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Abstract: With the gradual increase in the installed capacity of wind turbines, more and more attention
has been paid to the economy of wind power. Economic model-predictive control (EMPC) has
been developed as an effective advanced control strategy, which can improve the dynamic economy
performance of the system. However, the variable-speed wind turbine (VSWT) system widely
used is generally nonlinear and highly coupled nonaffine systems, containing multiple economic
terms. Therefore, a nonlinear EMPC strategy considering power maximization and mechanical load
minimization is proposed based on the comprehensive VSWT model, including the dynamics of
the tower and the gearbox in this paper. Three groups of simulations verify the effectiveness and
reliability/practicability of the proposed nonlinear EMPC strategy.

Keywords: variable-speed wind turbine; tower fatigue; drive-shaft torsion; nonlinear economic-model
predictive control

1. Introduction

As a consequence of energy shortages around the world, environmental protection requirements,
and the higher cost of traditional power, renewable energy sources are receiving a great deal of
attention worldwide nowadays. Wind energy becomes the dominant renewable energy source due to
its plentifulness, cleanness, and economic advantages. By the ending of 2018, the cumulative installed
capacity of wind is estimated to be more than 221 GW in China, with an increase of 19 GW and 25.9 GW
in 2017 and 2018 respectively, accounting for 31.9% and 32.8% of global overall wind power capacity [1].
Therefore, enhancing the efficiency and economy of wind energy conversion systems has become an
important issue to handle the growing need for energy.

Numerous control schemes have been applied in variable-speed wind turbine (VSWT) controller
designs to enhance efficiency. Generally, PID controllers are widely used in the pitch control of wind
turbine systems, which only focuses on decreasing the blades’ mechanical loads within region three,
as shown in Figure 1 [2]. A feedback gain-scheduled PI controller was designed to maximize the
captured power and mitigate the mechanical loads, where the fixed-phase and gain-margins are
obtained through a frequency response analysis [3]. In [4], a gain-scheduled L1 adaptive optimal
controller is proposed for the VSWT control system, where the nonconvex optimization problem is
solved by using a genetic algorithm based on a single linearized model of the wind-turbine (WT)
system at different operating points. To obtain the rated generator power and reduce the mechanical
load, a nonlinear-PI controller with an extended state-observer was developed in order to control the
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blade pitch angle [5]. Although these PI controllers have led to the effective steady-state performance
of VSWTs, the distortion of the transient performance according to variations in the wind speed is still
a drawback. Additionally, PI/PID controllers offer good performance, but they still are not optimal [6].
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However, owing to multiple constraints, multiple variables, the highly coupled nonaffine basis of
the VSWT systems, and the stochastic shape of wind speed input, high-performance wind turbine
control (WTC) has become a challenging problem [7]. Various nonlinear control schemes have been
applied to the WTC problem. In [8], an artificial neural network technique is proposed for the pitch
control in region three, where the VSWT dynamics are modeled using a back-propagation learning
algorithm. In [9], a fuzzy logic pitch controller is proposed for WTC, considering the generator power
and speed as control inputs. In [10], a multiple feedback pitch controller is proposed for the nacelle
fore-aft speed and generator power regulation. This controller is designed by employing a trade-off

between pitch angle fluctuations and output power fluctuations. In [11], an adaptive neural pitch
controller is proposed for the WTC problem. An online, two-layer neural network model is proposed
for estimating the unknown wind turbine aerodynamics. Recently in [12], a T-S fuzzy modeling
method with nonlinear consequents is proposed for the VSWT control problem. However, the wind
turbine actuator constraints are not considered in the controller designs presented in these approaches,
which may cause a wind-up phenomenon and significant performance deterioration if the actuator
inputs reach saturation limits.

Among all the control strategies, model predictive control (MPC) is emerging as a powerful
candidate for WTC thanks to its capacity to handle all the system constraints directly, such as physical
limitations and operational constraints [13]. Classical MPC schemes have been used for WTC to
ensure that the maximum power is captured in region two, and the rated power is tracked in region
three. In [14,15], a linear MPC strategy is proposed based on a single linear state-space model to deal
with the actuator constraints. Although these approaches have good performance concerning certain
operating points and system constraints handling, no special attention has been paid to either the
strong nonlinearity of the system or the mechanical load mitigation to enhance the economy of the
VSWT system.

Some MPC techniques have been utilized by taking the wind turbine nonlinearity into account.
In [16–18], a multivariable MPC is proposed for VSWT pitch control in region three, using Takagi-Sugeno
(T-S) fuzzy models. In [19], a nonlinear MPC (NMPC) strategy is investigated for VSWT control for
both regions two and three by tuning the penalty parameters. In [20,21], multiple model predictive
controllers are proposed based on multiple linearized time-invariant state-space models, guaranteeing
the actuator limits in all operation regions. However, it is obvious that the controller switching results
in more difficulties. The authors take the load of WT into account as one of completing penalties based
on a simplified nonlinear WT model. The shortcoming of these control schemes is the difficulty of
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adequately tuning the tracking weights; furthermore, economic factors are not considered in the design
of the controller.

