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Abstract: Energy storage systems (ESSs) are essential to ensure continuity of energy supply and
maintain the reliability of modern power systems. Intermittency and uncertainty of renewable
generations due to fluctuating weather conditions as well as uncertain behavior of load demand make
ESSs an integral part of power system flexibility management. Typically, the load demand profile can
be categorized into peak and off-peak periods, and adding power from renewable generations makes
the load-generation dynamics more complicated. Therefore, the thermal generation (TG) units need to
be turned on and off more frequently to meet the system load demand. In view of this, several research
efforts have been directed towards analyzing the benefits of ESSs in solving optimal unit commitment
(UC) problems, minimizing operating costs, and maximizing profits while ensuring supply reliability.
In this paper, some recent research works and relevant UC models incorporating ESSs towards
solving the abovementioned power system operational issues are reviewed and summarized to give
prospective researchers a clear concept and tip-off on finding efficient solutions for future power
system flexibility management. Conclusively, an example problem is simulated for the visualization
of the formulation of UC problems with ESSs and solutions.

Keywords: energy storage systems; power system flexibility management; renewable energy
generations; load leveling; optimal unit commitment

1. Introduction

Energy production using renewable energy resources has been on the increase on a daily
basis all over the world and will likely continue to increase over the next few years; on the
other hand, fossil-fuel-based energy productions will likely decline. It is expected, in the
future, that the lion’s share of energy will be produced from alternative energy sources, such as
solar and wind energy. There are many reasons behind the increasing renewable generation
installations. For example, installations of renewable energies are increasing for saving fossil
fuels [1]. Additionally, urbanization and industrialization are increasing the demand for fossil fuels;
consequently, the price of fossil fuels is rising all over the world. In addition, the demand for electricity
has been growing worldwide because of population growth and other socioeconomic factors [2].
Moreover, deregulation and liberalization of the power market have led to growing competition
among power producers [3,4]; therefore, power companies are trying to reduce the operational costs of
their services. Typically, the operational costs of renewable generations are comparatively lower than
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fossil-fuel-based thermal generations (TGs). Furthermore, burning fossil fuels continuously for power
generation produces enormous CO2 and other greenhouse gas emissions into the environment [5].
The United States Environmental Protection Agency (EPA) demonstrated that around 32% of CO2

emissions are caused by fossil-fuel-based power generation [6]. However, power generation companies
still depend mainly on fossil fuels to ensure adequacy, reliability, and flexibility of supply. TGs make
use of a large quantity of fossil fuels to generate electricity; for instance, the U.S. Energy Information
and Administration (EIA) states that the United States (U.S.) is producing more than 65% of its
electricity by burning fossil fuels [7], having already installed (and planning to install) a large number
of renewable generators.

However, both wind turbine generators (WTGs) and PV suffer from what is known as
intermittency [8–12] because winds have a nasty habit of abruptly dying or springing up, while the
sun will also disappear behind clouds and injects no power at night from PV. Sometimes due to these
reasons, within short bursts of several seconds, there may be too much power, too little power, or total
blackout within the grid. The power output of WTG and PV depends on weather conditions, and power
smoothing of WTG and PV outputs remains a technically challenging task [13,14]. WTG has huge
ramp up and down requirements, and PV generates power only during the day, besides, they have
the uncertainty of power output [15–19]. Renewable generation also has frequency distortions due to
the continuously changing mismatches between the generation and demand, instantaneously [20,21].
Due to these problems, the effective load after considering the power output from the renewable energy
generators as a negative load fluctuates widely. Hence, the other fossil-fuel-based TGs cannot run
optimally since achieving an effective optimal unit commitment (UC) becomes very difficult as a result
of load uncertainties [22]. This is because the load curve becomes intractable after the penetration of
the renewable generators and the peak and off-peak gap increase in most cases; therefore, TG in the
grid needs to be frequently turned off and on. Although coal-based or quick-response generators can
be run as spinning reserves for solving these kinds of problems, these generators are polluting the
environment massively. Therefore, energy storage systems (ESSs) have currently been installed in the
smart grid to smoothing the generators’ power output [23]. Several research works have been carried
out on the configuration and development of sufficient energy storage facilities for power system
flexibility, reliable operation, and management [24].

