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Abstract: This paper presents an analysis of a Total Energy Control System (TECS) introduced
by Lambregts to control unmanned aerial vehicle (UAV) velocity and altitude by using the total
energy distribution. Furthermore, an extended Kalman filter (EKF) approach was used to predict
aircraft response in terms of angular rates and linear acceleration during a test flight campaign.
From both approaches, state equations were obtained to model the aircraft using Matlab-Simulink.
From an aerodynamic study, airplane characteristics were obtained in terms of non-dimensional
derivatives and compared to those obtained from the experimental methods. It was determined that
TECS approach was very accurate; however, disturbance errors could be decreased by adjusting
some model parameters. On the other hand, it was difficult to obtain a real estimation from the EKF
method due to the presence of turbulence during flight and the relatively low inertia of the scale
model. Dynamic characteristics were validated using a low-cost inertial sensor that cab be easily
integrated in UAV platforms. The gathered data can be used to predict model characteristics by
integrating the information into flight simulators for future design development.

Keywords: Total Energy Control System; dynamics of flight; extended Kalman filter

1. Introduction

Present-day unmanned aircraft systems (UASs) play an important role in daily life. These systems
perform functions in aerial photography, surveillance, reconnaissance, search and rescue,
and atmospheric data acquisition, among others. Therefore, to perform a specific mission efficiently
and precisely, systems must be able to adjust proportional, integral and derivative (PID) controllers
through algorithms such as the EKF (extended Kalman filter) and TECS (Total Energy Control System),
which allows determination of aircraft attitude and altitude, longitudinal control, and velocity to
adjust through auto-tuned controllers. The proposed methods can be used for conventional aircraft
designs, which are usually not strongly nonlinear. For systems with higher nonlinearities, another
approach such as the linear parameter varying (LPV) formulation established by Chadli [1,2] should be
used, as it directly includes nonlinearities in Takagi-Sugeno (T-S) fuzzy model problem formulation,
whereas the EKF is a linearization of the Kalman filter (mean and covariance are linearly propagated).

The main purpose of this paper is to establish a methodology that describes how the dynamic model
of an unmanned aerial vehicle (UAV) can be validated to determine the actual control parameters
in order to decrease the required time to tune the on-board controllers. Because the real dynamics
are known, the adjustment time in the design of new aircraft is reduced. One UAV model, the SIG
KADET shown in Figure 1, was used as a test platform. This is a fixed-wing aircraft with a Pixhawk
open-source autopilot and ArduPilot flight controller version 3.3.
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The extended Kalman filter is an adaptation of the Kalman filter used to accommodate nonlinear
systems. The Kalman filter as well as the EKF are minimum variance filters that use the maximum
likelihood principle to deal with uncertainties. However, an interesting topic for further studies is
to combine it with the unknown input observer presented in [3] to lower uncertainties and stabilize
locally Lipschitz nonlinear systems under input saturation and quantization. System responses can
be seen as unmodelled effects; thus, they are like math model uncertainty and so it is possible to
apply other techniques for that issue (e.g., unknown input observer) [4]. The Kalman filter approach
is used in many applications including target tracking, mobile robot localization, and mapping [5,6].
The EKF is frequently used to estimate nonlinear systems, particularly for the attitude estimation of
rigid bodies like UAVs. This tool returns quaternion approximations based on the inputs of inertial
navigation systems (INSs), as shown in Figure 2, meaning that the EKF is an algorithm used to estimate
body position as well as linear and angular velocities using three-axis accelerometers and gyroscopes,
magnetic compass, Global Positioning System (GPS), and pressure sensors to determine airspeed and
pressure altitude. This allows information describing the system dynamics to be obtained. An EKF
is used to fuse the sensor measurements for attitude estimation. However, system measurements
from gyroscope and accelerometer sensors can be corrupted with Gaussian noise [7] and by wind
disturbances acting on the aircraft. Wind disturbances are not often recorded, so the model response
to these perturbations cannot be predicted [8]. The EKF fuses all available measurements to reject
errors from gathered data so that the vehicle will be less susceptible to individual sensor faults and
the platforms will be more reliable. Furthermore, the EKF algorithm is able to estimate deviations
in the magnetic compass readings and it can estimate the Earth’s magnetic field. This makes the
control system less sensitive to errors during the compass calibration procedure than the current
complementary filter algorithms [9]. The standard EKF works by predicting the mean of the state
of the system using the equations for dynamics. Then, the algorithm updates the measurement [10].
Open source controllers such as the ArduPilot 3.3 use the EKF as the primary attitude and position
estimation source. The flight controller has two IMUs (inertial measurement units) available, which run
in parallel. Modern and faster processors such as the Pixhawk have allowed the implementation of
more complex mathematical algorithms to estimate the position, velocity, and orientation of UAVs.

