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Abstract: In this paper, a method for induction machine (IM) torque/speed tracking control derived
from the 3-D non-holonomic integrator including drift terms is proposed. The proposition builds on a
previous result derived in the form of a single loop non-linear state controller providing implicit rotor
flux linkage vector tracking. This concept was appropriate only for piecewise constant references and
assured minimal norm of the stator current vector during steady-states. The extended proposition
introduces a second control loop for the rotor flux linkage vector magnitude that can be either
constant, programmed, or optimized to achieve either maximum torque per amp ratio or high
dynamic response. It should be emphasized that the same structure of the controller can be used
either for torque control or for speed control. Additionally, it turns out that the proposed controller
can be easily adapted to meet different objectives posed on the drive system. The introduced control
concept assures stability of the closed loop system and significantly improves tracking performance
for bounded but arbitrary torque/speed references. Moreover, the singularity problem near zero
rotor flux linkage vector length is easily avoided. The presented analyses include nonlinear effects
due to magnetic saturation. The overall IM control scheme includes cascaded high-gain current
controllers based on measured electrical and mechanical quantities together with a rotor flux linkage
vector estimator. Simulation and experimental results illustrate the main characteristics of the
proposed control.

Keywords: induction machines; nonlinear control; energy efficiency; torque/speed control

1. Introduction

Squirrel cage induction machines (IM) are widely used in various industrial applications,
machining, transportation, and electrical vehicles. They are relatively simply constructed and therefore
easy to produce but quite difficult to control, especially if high performance and energy efficiency
are required. Field oriented control (FOC) and direct torque control (DTC) schemes with many
modifications introduced to fulfill different control objectives are widely accepted by the industry.
Following the progress in non-linear control theory, several propositions based on feedback linearization,
passivity, and flatness [1–4] were introduced in the past. These concepts facilitate deeper understanding
of nonlinear IM dynamics and improve feedback performance and robustness but are often quite
difficult to design and to implement. As a consequence, a great number of modifications and extensions
have been proposed for basic FOC and DTC to improve overall performance, efficiency, and robustness
along with new estimation techniques [5–10].

It is a long term goal to develop IM control strategies which are able to meet increasing
efficiency requirements, i.e., controllers which can produce prescribed torque trajectories while
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minimizing the power losses. For example, in [11] an optimal torque controller for an IM with a
linear magnetic characteristic was proposed based on the calculus of variations. A quite different
approach was presented in [12]. Introducing a general steady state model suitable for induction
motors, permanent-magnet synchronous motors, reluctance synchronous motors, and DC motors,
the problem of power loss minimization including core saturation is considered. In [13] a control
strategy is proposed based on ideas similar to [11]. The problem of missing information about the
future reference torque trajectory is removed assuming simple first order transients between constant
reference torque phases. The online implementation requires the solution of a small static optimization
problem. The problem of power loss minimization for step changes of the torque reference trajectory
is also considered in [14]. In addition to [13] saturation effects of the main inductance are taken into
account and a simplified suboptimal solution avoiding an online optimization is presented. Recently a
quite different control scheme for a permanent magnet synchronous machine was given in [15]. Based
on an linearized parameter dependent mathematical model for the motor which also includes magnetic
saturation, a model predictive control concept is developed. The online optimization problem is solved
by the projected fast gradient method.

In this paper, a new control concept based on 3-D non-holonomic (NH) integrator including
drift terms is proposed. Using standard modeling assumptions and assuming “perfect” current
control, a reduced IM (current) model can be written in the general NH integrator form. From the
control standpoint NH systems, which originate in mechanics, are quite challenging since they fail to
fulfill the necessary conditions for stabilization with a smooth state feedback [16]. For this class of
systems, control schemes based on discontinuous feedback (hybrid, sliding mode, and time optimal),
time-varying state feedback (trajectory planning, back-stepping, pattern generation) were proposed
in [17–20]. In [21] the authors introduced a non-linear state controller based on NH system analysis
applied to IM torque control. Considering the non-holonomic constraint requiring periodic orbits of
the rotor flux linkage and stator current vectors, the proposed feedback assured global asymptotic
stability and maximal torque/amp ratio in steady states for the nominal parameter case. An essential
characteristic of the proposed control scheme is implicit rotor flux linkage tracking provided by the
adjusted amplitude and frequency modulation of the stator current vector. Two main limitations were
observed for the proposed control: only piecewise constant references were allowed and the problem
of singularity (zero rotor flux) required an additional time optimal flux controller and a switching logic
to provide soft transitions between the two regimes [22].

This contribution is based on the results given in [23] for the control of the general
3-D-nonholonomic integrator with drift. The main focus of the present paper is the adaption of
the control concept presented in [23] for the usage in IM torque and speed control applications. For this
purpose a nonlinear flux model is included and the problem of flux optimization in order to achieve
the maximum torque per ampere feature is considered from the practical point of view. It is shown
that a simple suboptimal strategy for the adjustent of the flux magnitude can be applied to a wide
range of torque reference scenarios as well as to speed control tasks. The control input is consequently
composed of two orthogonal components, the first providing the required rotor flux linkage vector
and the second producing the desired torque. In this way the overall control structure becomes partially
similar to FOC but without relying on the uncertain rotor flux reference frame. The proposed structure
enables the rotor flux linkage vector to be either constant, programmed, or optimized for energy
efficiency with respect to drive characteristics and requirements. Due to similarities with widespread
FOC, the proposed control scheme can be easily implemented on a standard industrial hardware.

The presentation of the results is structured as follows. In Section 2, the basic IM model is
introduced in the rotor reference frame. The resulting reduced current model along with a dynamic
torque estimation constitute a general 3-D non-holonomic integrator that is used to introduce the basic
nonlinear state controller. Section 3 shows how the basic control structure can be extended in order to
provide improved tracking performance. A proof of the stability of the resulting closed loop system
is given. In Section 4 the mathematical description of the IM is extended by a simple nonlinear flux
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model covering the phenomenon of magnetic saturation. Next, the problem of rotor flux magnitude
optimization is addressed, such that torque tracking of the IM is performed efficiently. Different classes
of torque reference signals are considered and appropriate solutions are given. Section 5 is dedicated
to extensions of the controller structure and the task of speed control. In Section 6, implementation
aspects and experimental results confirming the improved tracking performance for torque and speed
control are discussed. Concluding remarks are given in Section 7.