To enhance the dynamic economy, the economic MPC (EMPC) was developed for the VSWT
system. Generally, the EMPC uses a measure of the system performance directly as an economic
cost function [22]. However, the economic cost function may not be a positive definite with regard
to any tracking trajectory in order to guarantee the stability of the operating points. In [23], the
closed-loop stability of the system is guaranteed via terminal constraints depending on the strong
duality assumption. In addition, in [24], a Lyapunov-based EMPC is constituted using two separate
operation modes to make the closed-loop system ultimately bounded within a small region. In the
context of the WTC problem, the EMPC objective function directly considers VSWT energy generation
maximization against the actuator fatigue minimization, as opposed to tracking some reference states
and inputs. The proposed NEMPC in this paper has a unique weight in the objective function, while
the weights must be chosen carefully for every input and state in the classical NMPC strategy [19].
In addition, in [25,26], an EMPC strategy has been designed for wind turbine control systems for all
regions. In [26], the wind speed is produced based on the Van der Hoven spectrum [27], in which the
wind speed is considered as a slowly-changing average wind speed superposed by a rapidly-changing
turbulence wind speed. However, these EMPC approaches pay no special attention to the mitigation of
mechanical loads on the tower in the economic objective function. Additionally, different treatment of
the random wind speed can be considered, consisting of summing the mean wind speed, which follows
a two-parameter Weibull distribution, and the turbulent wind speed, which follows a zero-mean
Gaussian, white noise distribution [28].

In this study, a nonlinear EMPC (NEMPC) strategy is proposed for all the operating regions of
the VSWT system. A nonlinear VSWT model, which considers the tower and gearbox dynamics, is
established. The NEMPC optimization problem considers all the actuator constraints (pitch angle, and
torque constraints with their rate of change constraints) and the hard constraints (rotor speed, generator
speed, and electrical power). The economic cost function seeks the maximum VSWT generated
power against the competing penalties regardless of wind input, in order to achieve the best economic
operation, as well as the fatigue load mitigation of key mechanical structures, including both drive-shaft
torsion and tower fore-aft motion. This control strategy can provide potential improvements in the
closed-loop performance, and satisfy the economy in contrast with classical WTC strategies. Finally,
in the simulations, random wind speed is considered by summing the mean wind speed and the
turbulent wind speed, which follow a two-parameter Weibull distribution and a zero-mean Gaussian
white noise distribution, respectively.

The paper is organized as follows. The nonlinear modeling of the VSWT system is established in
Section 2. The proposed NEMPC strategy is derived in Section 3. In Section 4, the simulation results
for a 5-MW VSWT system are demonstrated, with comparisons between the classical NMPC strategy
and the proposed NEMPC strategy. Also, in this section, a typical wind turbine benchmark simulator
FAST is used to test the validity and practicability of the proposed NEMPC strategy. Lastly, Section 5
provides conclusions.

2. Wind Turbine Modeling

Wind-energy conversion systems consist of a windmill, a gearbox, and a generator, as demonstrated
in Figure 2. In this section, nonlinear VSWT modeling is investigated. To establish this nonlinear
model, the aerodynamics, tower, drive train, and the generator should be considered. In the following
subsections, these subsystems are discussed separately. Finally, a nonlinear state-space model
is established.
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2.1. Rotor Aerodynamics

The airflow on VSWT blades causes aerodynamic torque, which represents one of the causes of
VSWT nonlinearities. The aerodynamic torque Tr can be stated as below [29]:

Tr =
1
2
ρπR2 v3

r
wr

Cp(λ(vr, wr), β) (1)

The aerodynamic power that the VSWT extracts is expressed by [29]:

PA =
1
2
ρπR2v3

r Cp(λ(vr, wr), β) (2)

where ρ is the air density, vr represents the effective wind speed on the turbine rotor [30], R is the
rotor radius of VSWT, wr is the VSWT rotor angular speed, Cp(λ(vr, wr), β) is the aerodynamic power
coefficient, and β is the blade pitch angle. The tip speed ratio λ is defined as [30]:

λ(wr, vr) =
Rwr

vr
(3)

The following approximate expression of the aerodynamic power coefficient derived from [18] is
widely used:

Cp(λ, β) = c1(
c2

Λ
− c3β− c4) × e−

c5
Λ + c6λ (4)

where 1/Λ = 1/(λ+ 0.08β) − 0.035/(1 + β3), and the coefficients ci(i = 1, 2, · · · , 6) depend on the
blade shape and its aerodynamic performance [18,29]. In this paper, NREL 5-MW VSWT system is
discussed; the six chosen coefficient values are [18]: c1 = 0.5176, c2 = 116, c3 = 0.4, c4 = 5, c5 = 21, c6 =

0.0068. This nonlinear function CP(λ, β) is indicated in Figure 3.



Energies 2020, 13, 184 5 of 21Energies 2020, 13, x FOR PEER REVIEW 5 of 21 

 

 
Figure 3. The aerodynamic power coefficient for 5-MW VSWT. 