Figure 1. (left) SIG Kadet Senior Model Airplane (right) SIG Kadet Senior Model Airplane in flight.

Figure 2. Control system and sensors used in the Kadet Senior UAV.
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Another algorithm that is important to adjust PID controllers is TECS (Total Energy Control
System). It is a new control approach focused on longitudinal flight path and speed control; in others
words, it is a way to overcome the limitations of SISO (single-input single-output) flight controllers.
It was first discussed by A. A. Lambregts in 1983 [11,12]. NASA sponsored Lambregts research for
the development of improved concepts. As a result, a new architecture was created based on two
subsystems—the flight management computer (FMC) and the flight control computer (FCC) [13,14].
TECS was chosen for its ability to decouple altitude and speed responses, without the need to
employ a more accurate model of the aircraft. For maneuvers such as landing, this decoupling is
important because in this maneuver the aircraft must control the longitudinal position while avoiding
perturbations in altitude [15]. TECS uses a MIMO (multiple-input multiple-output) control algorithm
to provide operational and performance strength in the most complete way in all operational modes
and flight conditions. It works by managing the amount of energy, and the result is an energy-efficient
operation structure that overcomes most problems concerning autopilot and auto-throttle based on
the desired velocity and elevator deflection—important tasks for performing activities such as aerial
photography and atmospheric data acquisition [16]. The control responses for elevator and thrust
inputs are roughly orthogonal. Therefore, when altitude and speed are coupled, a change in thrust
will affect both airspeed and altitude, while an elevator command will result in altitude and speed
modification [17]. TECS refers to a new control algorithm that manages the demand for pitch angle and
regulates the control of aircraft height and speed. The physics that incorporates the operation of the
TECS is simple, but it is necessary to know two types of mechanical energy: the gravitational potential
energy (Ep) and kinetic energy (Ek). Furthermore, mass (m), gravity (g), height (h), and aircraft velocity
(v) are the most important parameters for the accurate estimation of mechanical energy, as shown in
Equations (1) and (2):

EP = mgh, (1)

EK =
1
2

mv2. (2)

Gravitational potential energy is the energy stored in an object due to its height, and it is
proportional to the height and mass of the object. Kinetic energy is the energy stored in an object
due to its velocity, and is proportional to the velocity and mass of the object. The total energy of the
aircraft is the sum of potential and kinetic energies. The total energy is continuously reduced due to
the drag force acting on the aircraft, and thus the height and speed are maintained only by the thrust
force through the motor. TECS calculates the total energy required based on the demanded speed and
height, and adjusts the throttle to maintain the total energy at the required value. The TECS algorithm
is used to ensure the correct balance between gravitational potential energy and kinetic energy by
adjusting the required pitch angle (θ). By lowering the nose (pitch down), energy is transferred from
gravitational potential to kinetic energy or vice versa. The TECS principle assumes that elevator
deflection and propulsion systems do not influence the total energy of the airplane. Besides, lift and
side force are perpendicular to the velocity vector, and therefore there is no contribution to energy,
and rotational kinetic energy is neglected [10]. Total energy (ET) of the aircraft can be expressed using
the following expression, where (h) is the current aircraft height and (h0) is the reference height:

ET =
1
2

mV2 + mg(h− h0). (3)