This review paper elaborates on the contribution of the ESS for optimal UC, which may involve
the minimization of the operational costs or maximization of profit of the power systems under
large-scale or small-scale renewable energy penetrations. Typically, renewable generations come

with immense technical, economic, and environmental benefits for power system operators as well
as the entire society. However, some technical challenges come with renewable energy integration,
as highlighted in the previous paragraphs. Most of these problems that are directly related to optimal
UC have been solved using the effective deployment of different energy storage facilities, and many
review articles have already been published for summarizing the UC model. However, a thorough
review of recent works of literature that have investigated the impacts associated with UC models
when high penetrations of renewable energy are considered in the power system is reported in [25].
Another research is conducted to find a probabilistic model for UC operation to quantify the effect of
the electric vehicle to the grid in different operational times in contrast. The research focuses on several
producers and consumers within a microgrid based on cost-benefit analysis and it makes a comparison
of the results with a deterministic model [26]. In Reference [27], the literate review for the past
several years to demonstrate the modeling and computational aspects of stochastic optimization-based
UC are reported. Reference [28] conducts a clear review by citing many peer-reviewed papers and
then summarizes the latest techniques employed in optimizing UC problems for both stochastic and
deterministic loads. Reference [29] tries to give a structured bibliographic survey for UC problems by
applying a stochastic programming approach. However, this particular review work does not focus on
ESSs contribution to the UC program.
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2. A Short Literature Review on UC Models

The problem of UC is to determine which units of system generators to deploy and interconnect
over the next operational periods, which is commonly 24 or 48 h; sometimes, it is also possible
to solve UC for a week at a time. The problem is complex and can become more complicated
by the consideration of intertemporal constraints. Several UC problems have been designed
for solving various powers system operation problems, as reflected on the objective functions,
simulation conditions, and optimization methods [30–32]. Succinctly, the UC problem in the power
system can be defined as a broad set of mathematical optimization problems, where the production of
a combination of power generators is coordinated in order to achieve some common targets. The usual
targets are to maximize profit, minimize cost, and more.

2.1. Profit Maximization UC

The restructuring in conventional power systems has resulted in more challenges for the power
producer. It becomes an essential strategy for the power company to make an optimal schedule for
generations to survive in a competitive deregulated market. Many researchers have published articles
related to profit maximization, which are summarized below [33–35].

2.1.1. Objective Function

The following problem formulation for UC in Equations (1) and (2) show the objective function
for profit maximization.

max F =
T

∑
t=1

G

∑
g=1

[
FPt(Pg

t )−
(

f g(Pg
t ) + (SUCg

i

(
1− ucg

t−1

))]
ucg

t . (1)

f g(Pg
t ) = ag + bgPg

t + cg(Pg
t )

2 g ∈ [1, G], t ∈ [1, T]. (2)

SUCg


HSg; MTDg ≤ To f f g

t ≤ MTDg + TOCg,

CSg; To f f g
t ≥ MTDg + TOCg,

g ∈ [1, G], t ∈ [1, T].

(3)

2.1.2. Decision Variables

The decision variables are two types; the binary variables (ucg
t ) 0 and 1 for the OFF and ON status

of system generator units, respectively, and the real decision variable Pg
t that gives the scheduled

power (MWh) of gth committed unit at hour t (when (ucg
t ) = 1 ). The real decision variable range is

[pg
min, pg

max].

2.1.3. UC Constraints

(i) Spinning reserve constraint

G

∑
g=1

pg
maxucg

t ≤ LDt + MSRt g ∈ [1, G], t ∈ [1, T]. (4)

(ii) Minimum OFF time and ON time constraints(
Tong

t −MUTg)(ucg
t−1−ucg

t

)
≥ 0 g ∈ [1, G], t ∈ [1, T]. (5)

Tong
t =

(
Tong

t−1 + 1
)
ucg

t g ∈ [1, G], t ∈ [1, T]. (6)
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(
To f f g

t −MDTg)(ucg
t − ucg

t−1
)
≥ 0 g ∈ [1, G], t ∈ [1, T]. (7)

To f f g
t =

(
To f f g

t−1 + 1
)(

1− ucg
t
)

g ∈ [1, G], t ∈ [1, T]. (8)

(iii) Initial status of Unit

ucg
t=0


0; ISg < 0,

1; ISg > 0,

g ∈ [1, G].

(9)

(iv) Load Demand Constraints

G

∑
g=1

Pg
t ucg

t ≤ Lt g ∈ [1, G], t ∈ [1, T]. (10)

(v) Generator’s output power constraints

Pg
min ≤ Pg

t ≤ Pg
max g ∈ [1, G], t ∈ [1, T]. (11)

(vi) Generation Ramp rate

Pg
t − Pg

t−1 ≤ RUg g ∈ [1, G], t ∈ [1, T]. (12)

Pg
t−1 − Pg ≤ RDg g ∈ [1, G], t ∈ [1, T]. (13)

2.2. Cost Minimization UC

There are several papers on UC for minimizing system costs, but each of them is distinct from
each author’s viewpoint. Each manuscript solves UC problem by considering different conditions
and constraints [36–39]. Reference [40] represents a UC problem formulation for minimizing cost as
follows:

