electricity consumption amounts for groundwater supply of
electricity generation and primary energy production can be obtained by the Equations (43) and
(49); the electricity consumption amounts for recycled water supply of electricity generation
and primary energy production can be calculated by the Equations (44) and (50). For electricity
generation and primary energy production, the electricity is required to treat water to meet
the standards of energy production. In addition, the electricity consumption amounts for
water treatment of electricity generation and primary energy production can be obtained by the
Equations (45) and (51). The electricity consumption amounts for water distribution to electricity
generation and primary energy production enterprises can be calculated by the Equations (46)
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and (52). The wastewater treatment is also energy intensive, and it can be calculated by the
Equation (47).

ECWESt = (TQCW1t + TQBW1t + TQDW1t + TQRW3t + TQRW4t)

·SWt · EFWESt,∀t
(42)

ECWEGt = (TQCW1t + TQBW1t + TQDW1t + TQRW3t + TQRW4t)

· GWt · EFWEGt,∀t
(43)

ECWERt = (TQCW1t + TQBW1t + TQDW1t + TQRW3t + TQRW4t)

·RWt · EFWERt,∀t
(44)

ECWTt = (TQCW1t + TQBW1t + TQDW1t + TQRW3t + TQRW4t)

·EFWTt,∀t
(45)

ECWDt = (TQCW1t + TQBW1t + TQDW1t + TQRW3t + TQRW4t)

·EFWDt,∀t
(46)

ECWWt = TWW1t · EFWWt,∀t (47)

PCWESt = (PECWt + PEOWt + PENWt) · SWt · EFWESt,∀t (48)

PCWEGt = (PECWt + PEOWt + PENWt) · GWt · EFWEGt,∀t (49)

PCWER = (PECWt + PEOWt + PENWt) ·RWt · EFWERt,∀t (50)

PCWTt = (PECWt + PEOWt + PENWt) · EFWTt,∀t (51)

PCWDt = (PECWt + PEOWt + PENWt) · EFWDt,∀t (52)

(8) Coal resources allocation to coal-fired power. The coal consumption amounts of coal-fired power
can be calculated by Equation (53).

(W1t + Y1th + ECWESt + ECWEGt + ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt + PCWERt + PCWTt + PCWDt)

·(1 + LREt) · FE1t = XCt

(53)

XCt ≥ 0,∀i = t (54)

(9) Coal resources availability. The constraint ensures the coal resource consumption amounts of
coal-fired power must be lower than the total available amounts of coal resources.

XCt ≤ LXCt,∀t (55)

(10) Constraints of lifecycle carbon emissions. Equations (56) and (57) are employed for calculating
the lifecycle CO2 emissions. Constraint (58) is used for guaranteeing the LCDE should be lower
than the carbon emission permit.

LCCE1t = L1t · (W1t + Y1t + ECWESt + ECWEGt + ECWERt + ECWTt + ECWDt

+ECWWt + PCWESt + PCWEGt + PCWERt + PCWTt + PCWDt) · (1 + LREt)
(56)

LCCEit = Lit · (Wit + Yit) · (1 + LREt),∀i = 2, 3, 4; t (57)

4∑
i = 1

LCCEit ≤ UCOt,∀ t (58)
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(11) Constraints of pollutants (i.e., NOX, SO2, and PM) emissions and wastewater. Equations (59)–(62)
are employed for calculating the pollutants. Constraints (63)–(65) are used for meeting the
pollutant emissions should be lower than the pollutant permits.

TSOG1t = SOG1t · (W1t + Y1t + ECWESt + ECWEGt + ECWERt

+ECWTt + ECWDt + ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt),∀t
(59)

TNOG1t = NOG1t · (W1t + Y1t + ECWESt + ECWEGt + ECWERt

+ECWTt + ECWDt + ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt),∀t
(60)

TPMG1t = PMG1t · (W1t + Y1t + ECWESt + ECWEGt + ECWERt

+ECWTt + ECWDt + ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt),∀t
(61)

TWW1t = WWG1t · (W1t + Y1t + ECWESt + ECWEGt + ECWERt

+ECWTt + ECWDt + ECWWt + PCWESt + PCWEGt

+PCWERt + PCWTt + PCWDt) · (1 + LREt),∀t
(62)

TSOG1t · (1− ηs) ≤ LSOt,∀ t (63)

TNOG1t · (1− ηN) ≤ LNOt,∀ t (64)

TPMG1t · (1− ηPM) ≤ LPMt,∀ t (65)

(12) Non-negative constraints. This constraint guarantee decision variables of the proposed model
should be always positive.

XCt, EDt, W±it , Yit, Zit, AXit, ECWESt, ECWEGt,
ECWERt, ECWTt, ECWDt, ECWWt, PCWESt,
PCWEGt, PCWERt, PCWTt, PCWDt, PECWt,
PEOWt, PENWt, CPAt, OPAt, NPAt, TSOGit,
TNOGit, TPMGit, TWWit, LCCEit, TQCWit, TQBWit,
TQDWit, TQRWit ≥ 0

(66)

3.4. Data Collection

Data on annual primary energy production (i.e., crude oil, coal, and natural gas) are obtained from
Inner Mongolian Statistical Yearbook 2018 [47]. Data on electricity-installed capacity (i.e., coal-fired,
wind, hydro, and solar power), operation hours of electricity-conversion technology, and electricity
demands are mainly collected from Editorial committee of the China Electric Power Yearbook 2018 [41].
Electricity demands are often expressed as stochastic information; the ARIMA model was used for
predicting Inner Mongolia’s electricity demands and Monte Carlo simulation is employed to catch the
randomness of the characteristic of electricity demands. Data regarding water supply and local water
availability are retrieved from the Water Resources Bulletin 2017 [43]. Water intensity factors for coal,
crude oil, and natural gas production are 0.35 m3/tce, 0.762 m3/tce, and 0.42 m3/tce, respectively [48].
Water intensity factors for cooling, stream generation, desulfurization, wind power, hydropower, and
solar power were 1.17 m3/MW, 0.27 m3/MW, 0.08 m3/MW, 0.00 m3/MW, 13.00 m3/MW, and 0.03 m3/MW,
respectively [46,48]. Energy intensity factors of water supply were obtained from [49]. Depending on
different water sources, energy intensities for surface water, recycled water extraction, and groundwater
pumping are 0.95 kWh/m3, 0.82 kWh/m3, and 0.31 kWh/m3, respectively. Electricity is required for
water treatment, and the energy intensity of water treatment is 0.414 kWh/m3. The energy intensity
for water distribution is 0.495 kWh/m3. At the last step of EWENS cycle, wastewater collection and
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treatment also need energy, and its energy intensity is 0.50 kWh/m3 [48]. The LCDE factors of coal-fired
power, wind power, and solar power are 1213.50 g/kWh, 34.40 g/kWh, and 67.40 g/kWh [42]. The LCDE
factor of hydropower is 35.535 g/kWh [13]. The emissions factors of SO2, NOx, PM, and wastewater are
5.20 g/kWh, 1.14 g/kWh, 6.00 g/kWh, and 60 g/kWh, respectively [41]. Due to the inherent uncertainties
and complexities of the EWENS, many economic parameters are provided as type-2 fuzzy sets, which
are shown in Appendix B [44].

4. Result Analysis

Numerous results can be obtained from the AM-CT2FPM-EWENS model. Four electricity-generation
technologies, three primary energy production types, LCDE, four pollutants, and five periods have
been considered in the AM-CT2FPM-EWENS model. Furthermore, four carbon mitigation levels, six p
levels, and three α levels were calculated using the proposed model. Therefore, p = 0.01 and α= 0.9 were
selected to depict the results and related policy implication generated from the AM-CT2FPM-EWENS
model. To compare the impacts of carbon reduction on EWENS, different carbon mitigation levels
(µ = 0.0%, µ = 0.5%, µ = 1.0%, and µ = 1.6%) are considered in this study. The upper limit of CO2

reduction of EWENS was 1.6% according to the results generated from the AM-CT2FPM-EWENS model.

4.1. Electricity Demand Prediction

The ARIMA model was employed to predict Inner Mongolia’s electricity demands in periods
1–5. Electricity demand (E) data are annual data from 1995 to 2018, which were collected from the
National Bureau of Statistics. The data are converted into natural logarithms (Log E). According to
the rules of identifying ARIMA (p, d, q), ARIMA (2, 1, 4) with AR = 2, d = 1 and MA = 4 is chosen as
the best ARIMA model to forecast the electricity demands of Inner Mongolia. Results of the ARIMA
(2, 1, 4) model are achieved using EViews 9 software [29]. As results, the electricity demand will
show an increased trend over the planning periods, with a growth rate of 55.73%. In detail, it will be
356.02 × 109 kWh, 378.88 × 109 kWh, 441.332 × 109 kWh, 510.71 × 109 kWh, and 554.44 × 109 kWh
in periods 1, 2, 3, 4, and 5, respectively. This is attribute to the increasing electricity demands as the
societal and economic rapidly development of Inner Mongolia region. The detail results of ARIMA (p,
d, q) are provided in Appendix C.