In addition to EKF and TECS, auto-tuned PID should be introduced in order to have a well-calibrated
airplane. First, roll, pitch, and yaw parameters in tuning the airplane are crucial for stable and steady
flight. This is achieved from flight tests. Manual flight parameters adjustment is performed during
this stage. Then, auto-tune mode is set in the flight controller as a flight mode that flies the airplane
with assisted stabilized movements. Simple transfer functions are implemented, but changes in flight
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attitude input result in the calibration of values for roll, pitch, and yaw parameters. In other words,
the airplane learns to fly based on external pilot behavior. Therefore, the pilot uses a transmitter
mode switch to switch from auto-tune mode to manual while they are “learning” how the aircraft
responds to input commands. Furthermore, to begin with the experimentation to validate EKF and
TECS algorithms, through the auto-tune PID method, it is necessary to determine amount of tests and
variables through experimental methods such as simple comparison, one-factor analysis of variance,
random blocks, Latin squares, or factorial design. To deal with parametric uncertainties and faults
it is possible to define a bounded ellipsoidal region representing, for example, modeling errors by
taking constraints into account when designing the controller [18,19]; however, this approach was
not used in the present study. To perform validation, an experimental 2k method was chosen, due to
the measurement of k factors along the process and its interaction. From this method, the desired
information can be obtained with the fewest tests due to operational constraints [20]. For this process,
three factors that could affect flight tests were chosen such as outside air temperature, pressure and
wind speed vector. Flight tests were performed in Bogota, located in the tropical high-altitude plains of
the Colombian Andes. The test zone had the coordinates 4.7110◦ N, 74.0721◦ W. It is located in a tropical
zone where there are no seasons. Nevertheless, there is an eight-month rainy season with clouds and
high wind speed [21]. Hence, the use of 2k method output parameters such as attitude (pitch, roll,
and yaw), height, airspeed, rate of climb, and throttle is discussed in this article using a telemetry link
(MavLink) and a dataflash log to record and send data in real time to a GCS (ground control station).
Finally, data such as stability derivatives and the aircraft dynamic model are presented in order to
determine the transfer functions. The Aerosim R© model is then used with a hardware-in-the-loop
(HIL) simulation interface that replaces the plane and the environment with a simulator. Meanwhile,
the hardware was configured exactly for flight tests connected to GCS with the simulator, rather than
the aircraft. This was performed to validate flight test results and compare them to theoretical and
simulated estimates.

2. Total Energy Control System (TECS)

The aim of TECS design is to calculate the total energy state and desired state of an aircraft.
Thrust inputs control the total energy error and elevator inputs control the energy distribution error.
Therefore, it is important to derive the energy equations of an aircraft, especially for the total specific
energy rate error and the specific energy rate distribution error [11]. Then, the aircraft distribution
energy model can be derived from motion and energy equations.

Aircraft Energy Equations

The derivation of energy equations is based on Lambregts [22]. The total energy of an aircraft can
be expressed as the sum of the potential energy and kinetic energy, as seen in Equation (3). Assuming
constant weight, Equation (3) can be rewritten as:

ET = mg
(

1
2

V2

g
+ h
)

. (4)

Using the small-disturbance theory, the energy of aircraft is linearized at steady flight conditions as:

ET0 + ∆ET = mg
(

1
2
(V0 + ∆V)2

g
+ (h0 + ∆h)

)
, (5)

where V0 is trimmed airspeed, ET0 is the initial total energy, ∆ET is the change in the total energy, ∆h is
the change in the flight altitude. Furthermore, it is assumed that the change in the speed ∆V2 = 0.
Deriving Equation (5) with respect to time:
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d
dt
(ET0 + ∆ET) = mg

d
dt

[
1
2

(
V2

0
g

+
2V0∆V

g

)
+ (h0 + ∆h)

]
, (6)

∆Ė = mg
(

V0∆V̇
g

+ ∆ḣ
)

. (7)

Dividing by the trimmed airspeed V0 yields:

∆Ė
V0

= mg
(

∆V̇
g

+ ∆γ

)
, (8)

where γ is the flight path angle (FPA), which can be expressed in terms of perturbations in pitch
attitude θ and incidence α as follows [23]:

γ = θ − α. (9)

Pitch angle is obtained from IMU readings. Both flight and vertical velocity are determined
from airspeed sensors to compute the angle of attack. Applying Equation (9), γ can be computed.
Hence, airspeed value and the rate of change of aircraft energy are dependent only upon the change
of longitudinal acceleration, ∆V̇ and the change of flight path angle, ∆γ [22]. Propeller thrust force
allows determination of the total energy, which can be derived from the aircraft longitudinal equation
of motion, as shown below:

m∆V̇ = ∆T − ∆D−mg sin ∆γ, (10)

where ∆D is the change in drag force. The aircraft point-mass model is commonly used in energy-based
methods [24].

Assuming that ∆γ is small, then sin ∆γ = ∆γ; therefore

mg
(

∆γ +
∆V̇
g

)
= ∆T − ∆D. (11)

Thus, the aircraft rate of change of energy is proportional to the difference between thrust T and
drag D [11]. Rewriting Equation (11), the thrust changes as:

∆T = mg
(

∆γ +
∆V̇
g

)
+ ∆D =

∆Ės

V0
mg + ∆D, (12)

where ∆Ės is the total specific energy rate. Assuming that the change in drag force is negligible during
the steady flight condition, the change of thrust is proportional to the sum of change of longitudinal
acceleration and change of flight path angle [11]:

∆T ∝
(

∆γ +
∆V̇
g

)
. (13)

Thus, if the drag variation is low, Equations (12) and (13) show that the thrust required is proportional
to the specific energy rate of the system. Alternately, it can be stated as the rate at which energy should
be delivered to the system. In response to speed or flight path changes, a control law can be developed
that uses throttle to drive the total energy rate error to zero [13,25].