Objective Function

The objective function is to minimize the total production cost; Equation (14) expressed the
objective function, and the fuel cost f and start-up cost SUC are as expressed in Equation (2) and (3),
respectively. This minimization UC problem considers the same thermal UC constraints like profit
maximization (see Section 2.1.2).

min F =
T

∑
t=1

G

∑
g=1

[
f g(Pg

t ) + (SUCg
i
(
1− ucg

t−1
)]

g ∈ [1, G], t ∈ [1, T]. (14)

2.3. Stochastic UC Problem

In recent times, the stochastic UC problem has been an interesting area for researchers due to
the high penetration of renewable generation into the grid [41–47]. Renewable generations have the
uncertainty of power output; that is why the introduction of stochastic UC programming is becoming
very necessary [48,49]. Most of the recent papers have considered two or multistage stochastic
UC [50–55]. Some articles considered hybrid scholastic UC to manage uncertainty on the expected net
load [56]. The hybrid UC scheme applies the stochastic formulation to the initial operating hours of
the optimization horizon so as to get a more accurate expected generation [57]. All of these stochastic
UC models have been proven to increase the system efficiency using different optimization algorithms.
A probabilistic UC problem considering incentive-based demand response (DR) and a high level of
wind power are described in [58]:
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2.3.1. Main Program Formulation for Stochastic UC

This proposed probabilistic thermal UC model lays emphasis on reducing the operational cost.
The objective function F is shown in Equation (15).

min F =
T

∑
t=1

(
G

∑
g=1

[
f g
t ucg

t + π
up
g,t + πdn

g,t

)
+ At(Do

t − Dt

)
g ∈ [1, G], t ∈ [1, T]. (15)

Here, fuel cost f g
t is conditioned on the fuel type k and the generator’s constraints are expressed

considering the fuel types in Equation (16).

f g
t = α1

g,k + α2
g,kPg

t + α3
g,k(Pg

t )
2

∣∣∣∣∣α4
g,k × sin

{
α5

g,k
(

Pmin
g,k − Pg,k

)}∣∣∣∣∣ g ∈ [1, G], t ∈ [1, T]. (16)

2.3.2. Constraints

Program constraints and some related formulations to fulfill the requirement for optimal objective
values are listed below.

(i) Power output constraint of unit g

Pmin
g,k ≤ Pg

t ≤ Pmax
g,k g ∈ [1, G], t ∈ [1, T]. (17)

(ii) Start-up function

π
up
g,t =


πh

gucg
t
(
1− ucg

t−1
)
, if ∑t−1

t′=t−HSg−CSg ucg
t′ > 0,

πc
gucg

t otherwise,

g ∈ [1, G], t ∈ [1, T].

(18)

(iii) Start-off function

πdn
g,t = πdn

g, f ixucg
t−1
(
1− ucg

t
)

g ∈ [1, G], t ∈ [1, T]. (19)

(iv) Power balance constraint

G

∑
g=1

= Pg
t ug

t = Dt g ∈ [1, G], t ∈ [1, T]. (20)

Dt =
(
1− η

)
Do

t + De
t g ∈ [1, G], t ∈ [1, T]. (21)

De
t = ηDo

t

(
1 +

G

∑
t′−1

Et,t′
πt′ − πo

t′ + At

πo
t′

)
. (22)

(v) Incentive value limit
Amin

t ≤ At ≤ Amax
t t ∈ [1, T]. (23)

(vi) Power output constraint of unit g

Pmin
g,t ug

t ≤ Pg
t ug

t ≤ Pmax
g,t ucg

t g ∈ [1, G], t ∈ [1, T]. (24)

Pmin
g,t = min

(
pmax

g , Pg
t−1 + ∆Pup

i
)

g ∈ [1, G], t ∈ [1, T]. (25)

Pmax
g,t = max

(
pmin

g , Pg
t−1 + ∆Pdn

i
)

g ∈ [1, G], t ∈ [1, T]. (26)
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(vii) Turned on constraint

t−1

∑
t′=t−MUTg

= MUTg if ucg
t − ucg

t−1 = −1 g ∈ [1, G], t ∈ [1, T]. (27)

(viii) Turned off constraint

t−1

∑
t′=t−MTDg

= MTDg if ucg
t − ucg

t−1 = 1 g ∈ [1, G], t ∈ [1, T]. (28)

(ix) Up/Down reserves constraints

rup
t = ∑ min

(
Pmax

g − Pg
t , 10∆, Pmax

i
)
ucg

t g ∈ [1, G], t ∈ [1, T]. (29)

rdn
t = ∑ min

(
Pg

t − Pmin
g , 10∆Pmax

i
)
ucg

t g ∈ [1, G], t ∈ [1, T]. (30)

(x) Probability function (Prob)