Monte Carlo simulation was employed to generate the probability distribution of electricity
demand. According to the results of electricity demand through ten thousand times of Monte Carlo
runs in periods 1–5, the normal distribution was the best fitting performance for the distribution of
random variables. The prediction value generated by the ARIMA model would be the mean values of
electricity demand, and the standard deviations value would be 2 billion kWh for each period. Figure 4
shows the probability distributions of electricity demand in periods 1–5, which would be used as the
inputs of the AM-CT2FPM-EWPNS model.

4.2. Electricity Supply

Figure 5 presents the optimized pattern for electricity generation under different µ levels
during the study periods. The major power conversion technologies of Inner Mongolia include
coal-fired, wind, hydro, and solar power. Several major regularities are indicated in Figure 5.
First, the electricity-generation amounts will be 911.38–911.43 × 109 kWh at the end of the planning
periods, which is expected to increase by 54.97–54.99% due to the rapid social and economic
development. This is attribute to the rapidly development of societal and economic of Inner Mongolia
region. Second, coal-fired power holds the primary role in the study region, which constitutes from
77.34% to 85.14% over the planning periods. This condition is mainly because Inner Mongolia is rich
in coal resources, serving as a safeguard for energy security of China. As a result, Inner Mongolia
has become the largest electricity-exporting region of China. A total of 26.38% of Inner Mongolia’s
generated electricity would be exported to other regions. The exported electricity is projected to
be 155.09 × 109 kWh in period 1, 164.94 × 109 kWh in period 2, 191.77 × 109 kWh in period 3,
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221.61 × 109 kWh in period 4, and 240.42 × 109 kWh in period 5, respectively. Third, renewable energy
is expected to undertake enormous development space given that the Chinese government has devoted
to promoting renewable power under a series of policies such as the 13th Five-Year Plan and Paris
Agreement. There is a huge potential for the study region to develop wind power and wind power will
play an increasingly significant role owing to its abundance. The electricity generated by wind power
will be 105.12 × 109 kWh in period 1, 107.07 × 109 kWh in period 2, 109.01 × 109 kWh in period 3,
110.32 × 109 kWh in period 4, and 111.35 × 109 kWh in period 5, respectively. The results also indicate
that the electricity generated by wind power will be not affected by the µ-cut levels. Solar power is
expected to increase by approximately 22.15–29.84% over the planning periods. Hydropower will make
up a minor share of total electricity power generation and keep steady (i.e., 3.09 × 109 kWh) across the
planning periods in Inner Mongolia due to water resource shortage of the study region. Hydropower
contributes only 0.34–0.52% of the total power generation by the end of the study periods. Lastly,
high carbon mitigation levels can accelerate the area’s electric power mix shift from coal-dominated to
low-carbon pattern. As a result, the coal-fired power will show a decreasing trend with enhancement
in the µ-cut level. For example, in period 1, the electricity generated from coal-fired power will be
462.70 × 109 kWh when u = 0.0%, 460.23 × 109 kWh when u = 0.5%, 457.76 × 109 kWh when u = 1.0%,
and 454.80 × 109 kWh when 1.6%. In addition, solar power would be 17.20 × 109 kWh when u = 0.0%,
19.66 × 109 kWh when u = 0.5%, 22.12 × 109 kWh when u = 1.0%, and 25.07 × 109 kWh when 1.6%.
Therefore, additional policies associated with “stricter carbon emission mitigation” should be proposed
to optimize the region’s electric power structure.

4.3. Water Supply for Energy Production

Table 1 shows the water resource supply for electricity generation and primary energy production
under different µ levels across the study horizon. Several findings are indicated in Table 1. First,
the total water supply for energy activities (i.e., WPEP and WEG) in Inner Mongolia will show an
increased trend over the planning periods. The total water supply for energy activities is expected to
range from 922.04 × 106 m3 to 933.80 × 106 m3 in period 1 under different µ levels. The obtained results
are similar to Chu et al. [48]. The results of Chu et al. [48] indicate the water consumption for energy
production is 934.00 × 106 m3. In addition, it will increase to 1368.10 × 106 m3–1370.62 × 106 m3 at the
end of the planning horizon under different µ levels, with a growth rate of 46.51–48.65%. This finding
is mainly attributed to the increasing electricity demands and strong water dependency of power
generation in Inner Mongolia. Approximately 79.26–85.86% of water consumption will be associated
with electricity generation, whereas 14.14–20.74% was associated with primary energy production.
Surface water and groundwater contribute 52.79%, 45.40% of the total water supply, whereas recycled
water contributes 1.81%. This is quite different from the situation of Xiamen, where the shares of
surface water and recycled water are 65% and [26.0, 33.9]% according to the results of Liu et al. [50].

Second, coal-fired power consumes the most water resources of all power generation technologies,
which accounts for 94.41–96.69% of WEG over the planning horizon. Most water is consumed for
cooling purposes because evaporative cooling system is the dominant cooling technology in the study
region. For example, the water input for cooling purpose is expected to account for 72.77–76.17% of
total WEG amounts under different µ levels. This finding indicates that switching from evaporative
cooling to air cooling system can effectively mitigate water stress in Inner Mongolia. On the contrary,
steam generation and desulfurization are projected to consume only 15.68–16.47% and 4.29–5.20% of
total WEG amounts, respectively.
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Table 1. Water input for electricity generation and primary energy production.

µ = 0.0% µ = 0.5% µ = 1.0% µ = 1.6%

Period 1

Electricity-generation process

TQCW 541.03 538.14 535.25 531.78
TQBW 122.26 121.61 120.96 120.18
TQDW 38.64 38.44 38.23 37.98

TQRWH 40.11 40.11 40.11 40.11
TQRWS 0.50 0.57 0.64 0.73

Primary energy production process
PECW 174.83 174.83 174.83 174.83
PEOW 1.23 1.23 1.23 1.23
PENW 15.20 15.20 15.20 15.20

Period 2

Electricity-generation process

TQCW 575.97 572.90 569.83 566.14
TQBW 125.67 125.00 124.33 123.52
TQDW 37.18 36.98 36.79 36.55

TQRWH 40.11 40.11 40.11 40.11
TQRWS 0.51 0.58 0.66 0.74

Primary energy production process
PECW 175.75 175.75 175.75 175.75
PEOW 0.99 0.99 0.99 0.99
PENW 15.20 15.20 15.20 15.20

Period 3

Electricity-generation process

TQCW 686.33 682.67 679.01 674.62
TQBW 144.04 143.27 142.50 141.58
TQDW 39.44 39.23 39.02 38.77

TQRWH 40.11 40.11 40.11 40.11
TQRWS 0.53 0.62 0.71 0.81

Primary energy production process
PECW 176.67 176.67 176.67 176.67
PEOW 0.72 0.72 0.72 0.72
PENW 15.21 15.21 15.21 15.21

Period 4

Electricity-generation process

TQCW 814.37 810.03 805.69 800.50
TQBW 170.91 170.00 169.09 168.00
TQDW 46.80 46.55 46.30 46.00

TQRWH 40.11 40.11 40.11 46.02
TQRWS 0.55 0.66 0.76 0.87

Primary energy production process
PECW 177.58 177.58 177.58 177.58
PEOW 0.43 0.43 0.43 0.43
PENW 15.21 15.21 15.21 15.21

Period 5

Electricity-generation process

TQCW 894.48 889.71 884.95 879.29
TQBW 187.72 186.72 185.72 184.54
TQDW 51.40 51.13 50.85 50.53

TQRWH 40.11 40.11 40.11 61.56
TQRWS 0.57 0.69 0.80 0.89

Primary energy production process
PECW 178.50 178.50 178.50 178.50
PEOW 0.10 0.10 0.10 0.10
PENW 15.21 15.21 15.21 15.21

Note: TQCW means water consumption for cooling of coal-fired power; TQBW means water consumption for
steam generation of coal-fired power; TQDW means water consumption for desulfurization of coal-fired power;
TQRWH means water consumption of hydro power; TQRWS means water consumption of solar power; PECW
means water consumption of coal production; PEOW means water consumption of crude oil production; PENW
means water consumption of natural gas production.

Thirdly, the water consumption for renewable power should not be neglected as hydro and solar
power also require water inputs to generate electricity. The water input of hydropower remained
stable and will be 40.11 × 106 m3 across the planning periods. The water consumption of solar power
is expected to increase by 14.61–21.83% under different µ levels over the planning horizon. The
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results also indicate that it is particularly important to the study region to reap the benefit of lower
water consumption by switching from traditional coal-based to low-carbon electricity-generation mix.
The results of this study also indicate that wind power is project to potentially save 149.59 × 106 m3 of
water resource.