2. Im Model and Basic Controller

Using a standard modeling approach the two-axis dynamic model of a 2-pole IM model written
in an arbitrary d-q reference frame is given by

i̇d,q =
(
−τ−1

σ I− Jωs

)
id,q +

(
M

LrLστr
I− ωm M

LrLσ
J
)

ψd,q

+ L−1
σ ud,q (1)

ψ̇d,q =
(
−τ−1

r I− J(ωs −ωm)
)

ψd,q +
M
τr

id,q

Tel =
M
Lr

(
ψdiq − ψqid

)
,

where id,q, ud,q, ψd,q are the stator current vector, the stator voltage vector, and the rotor flux linkage
vector written in the d-q reference frame. The mutual inductance is denoted by M, Lr is the rotor
inductance, Rr is the rotor resistance, ωm is the rotor speed, ωs is the speed of the d-q reference frame
with respect to the stator, Tel is the electric torque while I is the 2× 2 identity matrix and J is the
2× 2 skew symmetric rotational matrix. The leakage inductance Lσ, the resistance Rσ, the rotor time
constant τr and the leakage time constant τσ are defined as Lσ = Ls −M2/Lr, Rσ = Rs − (Rr M)2/L2

r ,
τr = Lr/Rr and τσ = Lσ/Rσ. Throughout the text references, estimated variables and errors values are
denoted as (.)∗, (̂.), (̃.).

Under the assumption of a perfect current control, i.e., id,q = i∗d,q, the simplified IM (current)
model written in the rotor reference frame γ-δ is obtained from the model written in (1) by considering
ωm = ωs and changing d to γ and q to δ:

ψ̇γ,δ = −τ−1
r ψγ,δ +

M
τr

iγ,δ (2)

where iγ,δ are control inputs, while the machine torque represents the controlled variable. For torque
control the output error is defined as T̃el := T∗el − T̂el , where the actual machine torque Tel in (1) is
replaced by a filtered estimate

τf

.
T̂el = −T̂el +

M
Lr

(ψγiδ − ψδiγ) . (3)

In this model τf � τr is the filter time constant, that is introduced to capture the estimation
dynamics and to remove higher frequency components generated by estimation process and
measurement of stator currents. A standard singular perturbation argument involving the estimation
time constant τf recovers the algebraic expression for the actual machine torque. Equations (2) and (3)
constitute the general 3-D non-holonomic integrator that includes drift terms.

Using the output error T̃el and the abbreviation s3 := sign(T∗el) with the convention T∗el = 0 →
s3 = 0, the basic nonlinear state controller was proposed in [21] as:[

iγ

iδ

]
=

τr

M

[
1
τr
+ s3kpT̃el −

(
s3
τr
+ kpT̃el

)
s3
τr
+ kpT̃el

1
τr
+ s3kpT̃el

] [
ψγ

ψδ

]
(4)
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where kp > 0 denotes a controller gain. The terms that are output error independent compensate the
drift terms and provide purely oscillatory dynamics of the rotor flux linkage vector ψγ,δ as the output
error T̃el vanishes. On the other hand, the terms that are output error dependent provide the adjusted
amplitude and frequency modulation of the input current vector. The feedback system is obtained
from (2) to (4) in the following form:

ψ̇γ = s3kpT̃elψγ −
(

s3τ−1
r + kpT̃el

)
ψδ

ψ̇δ =
(

s3τ−1
r + kpT̃el

)
ψγ + s3kpT̃elψδ (5)

.
T̂el = −τ−1

f T̂el + τ−1
f

τr

Lr

(
s3τ−1

r + kpT̃el

) (
ψ2

γ + ψ2
δ

)
In [21] it was proven that (5) has the following properties: For any constant T∗el 6= 0 , any T̂el(0)

and ψγ,δ(0) 6= 0 the system converges to a state where T̂el = T∗el and the components of ψγ,δ(t) are
harmonic functions with the amplitude

∥∥ψγ,δ
∥∥

2 =
√

Lr
∣∣T∗el

∣∣.
and the angular frequency s3τ−1

r . Furthermore, a distinctive characteristic of (5) is that, for a given
piecewise constant output reference T∗el the minimal norm of the control input vector iγ,δ = [ iγ i

δ
]T

is assured in steady states ∥∥iγ,δ
∥∥

2 =

√
2

Lr

M2

∣∣T∗el

∣∣.
The angle between the rotor flux vector and the stator current is s3π/4 permanently as was already

presented in [21]. The rotation speed of the stator current vector is obtained as ωI = ωr + ωm, where
the introduced “relative” speed ωr corresponds to the inverse time rotor constant τ−1

r . The relative
speed exactly matches the slip speed in steady states. Further remarks and characteristics of the
controlled system (5) regarding stability, robustness, singularity avoidance, and overall performance
can be found in [21,22].

3. Improved Torque Tracking Controller

Since from now on all vectors are expressed as vectors in the rotor reference frame the index
combination γ, δ is omitted. The main characteristic of the presented basic controller, namely the
implicit rotor flux tracking without separate control loop works perfectly for a piecewise constant
torque references assuring also maximal torque-per-amp ratio. The main obstacle for a good tracking
performance in general is observed especially at zero crossings of T∗el with finite slope since the
magnitude of the rotor flux linkage becomes too small or even zero. This results in the output T̂el
getting out of control for a short period as can easily be seen from the third equation in (5).