∑
k

{
pout

k Prob
(
− rdn

t ≤ DtPw
(ωt,t) − Do

t ≤ rup
t

)}
≥
(

1− ε

)
g ∈ [1, G], t ∈ [1, T]. (31)

The proposed stochastic UC improves the conventional form of the UC problem by integrating
short-term security restriction in Equation (15). In Equation (15), a simultaneous probability occurrence
of forecasting error of the residual demand is imposed on one hand; and a limit on the generator’s
outage beyond the balancing capacity of the scheduled up/down spinning reserves is imposed on the
other. To satisfy Equation (15), in addition to the hourly power outputs of conventional generating
units and on/off UC status, the system operator can set up four types of hourly decision variables;
which are (1) the traditional up/down spinning reserve, (2) the amount of incentive value, (3) the wind
curtailment levels, and (4) loads provided by incentive-based demand response program.

2.4. Multiobjective UC Problem

Most of the multiobjective UC problems are formulated as an extension of the stochastic UC
problems for the simultaneous realization of more than one objective of system operators. A novel
multipurpose operation planning method for minimizing the prediction error of power generated from
solar PV generators to achieve the optimal reduction of the operating cost and improve the voltage
stability of power systems, simultaneously, was reported in [59]. An optimally scheduled demand
response (DR) program and properly sized storage system are considered as the main parameters
for voltage stability improvement and PV output prediction error minimization. The stochastic
programming algorithm is deemed to provide adequate treatment of the uncertainty of PV output
and coordination of demand response for consumer side management. The multiobjective genetic
algorithm (MOGA) and the neural network toolbox in MATLAB library were used in the research
study. The detailed problem formulation is described below.

2.4.1. Problem Formulation

The operation approach is divided into three parts: the prediction section, the UC section, and the
multi-objective schedule section of the stochastic UC problem. Equation (32) shows the objective
function for minimizing the total operation cost, and a two-stage stochastic programming problem for
UC was implemented as described below:

min OC = ∑
t

[
∑
g

ci(ûgt, P̂gt, r̂gt) + h(D̂rt) + σ(P̂Vcurt
t ) + E[φ(x̂, ω)]

]
. (32)
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2.4.2. Constraint Functions

s.t. ∑
s
(P̂st · ûst) + ˆEssst + ∑

j
Sjt = d f r

st − P̂Vst. (33)

(ûgt, P̂gt, r̂gt) ∈ Qi. (34)

(D̂rt) ∈ D. (35)

( ˆEsst) ∈ E . (36)

0 ≤ P̂Vt ≤ PVmax
t . (37)

P̂Vcurt
t = PVmax

t − P̂Vt. (38)

Physical operations of the generator, such as generator output limits, generator ramp limits,
and minimum up- and down-time constraints, belong to the constraint set Q in Equation (34).
Demand response and energy storage system constraints set are D in Equation (35) and E in
Equation (36). PV output control constraints are determined by Equations (37) and (38).

The second-stage objective function, which consists of the resource cost φ for each scenario ω,
is derived below:

φ(x̂, ω) = min ∑
g

qg(r̃
up
gt (ω), r̃dn

gt (ω)) + v · l̃t(ω) + θ(D̃rt(ω))

+β(P̃Vcurt
t (ω)) + γ( ˜Essup

t (ω), ˜Essdn
t (ω)). (39)

s.t. ∑
k
[ĝkt · ûkt + r̃up

kt (ω)− r̃dn
kt (ω)] + ∑

j
Sjt + ˆEsskt + ˜Essup

kt (ω)− ˜Essdn
kt (ω),

= [d f r
kt + εd

kt]− D̃rkt − l̃kt(ω)− P̃Vkt(ω). (40)

0 ≤ r̃up
it (ω) ≤ bit(ω) · r̂up

it . (41)

0 ≤ r̃dn
it (ω) ≤ (1− bit(ω)) · r̂dn

it . (42)

0 ≤ l̃t(ω) ≤ lmax
t . (43)

0 ≤ D̃rt(ω) ≤ D̂rt. (44)

( ˆEsst, ˜Essup
t

˜Essdn
t ) ∈ E . (45)

0 ≤ P̃Vt(ω) ≤ PVmax
t . (46)

P̃Vcurt
t (ω) = PVmax

t − P̃Vt(ω). (47)



Energies 2020, 13, 158 8 of 21

Equation (40) shows the real time demand and supply balance constraints. Equations (41) and (42)
present the ramp-up and ramp-down of the generator in real time; where εd is the load demand
forecasted error in scenario ω.