2.2. Tower Dynamics 

The blade vibration results in the tower deflection. Thus, the thrust force on a tower top over the 
nacelle, which causes undesired nodding for the tower and fatigue loads on the VSWT, must be 
considered [31]: 

=t r t r rF ρπR v C λ v w β2 21 ( ( , ), )
2

 (5) 

where ( ( , ), )t r rC λ v w β  is the thrust coefficient, which is the nonlinear function in terms of blade pitch 

angle β  and tip speed ratio λ . By adopting a polynomial fitting algorithm based on the data-driven 
from a typical wind turbine benchmark simulator, the thrust coefficient can be derived as: 

− −

= − − + −
+ + − × − ×

2 2 3

3 4 6 4 5 5

( , ) 0.08698 0.003371 0.053272 0.06499 0.003096 - 0.009575
              0.0002103 0.0005667 5.24 10 1.199 10

tC λ β β λ λ βλ λ
βλ λ βλ λ

 (6) 

where ( , )tC λ β  represents a nonlinear function, as indicated in Figure 4. 

 
Figure 4. The thrust coefficient for 5-MW VSWT. 

Figure 3. The aerodynamic power coefficient for 5-MW VSWT.

2.2. Tower Dynamics

The blade vibration results in the tower deflection. Thus, the thrust force on a tower top over
the nacelle, which causes undesired nodding for the tower and fatigue loads on the VSWT, must be
considered [31]:

Ft =
1
2
ρπR2vr

2Ct(λ(vr, wr), β) (5)

where Ct(λ(vr, wr), β) is the thrust coefficient, which is the nonlinear function in terms of blade pitch
angle β and tip speed ratio λ. By adopting a polynomial fitting algorithm based on the data-driven
from a typical wind turbine benchmark simulator, the thrust coefficient can be derived as:

Ct(λ, β) = 0.08698− 0.003371β− 0.053272λ+ 0.06499λ2
− 0.003096βλ2

− 0.009575λ3

+0.0002103βλ3 + 0.0005667λ4
− 5.24× 10−6βλ4

− 1.199× 10−5λ5 (6)

where Ct(λ, β) represents a nonlinear function, as indicated in Figure 4.
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Thrust force towards the tower top over the nacelle causes tower fore-aft motion. The dynamics
of tower fore-aft motion can be stated as a simplified second-order differential equation:

Mt
..
y + Bt

.
y + Kty = Ft (7)

where Mt represents the mass model, Bt and Kt are the structural damping and structural stiffness
coefficients of the tower model respectively, y represents the tower top displacement, and

.
y is the tower

deflection rate.
Tower fore-aft motion causes a nonnegligible effect on effective wind speed. The tower deflection

rate is defined as vt =
.
y. Thus, the effective (relative) wind speed vr on the turbine rotor can be

expressed with the normal wind speed w and the tower deflection as follows [30]:

vr = w− vt (8)

The above formula shows that the actual wind speed acting on the blade is a relative wind speed,
which is the difference between the natural wind speed w and the displacement speed of the tower vt. It
can be imagined that when the tower moves forward and backward in the horizontal direction with the
wind speed, the wind speed acting on the blade is not exactly equal to the wind speed directly given
by the natural environment. This formula makes the wind speed acting on the blade more accurate.

In Figure 2, w represents the nature wind speed towards the blade, which cannot be replaced
by the relative (effective) wind speed vr because the relative (effective) wind speed is just a virtual
physical variable which is defined for the aerodynamic torque and power, not a real physical variable.
Therefore, the relative (effective) wind speed vr cannot appear before the blade, replacing wind speed
w in Figure 2.

2.3. Drive Train

The wind mechanical energy is transformed through a drive train to the electrical generator. The
drive train is rigidly coupled in the rotor side with a flexible connection in the generator side, as
demonstrated in Figure 2. The shaft torsion represents the torque of the drive train flexible shaft, which
is a vital factor affecting economic performance. Oscillations in the shaft torsion cause damage to the
turbine components. The shaft torsion is replaced by the absolute angular position of the generator
and rotor; its derivative is [17]:

.
θ = wr −

wg

Ng
(9)

where θ is the shaft torsional angle, wg is the generator angular speed, and Ng is the gearbox ratio.
Assuming that the low-speed shaft is one spring and one damper, the two-mass model is used to

describe the drive train from a low- to a high-speed shaft through a gearbox as follows [17,26]:

Jr
.

wr = Tr −Kθθ− Bθ
.
θ (10)

Jg
.

wg = −Tg +
Kθ
Ng
θ+

Bθ
Ng

.
θ (11)

where Jr is the inertia of the VSWT rotor and the low-speed shaft, Jg is the inertia of the generator, Kθ
and Bθ represent the stiffness and damping of the drive train, Tg is the generator torque.

2.4. Generator

The electrical generator power PE can be derived as [17]:

PE = ηgwgTg (12)
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where ηg represents the generator and power efficiency. Ignoring the losses, the derivation between PA

(the mechanical power) and PE stems notably from the energy tentatively stored as the rotor kinetic
energy [25].