Lastly, high carbon mitigation levels are helpful to close the gap of water shortage in water-scarce
regions. The study region could be switched from a coal-dominated to “low-carbon” mix area, which
cannot only save fossil fuels but also significantly decrease water consumption of electricity generation.
As a result, a 1% increase in carbon mitigation level (from 0.0% to 1.0%) is projected to reduce water
input by 7.35 × 106 m3, 7.74 × 106 m3, 9.10 × 106 m3, 10.79 × 106 m3, and 11.84 × 106 m3 in periods
1–5, respectively.

Figure 6 presents the virtual water contributed by electricity outflows. The results indicate an
alarming situation that Inner Mongolia is projected to experience water stress across the planning
periods. As Figure 6, as the largest electricity-exporting city of China, exporting virtual water via
coal-fired power is expected to increase from 235.27 × 106 m3 in period 1 to 351.22 × 106 m3 in period 5
(based on the assumption that the exported electricity is generated by coal-fired power). Chu et al. [48]
indicates that the virtual water outflow of Inner Mongolia will range from 150 × 106 to 300 × 106 m3

in 2014, which is similar to the results of this study. The results imply that Inner Mongolia, as a
water-scarce area, is pumping its precious water resource to support other region’s electricity demands.
Such a situation raises concerns on the adjustment of the current energy pattern in China.
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4.4. Electricity Consumption for Water Supply

Several findings of EWS are presented in Table 2. First, EWS will range from 2164.07 × 106 kWh to
2167.65 × 106 kWh at the end of the planning periods, with a growth rate of 46.06–48.72%. The amount
of EWS is projected to contribute approximately to 0.4% of the study region’s total electricity demands.
Second, the water-sourcing phase is expected to account for 41.54–41.57% of the total EWS amounts,
of which 76.32% and 21.42% of electricity use will be associated with surface water extraction and
groundwater pumping, whereas recycled water provided 2.26% of water supply. The electricity for
water treatment and water distribution ranges between 26.17–26.19% and 31.29–31.31%, respectively.
Wastewater treatment constitutes 0.93–0.99% of total EWS amounts. The portion is extremely low
compared with other developed cities (i.e., Beijing, Shanghai and Xiamen) [48,50]. Lastly, high carbon
mitigation requirement can significantly reduce the amounts of WEG and EWS. As a result, a 1%
increase in carbon mitigation level would decrease electricity by 11.66 × 106 kWh, 12.28 × 106 kWh,
14.43 × 106 kWh, 17.11 × 106 kWh, and 18.78 × 106 kWh in periods 1–5, respectively.
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Table 2. Electricity allocation patterns for water supply.

µ = 0.0% µ = 0.5% µ = 1.0% µ = 1.6%

Period 1

Electricity-generation process

ECWES 372.39 370.55 368.70 366.49
ECWEG 104.51 103.99 103.47 102.85
ECWER 11.02 10.97 10.91 10.85
ECWT 307.41 305.89 304.37 302.54
ECWD 367.56 365.74 363.92 361.74
ECWW 13.74 13.67 13.60 13.51

Primary energy production process

PCWES 95.92 95.92 95.92 95.92
PCWEG 26.92 26.92 26.92 26.92
PCWER 2.84 2.84 2.84 2.84
PCWT 79.18 79.18 79.18 79.18
PCWD 94.67 94.67 94.67 94.67

Period 2

Electricity-generation process

ECWES 390.90 388.96 387.01 384.68
ECWEG 109.70 109.15 108.61 107.96
ECWER 11.57 11.51 11.45 11.38
ECWT 322.69 321.09 319.49 317.56
ECWD 385.83 383.91 381.99 379.69
ECWW 14.50 14.42 14.35 14.25

Primary energy production process

PCWES 96.26 96.26 96.26 96.26
PCWEG 27.01 27.01 27.01 27.01
PCWER 2.85 2.85 2.85 2.85
PCWT 79.46 79.46 79.46 79.46
PCWD 95.01 95.01 95.01 95.01

Period 3

Electricity-generation process

ECWES 456.60 454.31 452.03 449.29
ECWEG 128.14 127.50 126.86 126.09
ECWER 13.51 13.45 13.38 13.30
ECWT 376.93 375.04 373.16 370.90
ECWD 450.67 448.42 446.17 443.47
ECWW 17.09 17.00 16.91 16.80

Primary energy production process

PCWES 96.59 96.59 96.59 96.59
PCWEG 27.11 27.11 27.11 27.11
PCWER 2.86 2.86 2.86 2.86
PCWT 79.73 79.73 79.73 79.73
PCWD 95.33 95.33 95.33 95.33

Period 4

Electricity-generation process

ECWES 537.98 535.28 532.57 532.29
ECWEG 150.98 150.22 149.46 149.38
ECWER 15.92 15.84 15.76 15.75
ECWT 444.11 441.88 439.65 439.42
ECWD 531.01 528.34 525.67 525.39
ECWW 19.93 19.83 19.72 19.59

Primary energy production process

PCWES 96.90 96.90 96.90 96.90
PCWEG 27.19 27.19 27.19 27.19
PCWER 2.87 2.87 2.87 2.87
PCWT 79.99 79.99 79.99 79.99
PCWD 95.64 95.64 95.64 95.64

Period 5

Electricity-generation process

ECWES 588.91 585.94 582.97 590.17
ECWEG 165.27 164.44 163.60 165.62
ECWER 17.43 17.34 17.25 17.47
ECWT 486.15 483.70 481.25 487.20
ECWD 581.27 578.34 575.41 582.52
ECWW 21.51 21.40 21.28 21.14

Primary energy production process

PCWES 97.20 97.20 97.20 97.20
PCWEG 27.28 27.28 27.28 27.28
PCWER 2.88 2.88 2.88 2.88
PCWT 80.24 80.24 80.24 80.24
PCWD 95.94 95.94 95.94 95.94

Note: ECWES means electricity allocation amounts for surface water supply (electricity-generation process); ECWEG
means electricity allocation amounts for groundwater pumping (electricity-generation process); ECWER means
electricity allocation amounts for recycled water (electricity-generation process); ECWT means electricity allocation
amounts for water treatment (electricity-generation process); ECWD means electricity allocation amounts for water
distribution (electricity-generation process); ECWW means electricity allocation amounts for wastewater treatment
(electricity-generation process); PCWES means electricity allocation amounts for surface water supply (primary
energy production); PCWEG means electricity allocation amounts for groundwater pumping (primary energy
production); PCWER means electricity allocation amounts for recycled water (primary energy production); PCWT
means electricity allocation amounts for water treatment (primary energy production); PCWD means electricity
allocation amounts for water distribution (primary energy production).

4.5. Lifecycle Carbon Dioxide Emissions of EWENS

Several inferences can be withdrawn from Figure 7, which shows the LCDE generated from
electricity-generation process over the planning horizon. First, the total LCDE will show an increased
trend over the planning periods, which is projected to range from 557.31 × 106 to 566.38 × 106 tons in
period 1. In addition, it will increase to 931.85 × 106 tons–947.00 × 106 tons at the end of the planning
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horizon under different µ levels, which is more than the LCDE of German in 2017 [51]. LCDE is
expected to increase by 67.20% over the planning horizon due to the increasing electricity demands.
Li et al. [42] estimated that coal-fired power would contribute to 1.3 billion tons of CO2 emissions in
Inner Mongolia by 2020, which is significantly higher than the results of this study. This is mainly
because the study of Li et al. [42] might overestimate the power generation capacity of coal-fired power
(i.e., 240.0 GW), which apparently higher than the results of this study (102.08 GW) and the historic
data of 81.70 in 2017 [41].

Second, sources of LCDE vary substantially across different types of electricity-conversion
technologies. Coal-fired power will be major contributor for LCDE in the study region, and it emits
more than 99% of total LCDE in the region. The high emissions of coal-fired power generation are
mainly due to the large emissions from mining, combustion of fossil fuel, and operation of power
plants. Renewable electricity-conversion technologies have much lower LCDE and indirect emissions
from upstream processes compared with coal-fired power generation. The LCDE for wind power is
projected to increase from 3.62 × 106 tons in period 1 to 3.83 × 106 tons in period 5. The results also
show that the development of wind power is project to potentially reduce 118.55 × 106 tons of LCDE.
Hydropower would contribute only 0.11 × 106 tons of total LCDE in each period because it will remain
stable and contribute a minor share over the planning periods. The LCDE of solar power is expected to
increase by 22.15–32.17% over the planning horizon under different µ levels. The significant differences
in LCDE between different electricity-conversion technologies indicate that substantial mitigation
in CO2 emissions can be achieved by substituting the existing coal-dominated power mix with a
low-carbon pattern.

Thirdly, the results indicate that EWS will only contribute a small fraction of total LCDE. This
amount will be 2626.10 × 103–2630.45 × 103 tons at the end of the planning horizon under different µ
levels, with a growth rate of 46.60–48.72%. Lastly, high carbon mitigation requirement can effectively
optimize the electric power mix and save coal resources, reducing the amounts of LCDE. Results
indicate that a 1% increase in carbon mitigation level (from 0.0% to 1.0%) is projected to decrease LCDE
by 5.66 × 106 tons, 6.08 × 106 tons, 7.28 × 103 tons, 8.63 × 103 tons, and 9.47 × 103 tons in periods
1–5, respectively.