2.5. Multiobjective Schedule

The UC state on the prior day and the actual PV power output are used in this multiobjective
method. Equations (48) and (49) are operating costs (OC) of the day and the voltage stability index
(VSI), respectively. In this research, voltage stability is taken into consideration as the second objective
function to improve power system stability. The detail of the voltage stability index (VSI) used in this
work is contained in [60]; it is called the critical boundary index (CBI), which is a direct estimate of the
distance between the current operating point of the power system to the nearest voltage collapse point.
CBI gives a satisfactory result for monitoring the stability of the power system with high penetration
of PV and energy storage facilities.

min F1 = OC. (48)

max F2 = VSI. (49)

3. Overview of Algorithms for Solving UC Problem

There are several research works on deploying suitable optimization algorithms for solving
UC problems; hence, different types of optimization algorithms have been implemented to get
optimal UC solutions. A review of existing literature on the UC problem solution approach depicts
that researchers have investigated various conventional, metaheuristic, and hybrid optimization
algorithms. The major studied conventional methods include the Lagrangian relaxation (LR)
method [61,62], and mixed-integer linear programming (MILP). Nowadays, the LR method is used
along with different algorithms, which can be called hybrid methods for solving different types of
UC problems. LR method and particle swarm optimization (PSO) are implemented to solve the
cost minimization problem, which considered fuel and startup costs in [63]. LR is combined with
a genetic algorithm (GA) to obtain satisfactory results for operational cost minimization UC problem
in [64]. By implementing MILP, many UC problems involving ESSs have been solved with objective
functions such as peak shaving [65], maximizing energy production by reducing curtailment [66],
minimization of cost [67–71], minimization of emissions [72], and so on.

Besides the aforementioned conventional methods, various metaheuristic algorithms like
Tabu search (TS) [73,74], GA [75], simulated annealing (SA) [76], evolutionary programming
(EP) [77], PSO [78], nodal ant colony optimization (NACO) [79], multiagent modeling
(MAM) [80], improved teaching–learning-based algorithm (TLBO) [81], binary fireworks algorithm
(BFWA) [82], imperialist competitive algorithm (ICA) [83], parallel artificial bee colony (PABC) [84],
Benders decomposition (BD) [85], binary fish swarm algorithm [86], binary whale optimization
algorithm (BWOA) [87], and gravitational search algorithm (GSA) [88] have also been implemented
to solve the UC problems. Typically, metaheuristic algorithms for solving UC problems search both
local and global solutions. Some hybrid metaheuristic algorithms have also been efficiently used to
solve UC problems. Hybrid algorithms normally give better optimal results. Some of the efficiently
deployed hybrid metaheuristic algorithms in existing literature are the neural-network-based tabu
search (NBTS) [89], GA and differential evolution (DE) [90], simulated annealing-based (EP) [91],
PSO and EP [92], binary successive approach (BSA) and civilized swarm optimization (CSO) [93], and
binary particle swarm optimization (BPSO) and PSO [94].
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4. ESS with UC Program

ESS can be operated by a system operator, or by an independent owner. Independently owned
ESSs are operated as a vertically integrated facility with the utility, as opposed to that which is
exclusively owned by the utility. From the investors’ point of view, ESSs are to be operated to
maximize their profit, and this captures the objective function of the UC problem. On the other hand,
for vertically integrated ESS facilities, utility minimizes overall operating costs of the power system by
using the ESSs. A comparison between total operating cost reduction with ESS and without ESS by
considering different size UC model is shown in Table 1. ESSs can be operated in a few different ways
as described below:

(a). Energy arbitrage: Buy energy (charge ESS) during the lower price and sell energy (discharge
ESS) during the higher price [95–97].

(b). Reserve provision of ESS: Power shortages or frequency drops within a given period of time
can be compensated by online energy storage, which may work as spinning reserve [98].

(c). Co-optimization with renewable plants: ESS helps to ensure optimal, stable, and profitable
power delivery from a renewable generation like wind and PV by reducing renewable
intermittency [99,100].

(d). Load shifting: ESS contributes to load shifting from peak to off-peak or load smoothing,
which helps to make a profitable UC [100,101].

ESSs technology is not a totally new concept in power systems. The most famous and installed
storage system is the battery energy storage system (BESS); however, pumped hydro storage (PSH) is
becoming a more attractive option due to effective load-leveling attributes in many places. PSHs also
have very good and efficient response time for ramp rate and frequency control of wind turbine [102].
Due to the uncertainty of renewable generations and load demand, utility needs to smooth generated
power by using ESSs and proper energy management. Therefore, utility and independent ESS
owners install various ESS technologies, which include PSH, compressed air energy storage (CAES),
hydrogen storage with the fuel cell, flywheels, super-capacitor, thermal storage, superconducting
magnetic energy storage (SMES), and different BESS technologies.

Table 1. A comparison of total operating cost without energy storage system (ESS) and with ESS [103].