2.5. The Nonlinear State-Space Model of VSWT

Based on Equations (1)–(12), the nonlinear dynamics of the VSWT system can be transformed into
the following nonlinear state-space form:

.
x = fc(x, u, w)

y = gc(x, u, w)
(13)

where gc(x, u, w) =

[
wg

ηgwgTg

]
, fc(x, u, w) =



−
Bθ

JgN2
g
wg +

Bθ
JgNg

wr +
Kθ

JgNg
θ− 1

Jg
Tg

Bθ
JrNg

wg −
Bθ
Jr

wr −
Kθ
Jr
θ+ π

2Jr
ρaR2

r
(w−vt)

3

wr
Cp(λ, β)

−
wg
Ng

+ wr

vt

−
Kt
Mt

y− Bt
Mt

vt +
π

2Mt
ρaR2

r (w− vt)
2Ct(λ, β)


.

Define the state variables, input variables, and output variables as: x =[
wg wr θ y vt

]T
, u =

[
Tg β

]T
, yo =

[
wg PE

]T
. Then, the discrete wind turbine system

model (13) can be obtained by forth stage Runge–Kutta (RK4) method with the sampling time T,

x(k + 1) = f (x(k), u(k), w(k)) = x(k) + T
6 (k1 + 2k2 + 2k3 + k4)

y(k) = g(x(k), u(k), w(k))
(14)

where k1 = fc(x(k), u(k)), k2 = fc(x(k)+ T
2 k1, u(k)), k3 = fc(x(k)+ T

2 k2, u(k)), k4 = fc(x(k)+Tk3, u(k)),
g(x(k), u(k), w(k)) = gc(x, u, w).

3. NEMPC Strategy for VSWT Control

EMPC for WTC seeks the optimal operation between the maximization of the generated power
and the minimization of the cost related to care and maintenance. In a real wind farm, the oscillatory
transient of tower deflection and shaft torsion can create microcracks in the materials, which can
lead to component failure and increase maintenance costs. Therefore, not only generated power,
pitch-angle and generator-torque, but also shaft torsion angle and tower displacement are considered
in the economic cost function for the reduction of fatigue loads in this paper.

3.1. Economic Cost Function

In this paper, economic indexes are defined as follows. Firstly, the generator power must be
considered in the economic index le1 to capture the maximum power [19]:

le1(x, u) = −λ1PE (15)

Secondly, the shaft torsional angle and tower displacement must be considered in the economic
index le2 to reduce the fatigue of the tower structure caused by the tower deflection [19] and the gearbox
load caused by the drive-shaft torsion [26]:

le2(x, u) = λ2θ
2 + λ3v2

t (16)

Finally, the pitch-angle and generator-torque must be considered in the economic indexes le3 and
le4, respectively, to smoothen the control performance and reduce the fluctuations of the output electric
power [19]:

le3(x, u) = λ4∆β2 + λ5β
2 (17)
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le4(x, u) = λ6∆T2
g (18)

where λ1, λ2, λ3, λ4, λ5, and λ6 are weighted coefficients.
In designing the NEMPC for the VSWT system, the economic cost function can be obtained as:

le(x, u) = le1 + le2 + le3 + le4 (19)

which aims to decrease the load and fatigue on the wind power system and smooth the generator
torque input and the output power while capturing the maximal power.

3.2. The Operational and Physical Constraints

Due to the electrical limitations of the actuator electronics and the safety requirements of the
control process, a set of physical constraints must be fulfilled during operation in VSWT. Thus, the
following set of constraints must be taken into consideration along the predictive/control horizon:

wgmin ≤ wg ≤ wgmax wrmin ≤ wr ≤ wrmax θ ≥ θmin (20)

0 ≤ Tg ≤ Tgmax −∆Tgmax ≤ ∆Tg ≤ ∆Tgmax (21)

βmin ≤ β ≤ βmax −∆βmax ≤ ∆β ≤ ∆βmax (22)

0 ≤ PE
≤ PE

max (23)

where the maximum rotor speed wrmax, generator speed wgmax, and torque Tgmax are set slightly higher
than their rated values wr rated, wg rated, and Tg rated. The definition and values of related parameters are
listed in Table A2 in Appendix A [19,32].

3.3. The Optimization Problem for the Proposed NEMPC Strategy

Based on the above nonlinear model and cost function in Sections 3.1 and 3.2, the optimization
problem for the proposed NEMPC strategy can be summed up as follows:

minJ =
NP∑
i=1

le(x(k + i− 1|k ), u(k + i− 1|k ))

s.t.
x(k + i|k ) = f (x(k + i− 1|k ), u(k + i− 1|k ), w(k + i− 1)), i = 1, · · · , NP, x(k|k ) = x(k)
y(k + i− 1|k ) = g(x(k + i− 1|k ), u(k + i− 1|k ), w(k + i− 1))
∆u(k + i|k ) = u(k + i|k ) − u(k + i− 1|k )
equation(20) − equation(23)

(24)

Define X =
[

x(k + 1|k )T x(k + 2|k )T
· · · x(k + NP|k )

T
]T

,

U =
[

u(k|k )T u(k + 1|k )T
· · · u(k + NP − 1|k )T

]T
, ∆U =[

∆u(k|k )T ∆u(k + 1|k )T
· · · ∆u(k + NP − 1|k )T

]T
, PE =

[
PE(k|k ) · · · PE(k + NP − 1|k )

]T
,

where NP is the predictive/control horizon.