3.1. Controller Modification

To cope with this problem the basic controller scheme (4) has to be conceptually modified.
Based on the ideas outlined in [23] the control input is composed of two orthogonal parts

i = iψ + iτ (6)

where the vector iψ influences only the rotor flux linkage magnitude ψ, whereas the vector iτ facilitates
machine torque. Considering the basic control structure it is intended that the effect of the diagonal
elements in (4) is replaced by an appropriately selected vector iψ. The presentation of the control
design can be simplified if polar coordinates are introduced for the rotor flux vector

ψγ = ψ cos ϕ ψδ = ψ sin ϕ (7)
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with

ψ =
∥∥ψγ,δ

∥∥
2 =

√
ψ2

γ + ψ2
δ ϕ = arctan

(
ψδ

ψγ

)
. (8)

The plant Equations (2) and (3) are then obtained as:

ψ̇ = −τ−1
r ψ + τ−1

r M (iγ cos ϕ + iδ sin ϕ) (9)

ψϕ̇ = τ−1
r M (−iγ sin ϕ + iδ cos ϕ) (10)

.
T̂el = −τ−1

f T̂el + τ−1
f

M
Lr

(−iγ sin ϕ + iδ cos ϕ)ψ (11)

Tel =
M
Lr

(−iγ sin ϕ + iδ cos ϕ)ψ (12)

Now it is obvious that the control vector iψ must be of the form

iψ =

[
iψγ

iψδ

]
=

[
I cos ϕ

I sin ϕ

]

with a suitable selected magnitude I in order to influence the flux magnitude ψ only. Introducing the
reference signal ψ∗ for the rotor flux linkage magnitude ψ a simple proportional control is proposed
for the “magnetizing” vector iψ

iψ =
1
M

[ (
ψ∗ + kψ(ψ∗ − ψ)

)
cos ϕ(

ψ∗ + kψ(ψ∗ − ψ)
)

sin ϕ

]
, (13)

where kψ > 0 is a tuning parameter and ψ∗ > 0 is assumed. By inserting (13) in (9) it follows that the
rotor flux magnitude is ψ driven by the linear first order dynamics with unit gain:

ψ̇ = −τ−1
r (1 + kψ)ψ + τ−1

r (1 + kψ)ψ
∗ (14)

The time constant of (14) can be simply influenced by an appropriate selection of the parameter kψ.
It is important to note that (14) is completely decoupled from the other two states ϕ, T̂el .

Since iψ should replace the effect of the diagonal elements in (4) the second control vector iτ

influencing only the output error results from the remaining part of (4):

iτ =
τr

M

[
−
(
s3τ−1

r + kpT̃el
)

ψδ(
s3τ−1

r + kpT̃el
)

ψγ

]

=
τr

M

[
−
(
s3τ−1

r + kpT̃el
)

ψ sin ϕ(
s3τ−1

r + kpT̃el
)

ψ cos ϕ

]
(15)

Obviously iτ has no effect on the flux magnitude ψ. By inserting (15) into (10), it follows

ϕ̇ = s3τ−1
r + kpT̃el .

When the torque error T̃el vanishes the rotor flux linkage dynamics results in a harmonic
oscillator with an angular speed ϕ̇ = s3τ−1

r . This property which is implicitly contained in the
basic controller (4) is reasonable only for piecewise constant references T∗el but it is too restrictive
in general. Therefore, it is proposed to replace the term s3τ−1

r in (15) with the expression

Rr
T∗el

(ψ∗)2 (with the restriction ψ∗ > 0).
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One of the reasons for this replacement is the fact that in the case of a constant reference T∗el

and the choice ψ∗ =
√

Lr
∣∣T∗el

∣∣ the same steady state is obtained as by using the basic controller (4).
This means that the important property of (4), i.e., producing a constant torque with minimum norm of
the control input is recovered by the modified controller. Finally, by combining (13) and (15) (with the
proposed modification), a new control law is obtained:

iγ =
τr

M

[
− (Rr

T∗el
(ψ∗)2 + kpT̃el)ψ sin ϕ.

+ τ−1
r
(
ψ∗ + kψ(ψ

∗ − ψ)
)

cos ϕ
]

(16)

iδ =
τr

M

[
(Rr

T∗el
(ψ∗)2 + kpT̃el)ψ cos ϕ.

+ τ−1
r
(
ψ∗ + kψ(ψ

∗ − ψ)
)

sin ϕ
]

The resulting closed loop system built up by (9)–(11), (16) is given as:

ψ̇ = −τ−1
r (1 + kψ)ψ + τ−1

r (1 + kψ)ψ
∗

ϕ̇ = Rr
T∗el

(ψ∗)2 + kpT̃el (17)

.
T̂el = −τ−1

f (1 +
kp

Rr
ψ2)T̂el + τ−1

f (
ψ2

(ψ∗)2 +
kp

Rr
ψ2)T∗el

Of course the control law (16) can be transformed back into the original state variable form by
the inverse relations (7) and (8). Which, in combination with the plant model (2) and (3) leads to the
following description of the closed loop system:

ψ̇γ = −τ−1
r ψγ −

(
Rr

T∗el

(ψ∗)2 + kpT̃el

)
ψδ

+ τ−1
r

(
ψ∗ + kψ

(
ψ∗ −

√
ψ2

γ + ψ2
δ

))
ψγ√

ψ2
γ + ψ2

δ

ψ̇δ = −τ−1
r ψδ −

(
Rr

T∗el

(ψ∗)2 + kpT̃el

)
ψγ (18)

+ τ−1
r

(
ψ∗ + kψ

(
ψ∗ −

√
ψ2

γ + ψ2
δ

))
ψδ√

ψ2
γ + ψ2

δ

.
T̂el = −τ−1

f T̂el +
τ−1

f

Rr

(
Rr

T∗el

(ψ∗)2 + kpT̃el

)(
ψ2

γ + ψ2
δ

)
3.2. Stability Analysis

Since the closed loop system has two external inputs it must be proven that the norm of the state

vector x =
[

ψγ ψδ T̂el

]T
remains bounded whenever the norm of the input vector defined as

r :=
[

ψ∗ T∗el

]T
and ‖x(0)‖2 are bounded. This task becomes much easier, if the model (17) is used.