No. of Units
Total Operating Cost Comparative Net OC Benefit

With ESS (WE) Without ESS (WOE) WE-WOE

10 555,908 563,668 −7760
20 1,107,733 1,124,453 −16,720
40 2,213,375 2,246,563 −33,188
60 3,329,062 3,367,153 −38,091
80 4,432,915 4,489,239 −56,324

100 5,531,812 5,608,888 −77,076

As earlier mentioned, ESS has significantly contributed to the reduction of the operation of
fossil-fuel-based TGs by serving as an effective peak shaving mechanism. Typically, ESSs shift the
load demand from peak to off-peak, which helps to achieve better optimal UC. Some of the additional
constraints that are introduced for ESSs scheduling in UC programs are as follows:

(i) State of charge (SOC) for each storage

SOCt
e = SOCt−1,e + Pch

t,e × e f f ch
e −

Pdch

ηdch
e

e ∈ [1, E], t ∈ [1, T]. (50)

(ii) Up/down limits for SOC

SOCmin
e ≤ SOCt,e ≤ SOCmax

e e ∈ [1, E], t ∈ [1, T]. (51)



Energies 2020, 13, 158 10 of 21

(iii) Maximum charge constraint

Pch
t,e ≤ Chmax

e × xch
t,e e ∈ [1, E], t ∈ [1, T]. (52)

(iv) Minimum charge constraint

Pdch
t,e ≤ dchmax

e × xdch
t,e e ∈ [1, E], t ∈ [1, T]. (53)

(v) Discharged power rating constraint

Pdch
t,e ≤ soct−1

e × e f f dch
e × Xdch

t,e e ∈ [1, E], t ∈ [1, T]. (54)

(vi) Disables simultaneous charging and discharging

Xch
t,e + Xdch

t,e ≤ 1 e ∈ [1, E], t ∈ [1, T]. (55)

(vii) Charge ramp-up
Pch

t,e ≤ Pch
e,t−1 + Pcru

t,e × Xch
t,e e ∈ [1, E], t ∈ [1, T]. (56)

(viii) Charge ramp-down

Pch
t,e ≥ Pch

e,t−1 − Pcrd
t,e × Xch

t,e e ∈ [1, E], t ∈ [1, T]. (57)

(ix) Discharge ramp-up

Pdch
t,e ≤ Pdch

e,t−1 + Pdru
t,e × Xdch

t,e e ∈ [1, E], t ∈ [1, T]. (58)

(x) Discharge ramp-down

Pdch
t,e ≥ Pdch

e,t−1 − Pdrd
t,e × Xdch

t,e e ∈ [1, E], t ∈ [1, T]. (59)

In Equation (51), maximum SOC SOCmax and SOCmin is not usually equal to 100% and 0%,
respectively.

An example problem is drawn for understanding the contribution of ESSs in UC model. In this
example, an ESS-rated 138 MW is considered along with 10 TG units. The objective function
considers the minimization of cost, Equation (14), which includes the fuel cost, Equation (2),
and start-up cost, Equation (3). The UC model considers several constraints such as spinning
reserve constraint, Equation (4); OFF and ON time constraints, Equation (5)–(8); initial status of unit,
Equation (9); load demand constraint, Equation (10); TG unit’s power output constraint, Equation (11);
generator ramp up and down constraint, as shown in Equations (12) and (13).

The UC problem considers a 138-MW ESS system with 1192-MWh capacity for leveling
the load demand, and it considers ESSs constraints such as SOC constraint, Equation (50);
maximum, and minimum limits, Equation (51); maximum charge constraint, Equation (52);
minimum charge constraint, Equation (53); discharge power rating, Equation (54); disable
simultaneous charging and discharging, Equation (55); charge ramp-up, Equation (56);
charge ramp-down, Equation (57); discharge ramp-up, Equation (58); and discharge ramp-down,
Equation (59). Figure 1 shows that the UC problem without considering the ESS system involves
turning on all the 10 TG units, as shown in Figure 2, in order to meet the load demand. Figure 3
demonstrates the UC problem after considering ESS, and this results in only 7 TG units being turned
on in order to meet the load demand after load shifting action of the ESS, as seen in Figure 4. It can
be observed that there is a load shifting from the actual load profile due to the penetration of ESS
optimal power output, and the UC outputs are obtained for the shifted load profile. Finally, ESS
optimal power output (charging/discharging) and SOC are shown in Figures 5 and 6, respectively.
This example problem is given only for demonstrating the optimal ESS contribution with the UC
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problem. Several types of research have proven this concept of load-leveling action of ESS in optimal
UC implementation [104]. Most of the modeling used in the above example problem configurations
and the parameters of the considered TG units are taken from Reference [104].

A review of some contributions of ESSs to power system operation considering UC problem is
presented in Table 2.
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Figure 1. Unit commitment without considering ESS.
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Figure 2. Number of thermal generation (TG) units turned on without considering ESS.
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Figure 3. Unit commitment considering ESS.
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Figure 4. Number of TG units turned on considering ESS.
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Table 2. ESS contribution in unit commitment (UC) with references.