Define Φ =
[

X U ∆U PE
]T

as the new optimal variables set. Then, the optimization
problem (24) can be rewritten as:

minJ
s.t.
AeqΦ = bu(k− 1),

Ceqi(Φ) =

[
x(k + i|k ) − f (x(k + i− 1|k ), u(k + i− 1|k ), w(k + i− 1))
P̂E(k + i− 1|k ) − g(x(k + i− 1|k ), u(k + i− 1|k ), w(k + i− 1))

]
i=1,··· ,NP,x̂(k|k)=x(k)

= 0

Φmin ≤ Φ ≤ Φmax

(25)
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where

Aeq =
[

0 I −S 0
]
2NP×10NP

, b =
[

I I · · · I
]T

2NP×2NP

S =


I 0 · · · 0
I I 0
...

...
. . .

I I · · · I


,

Φmin =
[

Xmin Umin ∆Umin P̂E
min

]
, Φmax =

[
Xmax Umax ∆Umax P̂E

max

]
Xmin =


xmin

xmin
...
xmin

, Xmax =


xmax

xmax
...
xmax

, Umin =


umin

umin
...
umin

, Umax =


umax

umax
...
umax


∆Umin =


∆umin

∆umin
...
∆umin

, ∆Umax =


∆umax

∆umax
...
∆umax

, P̂E
min =


0
0
...
0

, P̂E
max =


PE

max
PE

max
...
PE

max



,

xmin =
[

wg min wr min θmin ymin vt min

]T
, umin =

[
Tg min βmin

]T
, ∆umin =

[
∆Tg min ∆βmin

]T

xmax =
[

wg max wr max θmax ymax vt max

]T
, umax =

[
Tg max βmax

]T
, ∆umax =

[
∆Tg max ∆βmax

]T .

The optimization problem (25) can be solved by using the interior point method, which is realized
by using IPOT solver in MATLAB [33]. Then, the optimal solution of the control inputs (pitch angle
and the generator torque) at the current time can be extracted and implemented.

4. Simulations Results

Three simulations are performed based on a typical 5-MW NREL VSWT system to validate the
proposed NEMPC strategy. The corresponding parameters of the 5-MW NREL VSWT system are listed
in Table A1 in the Appendix A [32]. The corresponding constraints are shown in Table A2 [19,32].
In the simulations, the weights in the cost function (15)–(18) contain: λ1 = 20,λ2 = 100,λ3 =

5 ∗ 108,λ4 = 1,λ5 = 0,λ6 = 0.001. The maximum generator speed, rotor speed, and generator torque
are all arbitrarily set at 5% above their rated values, i.e.,wgmax = 1.05wg rated, wrmax = 1.05wr rated,
Tgmax = 1.05Tg rated. For the purpose of simplicity, the maximum electric power is chosen as
PE

max = PE
rated.

For comparison purposes, the classical NMPC strategy based on [19] is also constituted, which has
the same model (13) and constraints (20)–(23) as the proposed NEMPC strategy in this paper. However,
the tracking objective function (not economic cost function) is used in the classical NMPC, which can
be described as:

lmpc(x, u) =
NP∑
i=1

[
QΩ

(
wr(k + i− 1|k ) −wr re f (w)

)2
+Qβ(β(k + i− 1|k ) − βre f (w))2

]
(26)

where QΩ = 3.4× 107, Qβ = 4.6× 108 for the wind speed region II, QΩ = 3.4× 105, Qβ = 4.6× 105 for
wind speed region III, βre f (w) is the pitch angle reference and wr re f (w) is the rotor speed reference,
which can be derived as:

wr re f (w) =


w∗r(w) i f w∗r(w) ∈ [wr cut−in, wr rated]

wr cut−in i f w∗r(w) < wr cut−in
wr rated i f w∗r(w) > wr rated

, βre f (w) =

{
β∗(w) i f w ≤ wrated
βAR(w) i f w > wrated

(27)
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β∗ and λ∗ in Equation (27) are the optimal pitch angle and tip ratio in wind speed region II as
demonstrated in Figure 1, can be derived via maximizing the power coefficient CP:

β∗,λ∗ = max
β,λ

CP(β,λ) (28)

Then, the optimal rotor speed w∗r can be obtained:

w∗r(w) =
λ∗w

R
(29)

βAR(w) in Equation (27) can be solved from: 1
2ρACP

(
βAR(w), Rwr rated

w

)
w3 = Prated.

The predictive/control horizon is set as NP = 14 for both classical NMPC and the proposed
NEMPC in the following three groups of simulations.