Figure 8 shows the LCDE contributed by electricity outflows. As the largest electricity-exporting
region of China, the electricity outflows of Inner Mongolia are expected to contribute 188.20 × 106 tons
of LCDE in period 1 (as Table 2). This amount will increase to 291.74 × 106 tons at the end of the
planning horizon, which is similar to the LCDE of Poland in 2015 [51]. This result is lower than that
of Li et al. [42] (520 million ton). This is because Li et al. [42] overestimated the power generation
capacity of coal-fired power (i.e., 240.0 GW) and the domestic electricity outflows of the total power
generation amounts (40%) in Inner Mongolia by 2020, which is higher than the historical data [41,47]
and the result of this study.

4.6. Pollutants Emissions of EWENS

Wastewater, NOx, SO2, and PM are selected as the pollutants that managers aim to mitigate
because of their harmful impacts on the environment and human health. Several inferences can be
drawn from Figure 9, which displays the pollutants from electricity-generation process across the
study horizon under different µ levels. First, results indicate an uptrend of pollutants from period
1 to period 5. Wastewater, SO2, NOx, and PM are projected to be 42.72 × 103–43.45 × 103 tons,
183.07 × 103–186.23 × 103 tons, 712.38 × 103–724.73 × 103 tons, and 38.14 × 103–38.80 × 103 tons at the
end of the planning periods under different µ levels, with a growth rate of 56.52–56.54%, 54.80–54.82%,
54.29–54.30%, and 39.77–39.75%, respectively. This finding is attributed to the increasing trend of
electricity-generation amounts and electricity demands.

Second, EWS would contribute a small fraction of pollutants. For example, when µ = 0.0%,
the wastewater, SO2, NOx, and PM will be 121.19 × 103–121.39 × 103 tons, 519.38–520.24 tons,
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497.74–498.56 tons, and 108.20–108.38 tons in period 5 under different µ levels, with a growth rate of
36.83–38.81%, 35.32–37.28%, 34.87–36.83%, and 21.17–23.94%, respectively, over the planning periods.

Lastly, high carbon mitigation requirement could effectively optimize the electric power mix
and save coal resources, leading to lower pollutants. Results indicate that a 1% increase (from
0.0% to 1.0%) in carbon mitigation level is projected to decrease 1.87 × 106 tons, 8.05 × 103 tons,
7.73 × 103 tons, and 1.76 × 103 tons of wastewater and SO2, NOx, and PM emissions, respectively, over
the planning horizon.
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Table 3 shows the virtual environment pollutants contributed by electricity outflows. The pollutants
contributed by exporting electricity are projected to show an increasing trend. Wastewater, SO2,
NOx, and PM emitted by electricity outflows are expected to be 13.46 × 106 tons, 57.70 × 103 tons,
55.30 × 103 tons, and 12.02 × 103 tons, respectively, in period 5, with a growth rate of 44.69%, 43.10%,
42.62%, and 29.18%, respectively, across the planning horizon.

Table 3. The virtual environment pollutants contributed by electricity outflows (103).

Wastewater (m3) SO2 (ton) NOx (ton) PM (ton)

t = 1 9305.13 40.32 38.77 9.31
t = 2 9731.42 42.06 40.41 9.48
t = 3 11,122.42 47.94 46.02 10.55
t = 4 12,631.84 54.29 52.08 11.63
t = 5 13,463.27 57.70 55.30 12.02

4.7. Coal Allocation Patterns for Electricity Generation and Primary Energy Production

Figure 10 presents the coal consumption amounts of coal-fired power across the planning horizon
under different µ levels. Several findings are presented in Figure 10. First, the coal consumption
amounts of coal-fired power are expected to be 231.89 × 106–235.90 × 106 tons of SCE at the end of
the planning periods, with a growth rate of 63.40–63.42%. This increase is mainly attributed to the
increasing electricity demands and coal-dominated power generation of Inner Mongolia. Thus, a large
amount of coal is consumed as fuel for power generation.
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Second, as the largest electricity-exporting city of China, 26.38% of Inner Mongolia’s
electricity-generation amounts would be exported to other regions. This situation indicates that
electricity outflows will consume 48.39 × 106 tons of SCE, 51.13 × 106 tons of SCE, 59.06 × 106 tons of
SCE, 67.81 × 106 tons of SCE, and 73.09 × 106 tons of SCE of coal resource in periods 1–5, respectively,
based on the assumption that the exported electricity are generated by the coal-fired power.

Thirdly, high carbon mitigation levels can effectively save coal resources. A 1% increase in carbon
mitigation level (from 0.0% to 1.0%) is projected to save 1.54 × 106 tons of SCE, 1.64 × 106 tons of SCE,
1.96 × 106 tons of SCE, 2.30 × 106 tons of SCE, 2.51 × 106 tons of SCE coal resource in periods 1–5,
respectively. This finding is mainly because high µ levels can promote the city’s electric power system
shift from being coal-dominated to a diversified electricity power mix, which will save the coal inputs
of coal-fired power.

Figure 11 presents several results of the optimized solutions of primary energy production
across the study periods. First, the coal production amounts will show a steady increasing trend
over the planning horizon. It is expected to be 501 × 106 tons of SCE at the end of the planning
periods, with a growth rate of 2.10%. Inner Mongolia was defined as an energy-dependent and
energy-output-oriented region as more than half of its coal resources would be exported to other
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provinces. Second, the production amounts of natural gas will be stable across the planning periods.
More than 80% of the natural gas resource is projected to be exported to other provinces. Third, the
production amounts of crude oil are expected to show a decreasing trend across the planning periods.
Local crude oil production amount cannot meet the local demands, of which more than 80% will be
compensated by importing from other provinces.
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4.8. System Cost

Figure 12 shows the system costs across the study horizon under different µ levels. As can be
observed from Figure 12, the fixed and variable cost of electricity generation, cost of coal allocation, and
primary energy production cost are projected to contribute largely to the system cost. Their shares will
be 36.88–38.82%, 24.39–25.84%, 13.09–14.02%, and 11.79–12.41%, respectively. A system benefit of RMB
¥499.00 × 109 will be achieved through exporting electricity to other regions. Furthermore, Figure 12
also shows that the system costs are expected to increase with raised µ levels. For instance, the system
costs will be RMB ¥4891.39 × 1012, 4969.05 × 1012, 5046.71 × 1012, and 5148.84 × 1012 under µ values of
0.0%, 0.5%, 1.0%, and 1.6%, respectively. Results also indicate that a 1% increase in carbon mitigation
level (from 0.0% to 1.0%) is projected to increase system cost by RMB ¥155.32 × 109. This finding
is because a high µ level can accelerate the renewable power development and increase the costs
corresponding to electric expansion of renewable power.
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5. Discussion

Six p levels (i.e., 0.01, 0.05, 0.10, 0.15, 0.20, and 0.30) and three different credibility levels (i.e.,
0.8, 0.9, and 1.0) are considered to understand the influences of the uncertainties on the optimized
solutions of EWENS. The planning problem of EWENS can also be solved through conventional
CCP by neglecting the fuzzy uncertainties. This study compares the optimized solutions of EWENS
generated from AM-CT2FPM with that from CCP method.

5.1. Uncertainties Analysis

Table 4 shows the optimized solutions for EWENS under different p levels over the planning
periods. Six p levels of violating electricity demand (i.e., 0.01, 0.05, 0.10, 0.15, 0.20, and 0.30) on the
electricity demands are considered, which corresponded to various reliabilities of meeting the region’s
electric power system demands. For example, p = 0.01 implies that electricity demands must be
satisfied at the probability of (1 − 0.01 = 0.99). The results indicate that the amounts of electricity
supply will decrease as the p levels increase. For instance, the electricity supply will decrease from
4440.93 × 109 kWh (p = 0.01) to 4405.53 × 109 kWh (p = 0.30). This is mainly because decision with
high p level corresponds to a high risk of violating the region’s electricity demands, and thus a lower
electricity demand. Suo et al. [28] aimed to plan the Shanghai’s energy system with CCP method,
which obtained the similar trend with this study. They found that the electricity supply amount would
decrease from 665.3 × 103 GWh under p = 0.01 to 657.7 × 103 GWh under p = 0.20. Variations in the p
level correspond to the decision makers’ preferences regarding the tradeoff between electricity supply
and risk of violating the electricity demand constraint. Pessimistic managers will prefer to lower p
levels, which can guarantee the electricity demands be met, leading to high electricity supply amounts.
Contrarily, Optimistic managers tend to choose higher p levels, resulting in relaxed electricity demand
constraints and lower electricity supply amounts.