Obviously we have
‖x‖2

2 = ψ2 + T̂2
el , (19)
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therefore only the first and the third equation of (17) have to be considered. Next, it is assumed that
the following bounds hold for the external inputs

0 < ψ∗min ≤ ψ∗(t) ≤ ψ∗max for all t ≥ 0 (20)

|T∗el(t)| ≤ T∗el,max for all t ≥ 0, (21)

where T∗el,max, ψ∗min, ψ∗max are some finite positive constants. With the restriction kψ > 0 it follows
immediately from the first equation in (17) that

ψ(t) ≤ e−τ−1
r (1+kψ)tψ(0) + ψ∗max ≤ ψ(0) + ψ∗max. (22)

Thus ψ(t) remains bounded for any finite initial value ψ(0) ≥ 0 and any external input ψ∗(t)
satisfying (20).

Now the third equation in (17) can be regarded as a linear timevariant first order system with the
external input T∗el and with the output T̂el . For the stability analysis of this system the homogeneous
case (i.e., T∗el = 0) is considered first which leads to:

T̂el(t) = e
∫ t

t0
−τ−1

f (1+
kp
Rr ψ2)dτ T̂el(t0)

= e−τ−1
f (t−t0)e

∫ t
t0
−τ−1

f
kp
Rr ψ2dτ T̂el(t0)

Taking into account kp > 0, it follows

∣∣T̂el(t)
∣∣ ≤ e−τ−1

f (t−t0)
∣∣T̂el(t0)

∣∣ ,

which shows that the homogeneous system is uniformly exponentially stable. Furthermore from (20)
to (22) we can derive the result

τ−1
f

∣∣∣∣∣ ψ2

(ψ∗)2 +
kp

Rr
ψ2

∣∣∣∣∣ ≤ c for all t ≥ 0

where c denotes some finite positive constant. This inequality combined with the fact that the
homogeneous part is uniformly asymptotically stable assures that |T̂el(t)| remains bounded, whenever∣∣T∗el(t)

∣∣ and T̂el(0) are bounded [24]. Finally from (19) the desired result follows that ‖x‖2 remains
bounded. Furthermore, it is important to note that also the angular rotation speed ϕ̇ of the rotor flux
vector remains bounded (see second equation in (17)).

4. Magnetic Saturation and Flux Reference Optimization

The new control law (16) provides the flux reference signal ψ∗ as an additional external input.
In this section the problem how to choose ψ∗ in order to achieve energy efficient tracking of a desired
torque T∗el will be tackled. Since we would like to take full advantage of the dynamic capabilities of the
induction machine, magnetic saturation must be considered. A correct mathematical description of this
phenomenon would lead to a very complicated model, useless for control design. Therefore, a simple
approach proposed in [25] for field oriented control is adopted which is also applied in [26]. It is based
on the magnetization curve of the induction machine given in the form

ψ = f (iψ), (23)

where the magnetizing current iψ is defined as

iψ := iγ cos ϕ + iδ sin ϕ. (24)
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It should be mentioned that
∣∣iψ∣∣ = ∥∥iψ

∥∥
2 is valid. Simple geometric considerations based on the

phasors iγ,δ and ψγ,δ reveal that this relation holds, where iψ is defined in (6) and (13) respectively.
The magnetization curve can be obtained by measurements (e.g., [26]). Throughout the rest of the paper
M and Lr are the nominal values of the mutual inductance and rotor inductance below saturation.

The following nonlinear flux model was introduced in [25]

ψ̇ = τ−1
r M

(
− f−1(ψ) + iψ

)
, (25)

where f−1(ψ) is the inverse magnetizing function. For the next considerations it is useful also to
introduce the torque producing current component

iτ := −iγ sin ϕ + iδ cos ϕ. (26)

(with the property |iτ | = ‖iτ‖2, given by the same geometric considerations as mentioned above),
which allows us to write (12) in the form:

Tel =
M
Lr

iτψ (27)

Note that the real electrical torque Tel is considered in the present case. The Equations (25) and
(26) are the basis for the flux optimization problem. In the following subsection a piecewise constant
torque reference T∗el is considered and the corresponding optimization problem is solved. It is assumed
that the desired torque can be produced by the IM within the given current and voltage limitations.
The resulting optimal flux magnitude ψopt can be used as flux reference signal ψ∗ in the proposed
control structure.

4.1. Constant Reference T∗El

In the first case, the following question is considered: How should the constant flux ψ be selected,
so that a desired constant torque Tel = T∗el 6= 0 is achieved with minimum norm of the current vector in
steady state? In other words, we want to get the maximum torque per amp feature. If magnetic saturation
is neglected (i.e., for the linear flux model) the solution is simple

ψopt =
√

Lr
∣∣T∗el

∣∣, (28)

was already mentioned in Section 3. In the saturation case we get from (23)

iψ = f−1(ψ),

which is the necessary value of iψ in order to achieve the constant ψ in steady state. From (27) it follows

iτ =
Lr

M
T∗el
ψ

and using the fact ‖i‖2
2 = i2ψ + i2τ the problem can be formulated as:

ψopt = argmin
ψ

((
f−1(ψ)

)2
+

(
Lr

M
T∗el
ψ

)2
)

(29)

By differentiating with respect to ψ the necessary condition is obtained

2 f−1(ψ)
d f−1(ψ)

dψ
− 2L2

r
M2

T∗2el
ψ3

!
= 0.
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Unfortunately, this equation cannot be solved for ψ but this causes no severe problems since it
can be written as:

Lr |T∗el | = M

√
ψ3 f−1(ψ)

d f−1(ψ)

dψ
=: g(ψ) (30)

The function g(ψ) can be evaluated and stored in a lookup table so that the desired result can be
obtained numerically in the form

ψopt = g−1(Lr |T∗el |). (31)

A comparison between the optimal flux magnitude based on (28) and (31) is shown in Figure 1b.
A similar result was presented in [14] where power losses for torque steps were considered and
a function, which determines the optimal constant flux magnitude for constant torque levels, is given.