4.1. Gradient Normal Wind

As indicated in Figure 5, a gradient normal wind varying between 7.5 m/s and 15 m/s is used in

the simulation. The initial condition is set as x0 =
[

93.54 0.96 1.85× 10−3 0.21 0
]T

, and t0 = 0.
All the input variables, state variables, and output variables adopting both the proposed NEMPC and
the classical NMPC strategies are shown as Figure 6a–h. During the time period from 0 s to 50 s, all the
dynamic trajectories are almost the same when using the proposed NEMPC and the classical NMPC
strategies, because the chosen initial state is just the optimal solution for both controllers under the
initial 7.5 m/s normal wind speed.
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At time instant 50 s, the normal wind speed steps from 7.5 m/s to 10 m/s, which is below the
rated wind speed. Obviously, the VSWT system remains working in region II by using the classical
NMPC strategy, which aims to follow the maximum power point and keeps the pitch angle zero. The
proposed NEMPC strategy aims to attain a trade-off between the power maximization and turbine
fatigue minimization by minimizing the economic cost function (19). Therefore, the pitch-angle is not
always kept at zero, while the vibrations of the shaft torsion angle, the tower displacement, and the
generation torque are much slighter when using the proposed NEMPC strategy, as shown in Figure 6c–f.
No constraints are violated due to the constraints in Equations (20)–(23), which are imposed in both
the classical NMPC strategy and the proposed NEMPC strategy, as seen in Figure 6.

At time instant 100 s, the normal wind speed steps from 10 m/s to 15 m/s, which is above the
rated wind speed. Therefore, the working region of the VSWT system changes from region II to region
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III. The aim of the classical NMPC changes from the maximization power capturing to rated power
capturing. The generator speed, rotor speed, generator torque, and generator power are changed to
the rated values. Simultaneously, the pitch angle is enabled. As shown in Figure 6c–f, the vibration of
the shaft torsional angle, the pitch angle, and especially the tower displacement, is much smaller when
using the proposed NEMPC strategy than when using the classical NMPC strategy, due to θ, vt and β
being considered in the economic cost function (19).

Energies 2020, 13, x FOR PEER REVIEW 11 of 21 

 

 

Figure 5. Gradient wind speed. 

 

 

Figure 6. Cont.



Energies 2020, 13, 184 12 of 21Energies 2020, 13, x FOR PEER REVIEW 12 of 21 

 

 

 

Figure 6. (a) Generator speed; (b) Rotor speed; (c) Shaft torsional angle; (d) Tower displacement; (e) 

Tower displacement rate; (f) Pitch angle; (g) Generator torque; (h) Generator power. 

At time instant 50 s, the normal wind speed steps from 7.5 m/s to 10 m/s, which is below the rated 

wind speed. Obviously, the VSWT system remains working in region II by using the classical NMPC 

strategy, which aims to follow the maximum power point and keeps the pitch angle zero. The proposed 

NEMPC strategy aims to attain a trade-off between the power maximization and turbine fatigue 

minimization by minimizing the economic cost function (19). Therefore, the pitch-angle is not always kept 

at zero, while the vibrations of the shaft torsion angle, the tower displacement, and the generation torque 

are much slighter when using the proposed NEMPC strategy, as shown in Figure 6c–f. No constraints are 

violated due to the constraints in Equations (20)–(23), which are imposed in both the classical NMPC 

strategy and the proposed NEMPC strategy, as seen in Figure 6. 

At time instant 100 s, the normal wind speed steps from 10 m/s to 15 m/s, which is above the rated 

wind speed. Therefore, the working region of the VSWT system changes from region II to region III. The 

aim of the classical NMPC changes from the maximization power capturing to rated power capturing. 

The generator speed, rotor speed, generator torque, and generator power are changed to the rated values. 

Simultaneously, the pitch angle is enabled. As shown in Figure 6c–f, the vibration of the shaft torsional 

angle, the pitch angle, and especially the tower displacement, is much smaller when using the proposed 

NEMPC strategy than when using the classical NMPC strategy, due to θ , t
v  and β  being considered 

in the economic cost function (19). 

Figure 6. (a) Generator speed; (b) Rotor speed; (c) Shaft torsional angle; (d) Tower displacement; (e)
Tower displacement rate; (f) Pitch angle; (g) Generator torque; (h) Generator power.

At time instant 150 s, the normal wind speed decreases from 15 m/s to 10 m/s. Thus, the wind
turbine works back to region II. The pitch angle is disabled, the generator speed, rotor speed, and
generator torque are performed to follow the maximum power point by using the classical NMPC
strategy. From 6b–h, it is obvious that the vibration of each state variable is much more severe when
using the classical NMPC strategy compared with the proposed NEMPC strategy. This is because
the shaft load and the tower fatigue are not considered in the tracking objective function (26) for
the classical NMPC strategy, while they are emphasized in the economic cost function (19) for the
proposed NEMPC strategy. Vibrations in the shaft torsional angle, the tower displacement, and the
tower displacement rate are harmful to wind turbine systems. Thus, the proposed NEMPC strategy is
much better than the classical NMPC strategy in this respect.

From a more intuitive point of view, numerical comparisons have been made to illustrate the
difference between these two controllers. Define the root mean square (RMS) values of mechanical
loads as follows:

RMSsha f t =

√√√
1

Nsim

Nsim∑
k=1

θ2(k) (30)
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RMStower =

√√√
1

Nsim

Nsim∑
k=1

v2
t (k) (31)

where Nsim is the length of the simulation, RMSsha f t is the RMS value of gearbox load on the shaft,
RMStower is the RMS value of fatigue on the tower.

As shown in Table 1, the average values of generator power AVG
(
Pg

)
, the RMS values of the

gearbox load on shaft RMSsha f t, and the RMS values of fatigue on tower RMStower by adopting both
the proposed NEMPC strategy and the classical NMPC strategy at different normal wind speed are
listed for comparison purposes.