Table 4. Optimized solutions under different p levels over the planning horizon.

Optimized Solutions Under Different p Levels p = 0.01 p = 0.05 p = 0.10 p = 0.15 p = 0.20 p = 0.30

Electricity Supply (109 kWh) 4440.93 4427.64 4420.39 4415.59 4411.73 4405.53

Water for Electricity Generation, WEG (106 m3)

Cooling water consumption of coal-fired power 3512.17 3499.38 3492.40 3487.78 3484.07 3478.10
Boiler water consumption of coal-fired power 750.61 611.92 610.62 609.77 609.09 607.99

Desulfurization water consumption of coal-fired power 213.46 201.53 201.17 200.94 200.76 200.46
Water demand for hydro power 200.55 161.02 161.02 161.02 161.02 161.02
Water demand for solar power 2.68 2.10 2.10 2.10 2.10 2.10

Electricity for Water Supply, EWS (103 kWh)

Surface water extraction related electricity consumption 234.68 233.86 233.41 233.12 232.88 232.50
Ground water extraction related electricity consumption 65.86 65.63 65.50 65.42 65.35 65.25
Recycled water extraction related electricity consumption 6.95 6.92 6.91 6.90 6.89 6.88

Water treatment related electricity consumption 193.73 193.05 192.69 192.44 192.24 191.93
Water distribution related electricity consumption 231.63 230.83 230.38 230.09 229.86 229.48

Wastewater treatment related electricity consumption 8.68 8.65 8.63 8.62 8.61 8.59

Pollutants Emission

Lifecycle carbon emission (106 ton) 3711.29 3697.88 3690.57 3685.73 3681.83 3675.57
Wastewater (103 ton) 175.32 174.68 174.33 174.09 173.91 173.61

SO2 emission (103 ton) 755.10 752.34 750.83 749.83 749.03 747.74
NOx emission (103 ton) 724.73 722.08 720.63 719.67 718.90 717.66
PM emission (103 ton) 154.90 154.33 154.02 153.81 153.64 153.38

System cost (RMB 109) 4891.39 4881.66 4876.38 4872.88 4870.05 4865.51

Furthermore, high electricity supply amounts will lead to high WEG, EWS, LCDE, air pollutant,
and wastewater. Thus, WEG, EWS, LCDE, air pollutant, and wastewater have similar trends with the
electricity supply amounts. Decision with high p level leads to a reduced strictness for the electricity
demand constraint and thus decreased amounts of WEG, EWS, LCDE, air pollutants, and wastewater.
Contrarily, decisions with a low p level associate with a low risk of violating the electricity demands
but result in high amounts of electricity supply, WEG, EWS, LCDE, air pollutants, and wastewater.
Results also shows that the system cost will decrease with the raised p levels. Liu et al. [50] used
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CCP model to plan energy–water nexus system of Xiamen, which found that the system cost would
increase form RMB¥ [456.29, 732.52] × 109 (with p = 0.05) to RMB¥ [416.56, 673.73] × 109 (with p = 0.10).
Yu et al. [52] used CCP model to plan municipal energy system with considering peak-electricity price,
which shown that a higher p level of peak-electricity demand would lead to a lower system cost and
decrease reliability in fulfilling the electricity demands. The relationships between system cost and p
levels reported by Liu et al. [50] and Yu et al. [52] were consistent with this study. Summarily, p levels
can reflect the manager’s preferences regarding the tradeoff between system failure and system cost.
Pessimistic manager prefers to a low p level which can meet the electricity demands and thus lead to
higher system costs. Optimistic manager tends to a high p level which leads to low electricity supply
and system costs but increases the risk of electricity shortage. Managers should choose between a
riskier solution with a higher p level and more conservative scheme with a lower p level.

Table 5 presents the optimized solutions of EWENS under different credibility levels α of 0.8,
0.9, and 1.0. The credibility levels α indicate the decision maker’s attitude of violation risk toward
imprecise constraints. A high α levels imply high likelihoods of satisfying fuzzy confidence constraints
and less uncertainty regarding imprecise constraints. The imprecise objective and constraints of
C̃r{LR̃RCi|Zit ≥ LR̃RCt} ≥ α and C̃r{LR̃RCi|Zit ≤ UR̃RCt} ≥ α can be converted into a conventional
linear programming model though using the proposed method. Several inferences can be drawn from
Table 5. First, according to type-2 fuzzy theory, a high credibility level will lead to an increment value
in terms of LR̃RCt and decrement coefficient in terms of UR̃RCt. This finding indicates that a high
credibility level α has advantages in accelerating the shift of electricity mix from being coal-dominated
to a low-carbon mix pattern. For example, the electricity generated from coal-fired power will be
reduced by 532.22 × 106 kWh and electricity generated from solar power is expected to increase by
488.61 × 106 kWh when the credibility levels α increase from 0.8 to 1.0. Second, the tendency of
LCDE, wastewater, and air-pollutant emissions will be similar to the electricity generated by coal-fired
power because it is expected as the major contributor of electricity in Inner Mongolia. Third, a high
credibility level will correspond to high WEG and EWS due to the evident development of solar power
and hydropower. Lastly, the system costs are expected to increase with increased credibility levels α.
This finding is mainly because a high α level implies high coal prices and operation costs of electric
power as well as great amounts of electricity generated from renewable power. This phenomenon
leads to increased costs corresponding to WEG, EWS, and renewable power expansion and operation.
Kundu et al. [37] aimed to reduce the type-2 fuzzy variable into type-1 fuzzy variables and employed
the type-2 fuzzy method to solve the transportation problems. They found that a higher α levels will
correspond to higher transportation costs. For instance, the transportation costs will decrease from
239.50 (α = 0.9) to 227.04 (α = 0.7). The results of Kundu et al. [37] are similar to this study. Generally, a
high credibility degree can increase the strictness of the constraints but results in a high system cost.
On the contrary, a low credibility degree corresponds to an aggressive attitude of decision makers on
the system costs, leading to a high uncertainty of imprecise constraints.

Table 5. Optimized solutions under different credibility levels (α) over the planning horizon.

Optimized Solutions Under Different Credibility Levels α = 0.8 α = 0.9 α = 1.0

Electricity Generation (106 kWh)

Coal-fired 2,841,973.96 2,841,653.93 2,841,441.74
Wind 509,858.49 509,777.01 509,719.96
Hydro 14,374.44 14,486.89 14,562.29
Solar 90,527.27 90,819.75 91,015.88

Water for Electricity Generation, WEG (106 m3) 4662.08 4663.14 4663.86

Electricity for Water Supply, EWS (103 kWh) 738.77 738.93 739.05

Pollutant Emission

Lifecycle carbon emission (106 ton) 3698.27 3697.88 3697.62
Wastewater (103 ton) 174,696.07 174,676.17 174,662.97

SO2 emission (103 ton) 752.42 752.34 752.28
NOx emission (103 ton) 722.16 722.08 722.02
PM emission (103 ton) 154.35 154.33 154.32

System cost (RMB 109) 4876.25 4881.66 4885.28
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5.2. Comparison with CCP

The problem of EWENS for Inner Mongolia can be converted into a conventional CCP problem
by simplifying the membership grades of type-2 fuzzy sets into crisp values. Table 6 presents the
optimized solutions generated from the AM-CT2FPM and CCP method over the planning horizon
(µ = 1.6%; p = 0.05, and α = 0.9). Several inferences can be drawn from Table 6. First, the results
indicate that an AM-CT2FPM can effectively support the transformation of electric power mix from a
coal-dominated pattern to a low-carbon pattern. For instance, electricity generated by coal-fired power
under the AM-CT2FPM will be lower than that under CCP, and electricity generated from solar power
under AM-CT2FPM will be higher than that from CCP. Second, WEG and EWS under AM-CT2FPM
will slightly higher than those under CCP, mainly because AM-CT2FPM can obviously accelerate the
development of renewable power. Third, LCDE, wastewater, and air pollutants from AM-CT2FPM will
be lower than those from CCP, which indicates that AM-CT2FPM has an advantage in reducing LCDE,
wastewater, and air pollutants compared with CCP. Fourth, the AM-CT2FPM model will lead to a
higher system cost, mainly because the economic parameters tackled by AM-CT2FPM are higher than
those tackled by CCP. The results show that AM-CT2FPM is more capable of decreasing dependence
on coal-fired power and reducing LCDE, wastewater, and air pollutants for the study area, but lead to
a higher system cost. Generally, AM-CT2FPM is more advanced in optimizing EWENS and tackling
the uncertainties.

Table 6. Optimized solutions under AM-CTFPM and CCP over the planning horizon.