Figure 1. Magnetization curve (a); Optimal flux magnitude for constant torque (b).

4.2. General Case

In general, an arbitrary but bounded reference signal T∗el(t) defined over a finite time interval
0 ≤ t ≤ T0 is considered. In contrast to the forementioned case, a time function ψ(t) should be
determined now, so that the criterion

E =

T0∫
0

(
i2ψ + i2τ

)
dt (32)

is minimized for Tel(t) = T∗el(t). This means that the optimal flux trajectory ψ(t) for an arbitrary
torque reference signal should be determined. Obviously the value of E will also depend on the initial
condition ψ(0). In order to eliminate this influence, a periodic continuation of T∗el(t) is assumed and the
steady state solution of the problem is considered. In this case ψ(t) is a periodic time function too.
From (27), it follows

iτ(t) =
Lr

M
T∗el(t)
ψ(t)

(33)
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and therefore the optimization problem can be formulated as:

mimimize
T0∫

0

(
iψ(t)2 +

(
Lr

M
T∗el(t)
ψ(t)

)2
)

dt

subject to (34)

ψ̇ = τ−1
r M

(
− f−1(ψ) + iψ

)
ψ(0) = ψ(T0) iψ(0) = iψ(T0).

The boundary conditions are given by the fact that ψ(t) and iψ(t) must also be continuous
functions. This flux optimization problem can be treated by the classical methods of optimal control
(see e.g., [27]). First the Hamilton function is introduced (the argument time is omitted for brevity)

H = i2ψ +

(
Lr

M
T∗el
ψ

)2

+ λτ−1
r M

(
− f−1(ψ) + iψ

)
, (35)

where λ denotes a Lagrange multiplier. Now the solution of the problem must satisfy the following
necessary conditions:

0 =
∂H
∂iψ

= 2iψ + λτ−1
r M → iψ = −λτ−1

r M
2

(36)

λ̇ = −∂H
∂ψ

= 2
(

Lr

M
T∗el

)2 1
ψ3 + λτ−1

r M
d f−1(ψ)

dψ
(37)

ψ̇ =
∂H
∂λ

= τ−1
r M

(
− f−1(ψ) + iψ

)
(38)

Substituting iψ in Equation (38) with the expression from Equation (36), the resulting boundary
value problem is obtained:

λ̇ = 2
(

Lr

M
T∗el

)2 1
ψ3 + λτ−1

r M
d f−1(ψ)

dψ

ψ̇ = τ−1
r M

(
− f−1(ψ)− λτ−1

r M
2

)
(39)

ψ(0) = ψ(T0) λ(0) = λ(T0)

This problem can be solved numerically using appropriate software e.g., [28]. Finally, the optimal
solution ψopt(t) can be applied as flux reference signal ψ∗(t). This solution could be implemented only
if the reference trajectory is known in advance. A less restrictve assumption is discussed next.

In order to give more information about the solution of the boundary value problem (39),
an example is presented. The parameters of the IM are taken from Table 1 and a reference torque
T∗el(t) is chosen as shown in Figure 2a. The MATLAB function bvp4c was used to solve the boundary
value problem. The resulting optimal flux magnitude ψopt(t) is depicted in Figure 2b,c; it contains
the corresponding current iψ(t) and also the component iτ(t) which is determined from the optimal
solution by (33) with ψ(t) replaced by ψopt(t). The resulting value of the performance criterion (32) is
given as E = 336.04.
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Figure 2. (a) Reference torque; (b) optimal flux magnitude; (c) optimal currents.

Table 1. Nominal motor data and controller parameters.

Symbol Parameter Value

Pn nominal power 3 kW
Un supply voltage 220/380 V
In nominal current 13/7.5 A
nn synchronous speed 1328 rpm
Rs stator resistance 1.97 Ω
Rr rotor resistance 2.91 Ω
Ls stator inductance 0.2335 H
Lr rotor inductance 0.2335 H
M mutual inductance 0.223 H
Lσ leakage inductance 0.0105 H
Tel nominal torque 10 Nm
J drive inertia 0.031 kgm2

c friction constant 0.025 Nms/rad
α saturation parameter 0.13
β saturation parameter 1.7154
τf filter time-constant 0.005 s
kψ flux controller gain 1.5
kp torque controller gain 2.5
kp speed controller gain 25
kpi current controller gain 20
kii integrator gain 225.5

5. Final Controller Modifications

In the previous section two different scenarios concerning the torque reference signal T∗el were
investigated. The general case—being the most interesting one—needs the solution of a nonlinear
boundary value problem. In this case the torque reference signal must be known in advance which
drastically limits the applicability. Therefore, a suboptimal but easily implementable method for
the selection of the flux reference signal ψ∗ is preferred. A very simple but nevertheless reasonable
possibility can be derived by a comparison of the optimization problems (29) and (34). In addition
to the boundary conditions, the two problems differ mainly in the fact that the dynamic flux model
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is taken into account in (34). If replaced by the static flux model (23) a similar functional as in (29)
is obtained. Based on the result (31) for problem (29) the following choice

ψ∗(t) = g−1 (Lr |T∗el(t)|)

is introduced for the general case. In [14] the special case of step changes in the reference torque
(or step changes filtered by a stable linear second order system) are considered. The optimization
problem for the flux magnitude in order to minimize the power losses is formulated. Finally, the
optimization problem is simplified in the way that only the constant power losses in steady state are
taken into account. For proposed solution it should be emphasized that ψ∗(t) is applied for general
torque trajectories. Obviously this selection of the flux reference is optimal in the case of piecewise
constant reference torques but it requires certain limitations in order to meet the requirements in the
general case. Therefore, it is proposed to use

ψ∗(t) = sat
(

g−1 (Lr |T∗el(t)|) , ψ∗min, ψ∗max

)
, (40)

where the saturation function is defined as

y = sat (x, xmin, xmax) :=


xmin if x < xmin

x if xmin ≤ x ≤ xmax

xmax if x > xmax

.