References ESS Constraints ESS Type Objective Power System Summary

[105] Equation (51),
Equation (52) Battery

Minimization of
costs: including
fuel cost of
TGs, nuclear
generators, start
up and shut down
cost, and peak
shaving cost.

IEEE RTS-24
bus system,
which includes
10 TGs, two
WTGs, two
nuclear power
plats and two
ESS stations.

Propose research, nuclear power
plants mainly work for peak
shaving, and ESS mitigate the
renewable fluctuations and
makes schedules more flexible
which help the UC program for
reducing the operation of TG
unit and system cost

[106]

Equation (A1),
Equation (A2),
Equation (A3),
Equation (A4),
Equation (A5)

Pumped
storage hydro
(PSH)

Minimization of
scheduling costs
with high wind
penetration

Power system
consists of 16
TG units, 4 PSH
units, and 3
wind turbine
generators
(WTGs)

Constant start-up costs and
ramps of the TG units for
measuring the contribution of
PSH to reduce the scheduling
costs of power system with high
WTG penetration.

[107]

Equation (A1),
Equation (A2),
Equation (A3),
Equation (A4),
Equation (A5),
Equation (A6),
Equation (A7)

Pumped
storage hydro
(PSH)

Minimizing
operational cost
which includes
fuel cost of TGs,
and start-up and
shut-down cost
of both TGs and
PSH units.

IEEE-9 bus
system,
the PEGASE
89-bus system
and the
Shenzhen city
grid including
the 110-kV
network.

Security-constrained UC
program with PSH, which was
able to reduce the fuel costs of
TGs and total operational cost of
the system.

[108]

Equation (50),
Equation (51),
Equation (52),
Equation (53),
Equation (54),
Equation (55),
Equation (56),
Equation (57),
Equation (58),
Equation (59)

PSH,
Compressed
air, Battery
(lead acid and
lithium-ion)

Minimization of
total operational
cost, which
includes fuel
cost, start-up
cost, shut-down
cost, and load
shedding cost

IEEE 24-bus
reliability test
system (RTS)
with three types
of ESSs and
TG units.

ESSs in the proposed
methodology for UC problem
contributed to the leveling of the
load, which help to reduce the
operation time of expensive TGs
units, thus the total operational
cost was reduced.

[109]

Equation (A9),
Equation (A10),
Equation (A11),
Equation (A12),
Equation (A13)

Superconducting
magnetic
energy storage
(SMES)

Minimizing
operational cost,
which includes
fuel cost of TGs
and start-up and
shut-down cost

IEEE ten-unit
test system
with SMES

SMES contributes to level the
load, which leads to peak load
decrease and off-peak load
increase. This reduces the
number of start-up of TGs and
consequently, the usage of fossil
fuel and cost of production
was reduced.

[110]

Equation (A14),
Equation (A15),
Equation (A16),
Equation (A17),
Equation (A18),
Equation (A19),
Equation (A20),
Equation (A21),
Equation (A22),
Equation (A23),
Equation (A24),
Equation (A25)

Hydrogen
storage system
(HSS) [111]

Mainly
minimizing
fuel and start-up
costs of TG units,
cost of HSS in
both generation
and storage mode,
and DR cost

Proposed
model has been
tested on a
6-bus system.
Model consists
of TG units,
WTG, and HSS
considering DR

The proposed research considers
three cases: case 1 does not
consider HSS and DR and
it needs all TG units to be
turned on, case 2 considers
HSS that contributes to leveling
the load and needs only two
units turned on, and case 3
reduces the operation time of
TG unit 3. From case 1 to
case 3, the operation cost was
gradually reduced.

5. Conclusions

This paper has summarized a broad research area that is related to UC modeling with ESSs
integration. Some models and methodologies of UC are drawn from reviewing several recent research
articles. In this review work, some important ESSs-incorporated UC mathematical models with
constraints are clearly elucidated and demonstrated. Additionally, some of the proven algorithms
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found in the existing literature for solving various types of UC problems are reviewed. Moreover,
the various constraints considered for integrating ESSs in the UC model, as obtained from different
research works, are collected and summarized for different types of ESSs. In references, as mentioned
earlier, most of the research work with integrating ESS in the UC model either aim tominimize the cost
or maximize the profit. An illustrative example of the UC problem with and without ESS inclusion is
solved and analyzed using figures to give a better understanding of ESSs contribution to UC modeling
and solution approach. Conclusively, this review article summarizes the contribution of various types
of ESSs in UC with reference to existing works of literature. Mostly, ESSs contribution in the UC model
involves injecting power during the peak period and consuming the surplus power during the off-peak
period; that means ESSs reduce the gap between peak and off-peak periods, which is essential for
achieving optimal UC. Some essential and unique ESSs model constraints for optimal UC are also
stated in Appendix A.
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Appendix A