Optimized Solutions Under AM-CTFPM and CCP AM-CTFPM CCP

Electricity Generation (109 kWh)

Coal-fired 2841.65 2842.97
Wind 509.78 510.11
Hydro 14.49 14.03
Solar 90.82 89.62

Water Demand for Electricity Generation (106 m3) 4663.14 4658.81

Water-Related Electricity Consumption (103 kWh) 738.93 738.26

Lifecycle carbon emission (106 ton) 3697.88 3699.49
Wastewater (106 ton) 174.68 174.76

SO2 emission (103 ton) 752.34 752.69
NOx emission (103 ton) 722.08 722.41
PM emission (103 ton) 164.34 164.42

System cost (RMB 109) 4881.66 4855.06

6. Conclusions

In this study, an AM-CT2FPM is developed through incorporating the ARIMA model, Monte Carlo
simulation, CCP, and T2FP into one general framework, which is capable of effectively tackling the
uncertainties shown as type-2 fuzzy sets and stochastic. The proposed model can overcome the shortage
of traditional FMP and CCP methods; the ARIMA model is used to predict the electricity demands;
and Monte Carlo is employed to simulate the probability distribution of electricity demands. Based on
the AM-CT2FPM, an AM-CT2FPM-EWENS model is proposed by considering the environment sector
(i.e., SO2, NOX, PM, and wastewater) in the energy–water nexus. This method can quantitatively
explore the interconnections between water, energy, and environment systems and generate optimized
schemes for EWENS, including electricity power generation, primary energy production, WPEP, WEG,
EWS, and management of LCDE, air-pollutant emissions, and wastewater.

The proposed model was applied to Inner Mongolia, a coal-dominated region of China. Several
findings were obtained, which can provide a scientific basis for planning EWENS:

(1) The total water supply for electricity generation and primary energy production in Inner Mongolia
will range from 1368.10 × 106 m3 to 1370.62 × 106 m3 at the end of the planning horizon under
different µ levels, with a growth rate of 46.51–48.65% across the planning horizon. In detail,
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79.26–85.86% and 14.14–20.74% of water consumption would be due to electricity generation and
primary energy production, respectively.

(2) The EWS will range from 2164.07 × 106 kWh to 2167.65 × 106 kWh at the end of the planning
periods, with a growth rate of 46.06–48.72%. The water-sourcing phase, water treatment, water
distribution, and wastewater treatment are expected to account for 41.54–41.57%, 26.17–26.19%,
31.29–31.31%, and 0.93–0.99% of total EWS amounts, respectively.

(3) The lifecycle carbon dioxide emissions will range from 931.85 × 106 tons to 947.00 × 106 tons
at the end of the planning horizon, which will increase by 67.20% over the planning horizon.
Wastewater and SO2, NOx, and PM emissions are projected to be 42.72 × 103–43.45 × 103 tons,
183.07 × 103–186.23 × 103 tons, 712.38 × 103–724.73 × 103 tons, and 38.14 × 103–38.80 × 103 tons
at the end of the planning periods under different µ levels, with a growth rate of 56.52–56.54%,
54.80–54.82%, 54.29–54.30%, and 39.77–39.75%, respectively.

(4) Inner Mongolia has become the largest electricity-exporting city of China. Approximately
26.38% of Inner Mongolia’s electricity-generation amounts would be exported to other regions.
That indicating electricity outflows will consume 299.48 × 106 tons of SCE of coal resource, export
1435.78× 106 m3 of virtual water to other region, and contribute 1181.73× 106 tons, 242.32× 103 tons,
232.58 × 103 tons, 52.99 × 103 tons, and 56.25 × 106 tons of LCDE, SO2, NOx, PM, and wastewater
across the planning horizon. The results imply that Inner Mongolia, as a water-scarce area, is
pumping its precious water resource to support other region’s electricity demands.

(5) High carbon mitigation levels can effectively optimize the electricity power mix, reduce
consumption amounts of water and coal, and mitigate air pollutants, wastewater, and LCDE.
However, a high system cost is incurred in the process. A 1% increase in carbon mitigation level
is projected to reduce 9.95 × 106 tons of SCE, 46.82 × 106 m3, 37.11 × 103 tons, 1.87 × 106 tons,
8.05 × 103 tons emission, 7.73 × 103 tons, and 1.76 × 103 tons of coal resource, water resource,
LCDE, wastewater, and SO2, NOx, and PM emissions, respectively, over the planning horizon.
However, the system cost will significantly increase by RMB ¥155.32 × 109 over the study horizon.

The results indicate that AM-CT2FPM can effectively lessen dependence on coal-fired power,
save water resource, and reduce LCDE, wastewater, and air pollutants for the study area compared
with conventional CCP method. To understand the influences of the uncertainties on the optimized
solutions of EWENS, different p levels (i.e., 0.01, 0.05, 0.10, 0.15, 0.20, and 0.30) and three different
credibility levels (i.e., 0.8, 0.9, and 1.0) are considered in this study. The results indicate that the system
cost will decrease with the raised p levels, which is consistent with the results of Liu et al. [50] and
Yu et al. [52]. In addition, the system costs are expected to increase with increased credibility levels α,
which is similar to the study of Kundu et al. [37]. The results generated from the AM-CT2FPM-EWENS
model can support local policymakers in developing a sustainability plan for EWENS. The proposed
model can be extended to other regions in the world. However, the proposed model aims to minimize
system costs with considering a series of constraints of water, energy, and environment systems, which
is infeasibility of tackle multi-objectives problems of EWENS. Multi-objective optimization methods
for EWENS will be studied in the further research.
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Abbreviations

f System costs;
f1 Cost of fossil energy allocation;
f2 Benefit of electricity exportation;
f3 Cost of water consumption for electricity generation;
f4 Cost of water consumption for primary energy production;
f5 Variable cost of electricity generation;
f6 Fix cost of electricity generation;
f7 Variable cost of electric expansion;
f8 Fix cost of electric generation;
f9 Cost of primary energy production;
f10 Cost of air pollutants and wastewater treatment;
i Type of electric power, i = 1, 2, 3, 4; i = 1 for coal-fired power, i = 2 for wind power, i = 3 for hydro

power, and i = 4 for solar power;
t Study periods, t = 1, 2, 3, 4, 5; t = 1 is 2019, t = 2 is 2020, t = 3 is 2021, t = 4 is 2022, and t = 5 is 2023.
pi A give level of probability for constraint n, implying that the constraints n should be satisfied with at

least a probability level of 1 − pi.
α The confidence levels;
Model Parameters
ÑSt The price of coal resources;
ÑEt The price of electricity exported;
LREt The loss rate of electricity transmission;
PQCWit The cost of water for cooling;
PQBWit The cost of water for steam generation;
PQDWit The cost of water for desulfurization;
PQRWit The cost of water resource to renewable power;
QCWit The cooling water consumption of unit of electricity power generation;
QBWit The boiler water consumption of unit of electricity power generation;
QDWit The desulfurization water consumption of unit of electricity power generation;
QRWit The water consumption amounts of unit of renewable power;
CWt The water consumption intensity of coal production;
OWt The water consumption intensity of crude oil production;
NWt The water consumption intensity of natural gas production;
CECWt The cost of water resource for coal production;
CEOWt The cost of water resource for crude oil production;
CENWt The cost of water resource for natural gas production;
PṼit The cost of operation cost of first-stage electricity power generation;
Ãit Fixed-charge cost of capacity expansion for electricity power conversion technology;
RRCit Residual capacity of each electricity power conversion technology;
CP̃Pt The production cost for coal resource;
OP̃Pt The production cost for coal resource;
NP̃Pt The production cost for coal resource;
PSOit The cost for desulfurization;
PNOit The cost for denitration;
PPMit The cost for PM removal;
PWWit The cost for wastewater treatment;
ηs The desulfurization efficiency;
ηN The denitration efficiency;
ηPM The PM removal efficiency;
Dpi

t The electricity demands under various pi levels, which shown the characteristic of stochastic;
LEDt The lower bound of exported electricity;
UEDt The upper bound of exported electricity;
CFit The operating hours of electricity-conversion technology;
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RRCit The residual capacity for each electric power technology;
ŨZt The upper bound for capacity expansion of each electric power technology;
L̃Zt The upper load demands of capacity of each electric power technology;
PELt The electricity peak load demand;
UCPAt The upper bounds for coal resource production;
LCPAt The lower bounds for coal resource production;
UOPAt The upper bounds for crude oil resource production;
LOPAt The lower bounds for crude oil resource production;
UNPAt The upper bounds for natural gas resource production;
LNPAt The lower bounds for natural gas resource production;
WAt The amounts of available water resource for electricity generation and primary energy production;
EFWESt Electricity intensity factors for surface water supply;
EFWEGt Electricity intensity factors for ground water supply;
EFWERt Electricity intensity factors for recycled water supply;
EFWTt Electricity intensity factors for water treatment;
EFWDt Electricity intensity factors for water distribution;
EFWWt Electricity intensity factors for wastewater treatment;
SWt The proportion of surface water in total water resources supply;
GWt The proportion of ground water in total water resources supply;
RWt The proportion of recycled water in total water resources supply;
FEit Coal consumption intensity factor for coal-fired power;
LXCt The amounts of available coal resource for coal-fired power generation;
Lit The life cycle CO2 emissions coefficient;
SOGit The SO2 emission coefficient;
NOGit The NOX emission coefficient;
PMGit The NOX emission coefficient;
WWGit The wastewater emissions coefficient;
UCOt The total allowance amounts of life cycle CO2 emissions;
LSOt The total allowance amounts of SO2 emissions;
LNOt The total allowance amounts of NOX emissions;
LPMt The total allowance amounts of PM emissions;
Decision Variables
Wit The electricity-generation amounts of each electricity-conversion technology;
Yit The electricity generated from the capacity expansion for each electric power;
AXit The optimized electricity-generation schemes of each electricity-conversion technology;
ECWESt The electricity consumption amounts for surface water supply of electricity generation;
ECWEGt The electricity consumption amounts for ground water supply of electricity generation;
ECWERt The electricity consumption amounts for recycled water supply of electricity generation;
ECWTt The electricity consumption amounts for water treatment of electricity generation;
ECWDt The electricity consumption amounts for water distribution to electricity-generation enterprise;
ECWWt The electricity consumption amounts for wastewater treatment of electricity generation;
PCWESt The electricity consumption amounts for surface water supply of primary energy production (i.e.,