The lower bound ψ∗min > 0 has to be introduced in order to avoid the problems at zero crossings
of T∗el(t) as mentioned in Section 3. Of course it is not possible to give an exact bound on the
"suboptimality" of the proposed flux reference strategy for an arbitrary torque reference signal which
is not given in advance. However, the choice of the lower bound ψ∗min offers a simple way to adjust the
concept to the expected reference torque trajectories. Especially in the case of slowly varying reference
torques the efficiency improvement can be significantly compared to the constant flux reference case
as can be seen in Figure 2. Upper bound ψ∗max should prohibit unduly high magnetization or can be
used in the field weakening range being defined as a function of the rotor speed ωm. The introduction
of the lower bound ψ∗min for the flux reference signal is helpful to meet different drive requirements.
In cases where the dynamics of the torque response is of main interest an operation with constant flux
magnitude may be preferable which can be obtained by setting ψ∗min = ψ∗max. On the other hand, if
efficiency of the drive is emphasized a small value of ψ∗min will be a suitable choice. Of course, in cases
where the required torque T∗el(t) is known in advance (e.g., in robotic applications) the optimal flux
reference ψ∗(t) resulting from the boundary value problem (39) can be applied directly, i.e., the first
equation of the controller (41) can be omitted.

The results obtained by this simple approach are shown in Figure 3. The same torque reference
signal T∗el(t) as used in the previous example leads to a flux reference signal ψ∗(t) nearly coinciding
with the optimal flux ψopt(t) most of the time. Here the bounds were chosen somewhat arbitrarily
as ψ∗min = 0.35 and ψ∗max = 1.4. Interestingly, the performance criterion only marginally deteriorates
compared to the optimal solution. In this case the value is given as E = 337.6. Considering the torque
reference signal in Figure 2a and the deviation from the optimal flux in Figure 3c it follows that high
dynamic changes in the reference torque require an increasing value of the lower bound ψ∗min in order
to get a good approximation of the optimal flux magnitude.
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Figure 3. (a) Optimal flux magnitude; (b) flux reference resulting from (40); (c) deviation from optimal flux.

The inclusion of the nonlinear flux model (25) into the control concept requires a minor
modification of (13). The feedforward part ψ∗/M in this scheme must be replaced by the inverse
magnetization function in order to achieve the correct flux magnitude.

Thus, the torque controller is proposed in its final form as follows: given the reference torque T∗el(t)
as external input, the estimated torque T̂el(t) and the flux coordinates ψ(t), ϕ(t) (or their estimated
values ψ̂(t), ϕ̂(t) from an observer/estimator) the controller outputs iγ(t), iδ(t) (i.e., the reference
signals for the current controller) are determined by the relations

ψ∗(t) = sat
(

g−1 (Lr |T∗el(t)|) , ψ∗min, ψ∗max

)
iψ(t) = f−1(ψ∗(t)) +

kψ

M
(
ψ∗(t)− ψ̂(t)

)
iτ(t) =

(
Lr

M
T∗el(t)
ψ∗(t)2 +

kpLr

Rr M
(
T∗el(t)− T̂el(t)

))
ψ̂(t) (41)

iγ(t) = iψ(t) cos ϕ̂(t)− iτ(t) sin ϕ̂(t)

iδ(t) = iψ(t) sin ϕ̂(t) + iτ(t) cos ϕ̂(t).

Remark 1. If the nonlinear flux model (25) is used in combination with the modified equation for iψ from (41)
the first equation of the closed loop model (17) changes to

ψ̇ = −τ−1
r (M f−1(ψ) + kψψ) + τ−1

r (M f−1(ψ∗) + kψψ∗). (42)

Since the inequality M f−1(ψ) ≥ ψ holds for all ψ ≥ 0 it follows immediately that ψ = 0 is an asymptotically
stable equilibrium of the unforced (i.e., for ψ∗(t) = 0) system (42). Additionally, using the Lyapunov functon
V = 1

2 ψ2 it can be shown that (42) has the so-called input to state stability property which means that ψ(t)
remains bounded whenever ψ(0) and ψ∗(t) are bounded [29]. Therefore, all results from the stability analysis of
Section 3.2 remain valid.
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5.1. Guidelines for Selection of Controller Parameters

The final control law (41) contains two parameters kψ and kp which must have positive values
in order to achieve stability of the closed loop system. Considering the dynamic capabilities of
the controlled induction machine it would be desirable to select large values for kψ and kp but of
course this choice is limited by the constraint posed on the stator current vector. Therefore, some
guidelines should be given next. Starting from the given maximum possible flux magnitude ψmax we
can determine the associated magnetization current amplitude iψ,m via the measured magnetization
curve, i.e., iψ,m = f−1(ψmax). In order to achieve a desired dynamic flux control loop we may put the
following constraint on the magnetization current

iψ ≤ iψ,max := 2iψ,m.

From (41) we have

iψ = f−1(ψ∗) +
kψ

M
(ψ∗ − ψ̂)

which immediately leads to the conservative constraint

f−1(ψmax) +
kψ

M
ψmax ≤ iψ,max.

From this inequality we can derive a bound for the parameter kψ as

kψ ≤
M

ψmax
(iψ,max − f−1(ψmax)) =

M
ψmax

iψ,m. (43)

Given the maximum possible stator current amplitude imax we can determine the maximum
amplitude iτ,max of the torque producing current by

iτ,max =
√

i2max − i2ψ,max.