Table 1. Data analysis based on the results in Figure 6.

7.5 m/s 10 m/s 15 m/s 10 m/s

AVG(PNEMPC
g ) (MW) 1.4575 3.1873 4.9493 3.4317

AVG(PNMPC
g ) (MW) 1.4570 3.1714 4.9343 3.3323

RMSNEMPC
sha f t (×10−3 rad) 1.820 3.288 4.784 3.416

RMSNMPC
sha f t (×10−3 rad) 1.846 3.300 4.851 3.476

RMSNEMPC
tower (×10−2 m/s) 0 1.643 1.10 3.31

RMSNMPC
tower (×10−2 m/s) 0 4.483 76.58 16.44

From Table 1, it is obvious that the proposed NEMPC strategy enhances the average generator
power over the classical NMPC strategy by 0.03%, 0.5%, 0.3%, and 2.98%, when the normal wind
speeds are 7.5 m/s, 10 m/s, 15 m/s, and 10 m/s, respectively. During different normal wind speed
periods, the proposed NEMPC strategy reduces the gearbox load on the shaft over the classical NMPC
strategy by 1.41%, 0.36%, 1.38%, and 1.73%, respectively. Furthermore, it is obvious that the proposed
NEMPC strategy reduces the tower fatigue a lot compared to the classical NMPC strategy from the
RMS values of the fatigue on the tower, which proves that the fatigue on the tower can’t be ignored
with regards to economic factors.

4.2. Stepwise Normal Wind

In general, 11.4 m/s represents the rated wind-speed, which is used to divide the wind speed into
region II and III. Due to the different control objectives in regions II and III, a switching controller is
widely used in the actual control of VSWT, which is a great challenge in controller design. To achieve
the various operational requirements, the objective function of the classical NMPC strategy switches
frequently according to wind speed operating regions. Thus, the rated wind speed 11.4 m/s is actually
a very important speed in practical controller designs for VSWT systems.

The proposed NEMPC strategy in this paper adopts a unique economic cost function (19) which
does not change according to the normal wind speed between the cut-in and cut-off wind speeds.
Suppose the stepwise wind speed is initially set to 10.6 m/s, then steps to 12 m/s with an increment
of 0.2 m within 25 s (from region II to region III), as shown in Figure 7a. As indicated in Figure 7b,
it’s obvious that the pitch angle has a quick and small overshoot, before quickly returning to zero
before t = 125 s. After 125 s, the fluctuations of the pitch angle accumulate around a certain optimal
value when the proposed NEMPC strategy is used. At 125 s, the wind speed changes from 11.4 m/s to
11.6 m/s. This means that the special wind speed is around 11.4 m/s due to the economic objective
function (19), above which the stable pitch angle no longer remains at zero. Thus, these simulation
results prove that a wind speed of around 11.4 m/s was set to divide the region II and III, which is
reasonable for considering the economic operation of the VSWT system.
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4.3. Randomly Varying Wind Speed Based on the FAST Simulator

The NREL FAST is an inclusive aeroelastic simulator of two- and three-bladed horizontal-axis
WTs [34]. To validate the practicality and validity of the proposed NEMPC strategy, the simulation
is then tested on NREL FAST. In this group of simulations, a FAST subroutine was written into the
MATLAB S-function, as indicated in Figures 8 and 9.
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The normal wind speed w is always modeled as the combination of a slowly-changing mean
wind-speed wm and a rapidly-changing turbulent wind-speed wd:

w = wm + wd (32)

where we suppose that wm follows the two-parameter Weibull distribution through a scale parameter
s1 = 10 and shape parameter s2 = 14, and wd follows zero-mean Gaussian white noise distribution
with standard variation σ = 1.899 [28].

Then, a group of 600 s random normal wind speed data generated by the FAST simulator
as indicated in Figure 10 is adopted in Case 3. The initial condition is set as x0 =[

99.77 1.03 2.1× 10−3 0.25 0
]T

, t0 = 0. Figure 11a–h indicate the performances of the generator
speed, rotor speed, shaft torsion angle, tower displacement, tower displacement rate, pitch angle,
generator torque, and generator power via the proposed NEMPC strategy.
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From a more intuitive viewpoint, it can be observed that the performances of the proposed NEMPC
strategy outperform the classical NMPC strategy. More specifically, the classical NMPC strategy shows
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more noticeable fluctuations in the performance of generator power, shaft torsion displacement, tower
displacement, generator torque, and pitch angle when the wind speed has a sudden increase around
its rated wind speed, i.e., 11.4 m/s, compared with the proposed NEMPC scheme.

Meanwhile, the classical NMPC strategy shows more successive fluctuations in the performance
of generator power, shaft torsion displacement, tower displacement, generator torque, and pitch angle
when the normal wind speed has a sudden drop around the rated wind speed, compared with the
proposed NEMPC strategy.