coal, crude oil, and natural gas);
PCWEGt The electricity consumption amounts for groundwater supply of primary energy production (i.e.,

coal, crude oil, and natural gas);
PCWERt The electricity consumption amounts for recycled water supply of primary energy production (i.e.,

coal, crude oil, and natural gas);
PCWTt The electricity consumption amounts for water treatment of primary energy production (i.e., coal,

crude oil, and natural gas);
PCWDt The electricity consumption amounts for water distribution to primary energy production enterprise

(i.e., coal, crude oil, and natural gas);
EDt The amounts of exported electricity;
Zit Continuous variable of electric capacity expansion of each electricity power type;
PECWt The total water consumption amounts for coal production;
PEOWt The total water consumption amounts for crude oil production;
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PENWt The total water consumption amounts for natural gas production;
TQCWit The total cooling water consumption amounts for each electricity power type;
TQBWit The total boiler water consumption amounts for each electricity power type;
TQDWit The total desulfurization water consumption amounts for each electricity power type;
TQRWit The total water consumption amounts for each renewable power;
XCt The coal consumption amounts of coal-fired power;
LCCEit The life cycle CO2 emission amounts;
TSOGit The SO2 emission amounts;
TNOGit The NOx emission amounts;
TPMGit The PM emission amounts;
TWWit The wastewater emission amounts;
CPAt The production amounts for coal resource;
OPAt The production amounts for crude oil resource;
NPAt The production amounts for natural gas resource;

Appendix A. The Detailed Formulation of T2FP and CCP

Appendix A.1. Type-2 Fuzzy Programming

Many parameters of EWENS show the characteristics of vagueness because of subjectivity of specialists’
judgment [18]. T2FP is effective for tackling fuzzy sets with membership grades ranging from 0 to 1.
This characteristic is useful when parameters are highly uncertainty [21]. A type-2 fuzzy set Ã in X is a
fuzzy set and its membership function is also expressed as fuzzy set. Ã is represented as [36]:

Ã = {((x, u),µÃ(x, u)) : ∀x ∈ X,∀u ∈ Jx ∈ [0, 1]} (A1)

where 0 ≤ µÃ(x, u) ≤ 1 is the type-2 membership function, Jx ∈ [0, 1] is the primary membership of x ∈ X, which is
the domain of the secondary membership function µÃ(x) so that all u ∈ Jx are primary membership grades of
point x [37].

A type-2 triangular fuzzy variable (TFV) ξ̃ is defined as (r1, r2, r3; θl, θr), where (θl, θr) ∈ [0, 1] can
characterize the degree of uncertainty that ξ̃ takes a value x. A type-2 TFV is deemed as an extension of type-1
TFV. For a type-1 TFV (r1, r2, r3), the range of the membership grade is fixed values (from 0 to 1). However, for a
type-2 TFV ξ̃ = (r1, r2, r3; θl, θr), the primary memberships of the points are no longer fixed values but range
between 0 and 1. θl and θr denote the spreads of primary possibilities of type-2 TFV. Type-2 TFV ξ̃ becomes a
type-1 TFV when θl = θr [37]. The secondary possibility distribution function µ̃ξ(x) of ξ̃ is represented by [38]:
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)
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2 ];(
r3−x
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r3−x
r3−r2

, r3−x
r3−r2

, r3−x
r3−r2

+ θr
r3−x
r3−r2

)
, i f x ∈ ( r2+r3

2 , r3].

(A2)

A type-2 fuzzy set Ã is more capable of dealing with fuzzy uncertainties in real-world applications than the
conventional fuzzy sets, because type-2 fuzzy set has more design degree of freedom [21]. A T2FP model can be
formulated as follows [37]:

Min f = C̃X (A3)

subject to:
DX ≤ Ã (A4)

KX ≥ B̃ (A5)

X ≥ 0 (A6)

where coefficients C̃, Ã, and B̃ are mutually independent type-2 triangular fuzzy numbers defined by
C̃ = (C1, C2, C3; θl, θr), Ã = (A1, A2, A3; θl, θr), and B̃ = (B1, B2, B3; θl, θr); X represents the
non-fuzzy decision variable. D and K are the deterministic coefficients in the left-hand side of the constraints.

Qin et al. [38] developed a critical value (CV)-based reduction method which can reduce a type-2 fuzzy
variable to a type-1 fuzzy variable. According to Kundu et al. [37], the model Formulations (A3)–(A6) can be
converted into the following crisp equivalent parametric programming problems:
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(i) When the generalized credibility level α ∈ (0, 0.25], the model Formulations (A3)–(A6) are equivalent to:

Min f =
(1− 2α+ (1− 4α)θr)C1X + 2αC2X

1 + (1− 4α)θr
(A7)

subject to:

DX ≤
(1− 2α+ (1− 4α)θl)A3 + 2αA2

1 + (1− 4α)θl
(A8)

KX ≥
(1− 2α+ (1− 4α)θr)B1 + 2αB2

1 + (1− 4α)θr
(A9)

X ≥ 0 (A10)

(ii) When the generalized credibility level α ∈ (0.25, 0.5], the model Formulations (A3)–(A6) are equivalent to:

Min f =
(1− 2α)C1X + (2α+ (4α− 1)θl)C2X

1 + (4α− 1)θl
(A11)

subject to:

DX ≤
(1− 2α)A3 + (2α+ (4α− 1)θr)A2

1 + (4α− 1)θr
(A12)

KX ≥
(1− 2α)B1 + (2α+ (4α− 1)θl)B2

1 + (4α− 1)θl
(A13)

X ≥ 0 (A14)

(iii) When the generalized credibility level α ∈ (0.5, 0.75], the model Formulations (A3)–(A6) are equivalent to:

Min f =
(2α− 1)C3X + (2(1− α) + (3− 4α)θl)C2X

1 + (3− 4α)θl
(A15)

subject to:

DX ≤
(2α− 1)A1 + (2(1− α) + (3− 4α)θr)A2

1 + (3− 4α)θr
(A16)

KX ≥
(2α− 1)B3 + (2(1− α) + (3− 4α)θl)B2

1 + (3− 4α)θl
(A17)

X ≥ 0 (A18)

(iv) When the generalized credibility level α ∈ (0.75, 1], the model Formulations (A3)–(A6) are equivalent to:

Min f =
(2α− 1 + (4α− 3)θr)C3X + 2(1− α)C2X

1 + (4α− 3)θr
(A19)

subject to:

DX ≤
(2α− 1 + (4α− 3)θl)A1 + 2(1− α)A2

1 + (4α− 3)θl
(A20)

KX ≥
(2α− 1 + (4α− 3)θr)B3 + 2(1− α)B2

1 + (4α− 3)θr
(A21)

X ≥ 0 (A22)

T2FP can effectively cope with ambiguous information in objective and constraint functions, which is
useful when the exact membership grade is difficult to determine. However, the T2FP method cannot deal with
uncertainties expressed as random. In the real-world EWENS, electricity demands, which are closely related to
social development and economic growth, may be shown as stochastic variables with probabilistic distribution.
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Appendix A.2. Chance-Constrained Programming (CCP)

CCP can tackle the random uncertainties and analyze the risks of violating constraints [39]. CCP is formulated
as follows:

Min f = CX (A23)

subject to:
RX ≤ Epi (A24)

X ≥ 0 (A25)

where C and R are the deterministic coefficients in the objective and constraints. Epi is the set with random
elements. pi is a given level of probability for constraints (A24), which implies that constraint (A24) must be
satisfied with at least a probability level of 1 − pi. Constraint (A24) can be converted into the following constraint:
Pr[{t|RiX ≤ Ei}] ≤ 1− pi, Ri ∈ Ri, i = 1, 2, . . . , m, where Epi = F−1

i (pi), given the cumulative distribution function
of Ei, and the probability of violating constraint i.