Appendix A.1. PSH Constraint

PSH constraints are given below:

plt ≤ utt(ps− phmin
t ) t ∈ [1, T]. (A1)

utt + upt ≤ 1. (A2)

yptt ≥
(
utt − upt

)
−
(
ut(t− 1)− up(t− 1)

)
t ∈ [1, T]. (A3)

Vt = v(t− 1) + 3600×
(
upt × qp− utt × qmin

t − rt× plt
)

t ∈ [1, T]. (A4)

v
(
t ∈ [1, T]

)
= v0. (A5)

oms


Zge

t + Zgu
t + 1 ≤ 1 t ∈ [1, T − 1],

Zge
t + Zgu

t + 2 ≤ 1 t ∈ [1, T − 2],

Zgu
t + Zge

t + 1 ≤ 1 t ∈ [1, T − 1],

Zgu
t + Zge

t + 2 ≤ 1 t ∈ [1, T − 2].

(A6)

SRGM

{
0 ≤ Rguu

t ≤ phmax
t − phg

t ,

0 ≤ Rgdd
t ≤ phg

t .
(A7)

SRPM

{
0 ≤ Rguu

t ≤ −phg
t ,

0 ≤ Rgdd
t ≤ phg

t − phmax
t .

(A8)

Appendix A.2. SMES Constraints

(i) Charging/discharging constraint

− SMch
max ≤ SMe

t ≤ −SMdch
min e ∈ [1, E], t ∈ [1, T]. (A9)
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(ii) Storage capacity variation constraint

∆STCe
t


∆t, SMe

t /e f fdch if EMe
t > 0,

0 if EMe
t = 0,

e f fch × ∆t, SMe
t if EMe

t < 0,

e ∈ [1, E], t ∈ [1, T].

(A10)

(iii) Storage capacity of SMES at the end of time

STCe
t = STCe

t−1 − ∆STCe
t e ∈ [1, E], t ∈ [1, T]. (A11)

(iv) Storage capacity constraint

STCe
min ≤ STCe

t ≤ STCe
max e ∈ [1, E], t ∈ [1, T]. (A12)

(v) Capacity balance constraint

STCe
0 = STCe

T e ∈ [1, E], t ∈ [1, T]. (A13)

Appendix A.3. Hydrogen Storage System (HSS)

(i) HS can operate in generation, storage, or idling modes

IH2P
e,t + IP2H

e,t ≤ 1 e ∈ [1, E], t ∈ [1, T]. (A14)

(ii) Generated and stored hydrogen has a maximum and minimum limit

PP2H
e,min IP2H

e,t ≤ PP2H
e,t ≤ PP2H

e,max IP2H
e,t e ∈ [1, E], t ∈ [1, T]. (A15)

PH2P
e,min IH2P

e,t ≤ PH2P
e,t ≤ PH2P

e,max IH2P
e,t e ∈ [1, E], t ∈ [1, T]. (A16)

(iii) HSS in both production and storage modes constraints

Ro,H2P
e,t + RS,H2P

e,t + RRU,H2P
e,t ≤ IH2P

e,t min
{

RUH2P
e , PH2P

e,max − PH2P
e,t

}
. (A17)

RRD,H2P
e,t ≤ IH2P

e,t min
{

RDH2P
e , PH2P

e,t − PH2P
e,min

}
. (A18)

Ro,P2H
e,t + RS,P2H

e,t + RRU,P2H
e,t ≤ IP2H

e,t min
{

RDP2H
e , PP2H

e,t − PP2H
e,min

}
. (A19)

RRD,P2H
e,t ≤ IP2H

e,t min
{

RUP2H
e , PP2H

e,max − PP2H
e,t

}
. (A20)

(iv) Amount of hydrogen stored from each HSS unit e at t time

Ae,t = Ae,t−1ηP2H
e PH2P

e,t −
PH2P

e,t

ηH2P
e

+ Me,t e ∈ [1, E], t ∈ [1, T]. (A21)

(v) HSS minimum and maximum capacity limits

Amin
e ≤ Ae,t ≤ Amax

e e ∈ [1, E], t ∈ [1, T]. (A22)

(vi) HSS initial capacity limits

Ae,o = Ae,in e ∈ [1, E], t ∈ [1, T]. (A23)
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(vii) HSS initial value and final value

Ae,o = Ae,NT e ∈ [1, E], t ∈ [1, T]. (A24)

(viii) HSS supply limit to other production

0 ≤ Me,t ≤ Me,max e ∈ [1, E], t ∈ [1, T]. (A25)
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