Now considering (15) it follows

|iτ | = ‖iτ‖2 =
τr

M

(
s3τ−1

r + kpT̃el

)
ψ

from which the inequality

(1 + kpτr T̃el) ≤ iτ,max
M

ψmax

can be derived. Under the assumption ∣∣T̃el
∣∣ ≤ 2Tel,max,

where Tel,max denotes the maximum possible torque, we get the desired bound

kp ≤
1

2τrTel,max

(
iτ,max

M
ψmax

− 1
)

. (44)

It should be emphasized that (43) and (44) are conservative bounds; therefore, the applied
parameters may be increased to some extent.
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5.2. Speed Control

The proposed torque control concept can be easily extended to speed control of an IM. In this
case the mathematical model of the plant has to be augmented with the differential equation for the
mechanical part of the system

Jω̇m = −cωm + Tel − Tl . (45)

The inertia of the drive is denoted by J, c is a constant for viscous friction, and Tl is an unknown
load torque. It is assumed that the mechanical speed ωm can be measured. Now the proposed torque
controller (41) can be simply extended by a speed controller whose output serves as reference torque
input T∗el for the torque controller. A standard PI-controller may be used for this purpose. The resulting
structure of the controller including the flux and torque observer/estimator is shown in Figure 4.
The reference signal for the mechanical speed is denoted by ω∗m.

  current
controller

(48)

   torque
controller

(42)

PI speed
controller

observer/
estimator

(49)

uγ,δ

iγ,δ

iγ,δ
*

Tel

Tel
*

ψγ,δ

ωm

ωm*

voltage source
inverter +
IM +
measurements

1

Figure 4. Controller structure for speed control.

For high performance servo applications it is preferable to choose ψ∗ below the saturation point
to ensure the required dynamic response. On the other hand, for slowly changing or constant speed
references ω∗ the flux command ψ∗ could be optimized as proposed.

If we dispense with the maximum torque per ampere feature a simplified version of the speed
controller can be derived from (41) in the following way: First (3) of the plant model is replaced by (45),
next a suitable constant flux reference value ψ∗ is chosen and finally the current component iτ in (41)
has to be modified such that it depends on the speed error. In this way the speed controller is given as:

iψ(t) = f−1(ψ∗) +
kψ

M
(
ψ∗ − ψ̂(t)

)
iτ(t) =

(
cLr

M
ω∗m(t)

ψ∗2 +
kpLr

Rr M
(ω∗m(t)−ωm(t))

)
ψ̂(t) (46)

iγ(t) = iψ(t) cos ϕ̂(t)− iτ(t) sin ϕ̂(t)

iδ(t) = iψ(t) sin ϕ̂(t) + iτ(t) cos ϕ̂(t).

The closed loop system composed of (2), (45), and (46) is described by the relation (42) and

ϕ̇ = cRr
ω∗m
ψ∗2 + kp (ω

∗
m −ωm)

ω̇m = −1
J

(
c +

kp

Rr
ψ2
)

ωm

+
1
J

(
c

ψ2

ψ∗2 +
kp

Rr
ψ2
)

ω∗m −
1
J

Tl .
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6. Control Implementation and Experimental Results

In the following, the practical implementation of the controller combined with the appropriate
inner current control along with a rotor flux linkage estimator is considered. The current control that
provides reference tracking, disturbance suppression, and voltage drop compensation of the Voltage
Source Inverter (VSI) was realized in the rotor reference frame. The current error

ĩγ,δ = i∗γ,δ − iγ,δ

was calculated from the reference currents obtained from the torque controller and the machine stator
currents, that were directly measured. Based on an internal model principle a PI controller, that
provides reference tracking and compensation of the back-EMF, was used in the following form:

uγ,δ = kpi ĩγ,δ + kpikii

t∫
0

(
Jωm

kii
+ I
)

ĩγ,δdτ (47)

The constants kpi, kii > 0 are free design parameters. In this application kii = τ−1
σ was set.

The implementation of the proposed control law clearly requires a rotor flux linkage estimator
or observer. In experiments, a simplified magnetically nonlinear estimator was used based on the rotor
model (25) in the following form

iψ = iγ cos ϕ̂ + iδ sin ϕ̂

iτ = −iγ sin ϕ̂ + iδ cos ϕ̂
.
ψ̂ = τ−1

r M
(
− f−1(ψ̂) + iψ

)
(48)

.
ϕ̂ = τ−1

r M
iτ

ψ̂
.
T̂el = −τ−1

f T̂el + τ−1
f

M
Lr

ψ̂iτ .

The magnetization curve ψ̂ = f (iψ) was implemented as lookup table.
The experimental setup consisted of the tested IM coupled with a separately controlled DC motor

serving as variable load, a dSPACE PPC Controller board, a host PC with installed development
environment, an incremental encoder with 5000 pulses per revolution, current sensors, voltage inverter,
and a torque transducer. During tests, data acquisition, transformations, the flux, and torque estimator
and the control algorithm were executed on the PowerPC with a sampling time of 250 µs, while a slave
DSP was used for the vector modulation executed at 4 kHz. The program codes for the PowerPC and
for the slave DSP were developed with the Real Time Interface and Simulink. Characteristic motor
data and controller parameters for torque control are given in Table 1.