Appendix B. Main Input Data

Table A1. Main economic data of EWENS.

Period 1

Coal Price (Yuan/ton) (699.98, 704.98, 709.98; 0.6, 0.7)

Primary Energy Product Cost
(Yuan/ton of SCE)

Coal (214.80, 215.00, 215.20; 0.6, 0.7)
Crude oil (189.90, 190.00, 190.10; 0.6, 0.7)

Coal (246.96, 247.06, 247.16; 0.6, 0.7)

Variable Costs for Each Electricity Power Conversion Technology (Yuan/MWh)

Coal-fired (455.52, 457.53, 459.53; 0.6, 0.7)
Wind (330.12, 332.12, 334.12; 0.6, 0.7)
Hydro (185.2, 187.21, 189.21; 0.6, 0.7)
Solar (529.38, 531.38, 533.38; 0.6, 0.7)

Fix Costs for Each Electricity Power Conversion Technology (Yuan/kWh)

Coal-fired (2552.93, 2553.13, 2553.33; 0.6, 0.7)
Wind (504.61, 504.81, 505.01; 0.6, 0.7)
Hydro (10,627.48, 10,627.68, 10,627.88; 0.6, 0.7)
Solar (7638.45, 7638.65, 7638.85; 0.6, 0.7)

Period 2

Coal Price (Yuan/ton) (710.91, 715.91, 720.91; 0.6, 0.7)

Primary Energy Product Cost (Yuan/ton of SCE)

Coal (218.13, 218.33, 218.53; 0.6, 0.7)
Crude oil (192.85, 192.95, 193.05; 0.6, 0.7)

Coal (250.79, 250.89, 250.99; 0.6, 0.7)

Variable Costs for Each Electricity Power Conversion Technology (Yuan/MWh)

Coal-fired (462.62, 464.62, 466.62; 0.6, 0.7)
Wind (335.26, 337.26, 339.26; 0.6, 0.7)
Hydro (188.11, 190.11, 192.11; 0.6, 0.7)
Solar (537.62, 539.62, 541.62; 0.6, 0.7)

Fix Costs for Each Electricity Power Conversion Technology (Yuan/kWh)

Coal-fired (2592.50, 2592.70, 2592.90; 0.6, 0.7)
Wind (512.44, 512.64, 512.84; 0.6, 0.7)
Hydro (10,792.21, 10,792.41, 10,792.61; 0.6, 0.7)
Solar (7756.84, 7757.04, 7757.24; 0.6, 0.7)

Period 3

Coal Price (Yuan/ton) (722.00, 727.00, 732.00; 0.6, 0.7)

Primary energy product cost(Yuan/ton of SCE)

Coal (221.52, 221.72, 221.92; 0.6, 0.7)
Crude oil (195.83, 195.94, 196.03; 0.6, 0.7)

Coal (254.67, 254.77, 254.87; 0.6, 0.7)

Variable Costs for Each Electricity Power Conversion Technology (Yuan/MWh)

Coal-fired (469.82, 471.82, 473.82; 0.6, 0.7)
Wind (340.49, 342.49, 344.49; 0.6, 0.7)
Hydro (191.06, 193.06, 195.06; 0.6, 0.7)
Solar (545.99, 547.99, 549.99; 0.6, 0.7)

Fix Costs for Each Electricity Power Conversion Technology (Yuan/kWh)

Coal-fired (2632.69, 2632.89, 2633.09; 0.6, 0.7)
Wind (520.39, 520.59, 520.79; 0.6, 0.7)
Hydro (10,959.49, 10,959.69, 10,959.89; 0.6, 0.7)
Solar (7877.08, 7877.28, 7877.48; 0.6, 0.7)



Energies 2020, 13, 208 37 of 40

Table A1. Cont.

Period 4

Coal Price (Yuan/ton) (733.27, 738.27, 743.27; 0.6, 0.7)

Primary Energy Product Cost (Yuan/ton of SCE)

Coal (224.95, 225.15, 225.35; 0.6, 0.7)
Crude oil (198.87, 198.97, 199.07; 0.6, 0.7)

Coal (258.62, 258.72, 258.23; 0.6, 0.7)

Variable Costs for Each Electricity Power Conversion Technology (Yuan/MWh)

Coal-fired (477.14, 479.14, 481.14; 0.6, 0.7)
Wind (345.80, 347.80, 349.80; 0.6, 0.7)
Hydro (194.05, 196.05, 198.05; 0.6, 0.7)
Solar (554.48, 556.48, 558.48; 0.6, 0.7)

Fix Costs for Each Electricity Power Conversion Technology (Yuan/kWh)

Coal-fired (2673.50, 2673.70, 2673.90; 0.6, 0.7)
Wind (528.45, 528.65, 528.85; 0.6, 0.7)
Hydro (11,129.37, 11,129.57, 11,129.77; 0.6, 0.7)
Solar (7999.18, 7999.38, 7999.58; 0.6, 0.7)

Period 5

Coal Price (Yuan/ton) (744.72, 749.72, 754.72; 0.6, 0.7)

Primary Energy Product Cost (Yuan/ton of SCE)

Coal (228.44, 228.64, 228.84; 0.6, 0.7)
Crude oil (201.96, 202.06, 202.16; 0.6, 0.7)

Coal (262.63, 262.73, 262.83; 0.6, 0.7)

Variable Costs for Each Electricity Power Conversion Technology (Yuan/MWh)

Coal-fired (484.56, 486.56, 488.56; 0.6, 0.7)
Wind (351.19, 353.19, 355.19; 0.6, 0.7)
Hydro (197.09, 199.09, 201.09; 0.6, 0.7)
Solar (563.10, 565.10, 567.10; 0.6, 0.7)

Fix Costs for Each Electricity Power Conversion Technology (Yuan/kWh)

Coal-fired (2714.94, 2715.14, 2715.34; 0.6, 0.7)
Wind (536.65, 536.85, 537.05; 0.6, 0.7)
Hydro (11,301.88, 11,302.08, 11,302.28; 0.6, 0.7)
Solar (8123.17, 8123.37, 8123.57; 0.6, 0.7)

Note: A type-2 triangular fuzzy variable (TFV) ξ̃ is defined as (r1, r2, r3; θl, θr). This study assumed θl = 0.6,
and θr = 0.7.

Appendix C. The Detailed Results of ARIMA Model

ARIMA (p, d, q) model contains four steps: identification, estimation, diagnostic checking, and forecasting.
In the first step, analyzing the correlogram and taking a unit root test are required for the ARIMA (p, d, q) model
to make predictions. The Augmented Dickey–Fuller (ADF) test is employed for testing for the presence of unit
roots. Results indicate that the data of Log E is non-stationary. As shown in Table A2, the ADF statistic for the first
differenced variables (∆LogE) is significant at 5% level of significance, which indicates that the first difference
variables (LogE) are stationary, and 1 is assigned to parameter d.

Table A2. Summary of ADF tests for unit root in the variables.

Variable ADF Test Statistic ADF Statistic at 5% Results

LogE −0.702331 −3.012363 Fail to reject the null
∆LogE −3.127237 −3.004861 Reject the null

In the estimations step, the model’s equations are determined according to the characteristics of ACF and
PACF and the models are compared according to AIC and BIC. Four best models of ARIMA (2, 1, 4), ARIMA (2, 1,
5), ARIMA (3, 1, 4), and ARIMA (2, 1, 2) are considered. ARIMA (2, 1, 4) with AR = 2, d = 1 and MA = 4 is chosen
as the best ARIMA model to forecast the electricity demands of Inner Mongolia because of the low values of AIC
and BIC. Table A3 presents the comparison of results of different ARIMA (p, d, q) models.

Table A3. Comparison results of different AIRIMA (p, d, q) models.

Model AIC SC R2

ARIMA (2, 1, 4) −1.825746 −1.430791 0.657497
ARIMA (2, 1, 5) −1.743897 −1.299573 0.659136
ARIMA (3, 1, 4) −1.745178 −1.300854 0.661824
ARIMA (2, 1, 2) −1.769762 −1.473546 0.530302

In the diagnostic checking step, the ARIMA (2, 1, 4) model is constructed and estimated, and the
autocorrelations and partial correlations of the residuals from the previous step are collected. Results indicate that
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the residuals are purely random and looking for another ARIMA (p, d, q) model is unnecessary. The indicates that
they are not statistically significant, which means the residuals are purely random and there is no need to look for
another ARIMA (p, d, q) model. In the final step, forecasting is carried out based on the ARIMA (2, 1, 4) model.

In the final step, ARIMA (2, 1, 4) model is used to forecast. Based on the ARIMA (2, 1, 4) model, the electricity
demand will be 356.02 × 109 kWh, 378.88 × 109 kWh, 441.332 × 109 kWh, 510.71 × 109 kWh, and 554.44 × 109 kWh
in periods 1, 2, 3, 4, and 5, respectively.
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