As shown in Figure 11d–e, the tower displacement and the tower displacement by using the
classical NMPC strategy fluctuates more severely according to the wind speed variation compared
with the proposed NEMPC strategy, due to the economic index le2 related with the tower displacement
considered in the economic cost function (19) for the proposed NEMPC. It is similar in the performances
of the generator power, shaft torsion displacement, generator torque, and pitch angle, as shown in
Figure 10. It can be concluded that the proposed NEMPC strategy decreases the operating costs
while maintaining energy utilization, compared with the classical NMPC strategy. This is especially
obvious when the wind speed varies around the rated wind speed. From Table 2, it is obvious that the
proposed NEMPC strategy enhances the average generator power over the classical NMPC strategy
by 0.67%, 1.05%, 0.28%, and 1.75%, when the average wind speeds are 9.7 m/s, 9.4 m/s, 10.8 m/s, and
9 m/s, respectively.
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Table 2. Data analysis based on the results in Figure 11.

9.7 m/s 9.4 m/s 10.8 m/s 9 m/s

AVG(PNEMPC
g ) (MW) 3.1162 2.9598 4.1231 2.5662

AVG(PNMPC
g ) (MW) 3.095 2.9291 4.1116 2.5221

RMSNEMPC
sha f t (×10−3 rad) 3.234 3.092 3.913 2.581

RMSNMPC
sha f t (×10−3 rad) 3.365 3.215 3.939 2.761

RMSNEMPC
tower (×10−2 m/s) 36.38 35.80 42.59 33.40

RMSNMPC
tower (×10−2 m/s) 39.44 35.83 43.22 32.86

During different average wind speed periods, the proposed NEMPC strategy reduces the gearbox
load on the shaft over the classical NMPC strategy by 4.05%, 3.96%, 0.68%, and 6.96%, respectively.
Furthermore, it is obvious that the proposed NEMPC strategy reduces the tower fatigue a lot compared
to the classical NMPC strategy from the RMS values of the fatigue on the tower. Therefore, this group
of simulation-based FAST verifies the economy of the proposed NEMPC strategy.

It is well known that the computational burden of nonlinear MPC strategies increases exponentially
according to the incensement of the predictive horizon. Various predictive horizons have been
considered to investigate the computational burden by using classical NMPC and the proposed
NEMPC strategies. The relative computational times of these two controllers are indicated in Figure 12.
From Figure 12, it is obvious that the computational time of the proposed NEMPC is much smaller
than the classical NMPC with the same predictive horizon. Simultaneously, the computational time of
the classical NMPC increases more rapidly according to the incensement of the predictive horizon,
compared with the proposed NEMPC strategy.
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5. Conclusions

In this paper, the tower displacement and shaft torsional angle are taken into consideration in the
development of a nonlinear model for a 5-MW VSWT system. Based on this comprehensive model, a
NEMPC strategy for the VSWT system is proposed to increase the dynamic economy, i.e., through
power generation maximization and fatigue load minimization during operation. Three groups of
simulations for comparisons with the classical NMPC strategy demonstrate the effectiveness of the
proposed NEMPC strategy. The simulation under random wind speeds based on the FAST simulator
verified the reliability practicability of the proposed NEMPC strategy.
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The contributions of this study compared with other current studies can be outlined as follows:
Firstly, the tower dynamics are focused on in the modeling process for the VSWT with flexible
connections on the shaft, and the tower displacement is considered as a part of the economic objective
function, which can reduce tower fatigue. Secondly, all the related operational constraints and physical
constraints in the VSWT system with flexible connections on the shaft are considered in the proposed
NEMPC strategy in detail. Finally, simulations based on the FAST simulator, which is a realistic WT
simulator for testing the system’s validity and practicability, were performed to show the practical
implementation of the proposed controller using a turbulence wind speed profile. A future research
topic is the design of a robust EMPC strategy taking into account the uncertainty of wind speed.
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Appendix A

Table A1. The parameters in the 5-MW VSWT system.

Parameter Symbol Value

Number of blades - 3
Rotor radius - 63 m
Hub height - 84.3 m
Hub inertia on the low-speed shaft JH 115,926 kg·m2

Blade inertia on the low-speed shaft JB 11,776,047 kg·m2

Generator inertia on high-speed shaft Jg 534.116 kg·m2

Equivalent drive shaft torsion spring Kθ 867,637,000 N·m/rad
Equivalent drive shaft torsion damping Bθ 6,215,000 N·m/(rad/s)
Gearbox ratio Ng 97
tower fore-aft inertia Mt 430,000 kg
tower damping Bt 17,600 N·s/m
tower stiffness Kt 1,770,000 N/m
Air density ρa 1.2231 kg/m3

Rotor radius Rr 63 m
Generator efficiency ηg 94.4%

Table A2. The values of the bounds in the 5-MW VSWT system.

Parameter Symbol Value

Rated generator speed, Min. generator speed ωg rated, ωg min 122.9096, 70.1622
Rated rotor speed, Min. rotor speed ωr rated, ωr cut−in 1.2671, 0.7226
Min. shaft torsion angle θmin 0
Rated torque, Min. torque Tg rated, Tg min 43,093.55, 0
Max. torque rate, Min. pitch, Max. pitch ∆Tgmax, βmin, βmax 15,000, 0, 90
Max. pitch rate, Rated electrical power ∆βmin, PE

rated 8, 5,000,000
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