The first experiment presented in Figure 5 shows the machine response for a torque control with
a piecewise constant torque reference and with adjusted rotor flux linkage magnitude as proposed
in (31). The diagram (a) shows the estimated torque, the reference torque, and the filtered measured
torque. For comparison on diagram (b), the same experiment is repeated using just the basic FOC
(constant flux command, no compensation of magnetic nonlinearity, constant parameter flux estimator,
current controllers in d-q reference frame, PI speed controller). Since no compensation of nonlinearity
was used, some mismatch between observed, measured, and reference torque can be observed at
higher torque values. Diagrams (c) and (d) show measured and reference currents while on the
fifth diagram (e) the rotor flux linkage vector trajectory is shown. The last diagram (f) shows
the reference and adjusted magnitude of the rotor flux linkage vector considering the nonlinear
magnetizing characteristic.
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Considering our previous proposition of the basic controller in (4), the advantages of the proposed
extended control become evident if the reference changes sign with finite slope. This is illustrated
for the reference profile that includes torque reversal in Figure 6. The proposed controller enables
precise torque tracking also at zero crossings (a). On diagram (b) the comparison with FOC shows
some deviation in the measured torque at higher reference values. Slightly better performance can be
observed for the proposed control mostly due to the fact that just basic FOC was implemented. As in
the previous experiment reference and measured currents (c,d), rotor flux linkage vector trajectory
(e) and adjusted magnitude of the rotor flux linkage vector (f) are shown for the proposed control.
Diagrams (g,h) show the stator current vector norms and corresponding integrals for a constant and
optimized rotor flux. The current norm and the quantity E were obtained numerically from the
measurements. For a constant rotor flux obtained with the proposed control and FOC the difference
in E is a consequence of slightly bigger magnetizing current that was applied for a proposed control
(curves 2 and 3). As expected, E is minimized for optimized rotor flux (curve 1). Similar performance
could be achieved also with FOC for optimized rotor flux.
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Figure 5. Torque control with adjusted rotor flux magnitude command and piecewise constant
torque reference: torque response for proposed method (a), torque response for FOC (b), stator current
components gamma and delta (c,d), rotor flux vector trajectory (e), rotor flux vector magnitude (f).
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Figure 6. Torque control with optimized rotor flux magnitude command for the torque reversal
including zero crossing with a finite slope (a–f) and comparison of stator current norm and
corresponding integrals (g,h) for the proposed controller with optimized rotor flux (1) and with
constant rotor flux (2) as well as for field oriented control (FOC) with constant rotor flux (3).

In Figure 7 the performance comparison for low speed reference is shown. No significant
differences can be observed between proposed control and FOC. In the experiment shown in
Figure 8 tracking performance for a harmonic speed reference with simultaneous constant load
torque Tl = −8 Nm starting at t = 1.9 s is given. Actual and reference speed are shown in diagram (a),
measured torque is given in diagram (b), while in diagrams (c) and (d) reference and measured currents
iγ and iδ are shown. In Figure 9, the same variables as in the previous experiment are shown for a
speed reversal command.
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Figure 7. Performance comparison at low speed.
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Figure 8. Speed response for harmonic speed reference and a constant load torque starting at t = 1.9 s:
reference and measured speed (a), measured torque (b), reference and measured stator current vector
components (c,d).
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Figure 9. Control performance for the speed reversal command: speed response (a), measured torques
(b), and reference and measured stator current vector components (c,d).

7. Conclusions

In this paper we proposed an extended controller for an induction machine based on the 3-D
non-holonomic integrator that assures tracking of a general torque reference. This was achieved by
extending a basic non-linear state controller with a separate control of the rotor flux linkage magnitude.
The modified control results in a structure that is similar to FOC, although a completely different
approach was used. It should be pointed out that brief additional results obtained with classical FOC
are given exclusively to show that similar overall performance could be obtained with the proposed
approach and are not meant for detail performance evaluation or comparison. The additional control
loop in proposed control scheme provides extra flexibility to meet performance requirements posed
on the drive. As occasion demands the rotor flux linkage magnitude can be optimized to assure
energy efficiency or can be kept constant to provide high dynamic tracking performance in servo
applications. It follows from our experience that both requirements are hard to satisfy simultaneously
without prior information about the class of reference signals. Simultaneous online optimization of the
flux magnitude for completely arbitrary torque reference is computationally still too demanding for
existing hardware. With the proposed controller, singularity problems of the original controller (4)
are completely removed. Since the nonlinear state controller requires a rotor flux linkage estimate,
further improvement could be achieved by implementing well known estimation techniques in the
proposed control.

Author Contributions: Conceptualization, B.G. and A.H.; writing—original draft preparation, B.G. and A.H.;
experimental validation, G.Š.; writing—review and editing, G.Š. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the Slovenian Research Agency, project no. P2-0115 and J2-1742.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2020, 13, 175 21 of 22

References

1. Marino, R.; Peresada, S.; Tomei, P. Global Adaptive Output Feedback Control of Induction Motors with
Uncertain Rotor Resistance. IEEE Trans. Autom. Control 1999, 44, 964–980. [CrossRef]

2. Bodson, M.; Chiasson, J. Differential-Geometric Methods for Control of Electric Motors. Int. J. Robust
Nonlinear Control 1998, 8, 927–952. [CrossRef]

3. Oteafy, A.; Chiasson, J. Lyapunov stability of an open-loop induction machine. In Proceedings of the
American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 3452–3457.

4. Ortega, R.; Loria, A.; Nicklasson, P.J.; Siera-Ramirez, H. Current fed induction motors. In Passivity-Based
Control of Euler-Lagrange Systems; Springer: Berlin, Germany, 1998; pp. 381–439.

5. Peresada, S.; Tilli, A.; Tonielli, A.Current regulation strategies for vector-controlled induction motor drives.
IEEE Trans. Power Electron. 2003, 18, 151–163. [CrossRef]

6. Holmes, D.G.; McGrath, B.P.; Parker, S. Current regulation strategies for vector-controlled induction
motor drives. IEEE Trans. Ind. Electron. 2012, 59, 3680–3689. [CrossRef]

7. Hajian, M.; Soltani, J.; Markadeh, G.A.; Hosseinnia, S. Adaptive nonlinear direct torque control of sensorless
IM drives with efficiency optimization. IEEE Trans. Ind. Electron. 2010, 57, 975–985. [CrossRef]

8. Casadei, D.; Member, S.; Serra, G.; Stefani, A.; Tani, A.L. Zarri, L. DTC drives for wide speed range
applications using a robust flux-weakening algorithm. IEEE Trans. Ind. Electron. 2007, 54, 2451–2461.
[CrossRef]

9. Alexandridis, A.T.; Konstantopoulos, G.C.; Zhong, Q.-C. Advanced integrated modeling and analysis for
adjustable speed drives of induction motors operating with minimum losses. IEEE Trans. Energy Convers.
to be published. [CrossRef]
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