δTC =

(
KTP +

KTI
s

)
ĖSE

V
, (14)

where KTP and KTI are the throttle proportional and integral gains, respectively, δTC is the change
in throttle command, ĖSE is the total specific energy rate error, and s is Laplace operator. Moreover,
ĖSE /V is:
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ĖSE

V
= γ +

V̇E
g

. (15)

This control law uses proportional and integral gains to reduce the total energy error to zero with
a first-order time constant, τ = KTP/KTI [22]. Correction of the energy rate distribution error can be
done by feeding back the difference of the acceleration error term V̇E/g and the flight path angle error
γE [25]. Using proportional plus integral control, the elevator control is:

δEC =

(
KEP +

KEI
s

)(
V̇E
g
− γE

)
, (16)

where KEP and KEI are elevator proportional and integral gains respectively, δEC is the change in
elevator command, and V̇E is the rate of change of airspeed error. Equations (14) and (16) form the
TECS core algorithm, as shown in Figure 3, and are based on the natural control behavior of the
airplane and its control surfaces.

Figure 3. Total Energy Control System (TECS) core algorithm.

3. Extended Kalman Filter Description

Another approach would be to use the extended Kalman filter to estimate aircraft attitude.
Results are compared with those obtained from the energies-based approach. Assume a nonlinear
discrete-time system where xk is a m× 1 vector, yk is a n× 1 vector, and f (xk−1, uk) and g(xk) are
nonlinear functions. This system can be modeled as follows [26]:

xk = f (xk−1, uk) + wk, (17)

yk = g(xk) + vk. (18)

Equation (17) is called the propagation equation and Equation (18) is called the
measurement equation.

3.1. Quaternion-Based EKF

This approach is very important in problems of flight attitude estimation, and has been used by
the UAV developers due to its simplicity. The state variables are the unit quaternion (q) and the gyro
biases (bp, bq, br). Besides, measurements of the system are accelerations (ax, ay, az), and yaw angle (ψ)
is taken from the magnetometer [27], as shown in Equations (19)–(21):
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q̇ =
1
2



0 − p̂ −q̂ −r̂ 0 0 0
p̂ 0 r̂ −q̂ 0 0 0
q̂ −r̂ 0 p 0 0 0
r̂ q̂ − p̂ 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


q + wk, (19)

q =



q0

q1

q2

q3

bp

bq

br


,

 p̂
q̂
r̂

 =

p
q
r

−
bp

bq

br

 , (20)


ax

ay

az

Ψ

 =


2g(q1q3 − q0q2)

2g(q2q3 + q0q1)

g(q2
0 − q2

1 − q2
2 + q2

3)

tan−1 2(q1q2 + q3q0)

q2
0 + q2

1 − q2
2 − q2

3

+ νk. (21)

3.2. Euler-Angles-Based EKF

Aircraft attitude can be estimated using the following equations where the vector x is the system
state (pitch and roll angles) and the vector ŷ is the output (representing accelerometer readings):

x =

[
ψ

θ

]
, ŷ =

ax

ay

az

 . (22)

The random variables wk and vk represent the process and measurement noise, respectively. They are
assumed to be independent. For this study, measurement noise was calculated from the accelerometer
accuracy, which is represented using a standard deviation of measured value from true values during
the calibration. Process noise and measurement noise covariance matrices in state estimation used for
flight tests were selected by having a diagonal matrix in which elements are inversely proportional to
sensors’ accuracy. Vectors ẋ and ŷ are defined as follows:

ẋ =

[
p + q sin φ tan θ + r cos φ tan θ

q cos θ − r sin φ

]
+ wk, (23)

ŷ =

 u̇− rv + qw− g sin θ

v̇ + ru− pw− g cos θ sin φ

ẇ− qu + pv− g cos θ cos φ

+ νk. (24)

For small fixed-wing airplanes, where the three axes velocities (u, v, w) are not easily measurable,
the air speed (Va) can be used to simplify the measurement equation (ŷ). Some assumptions can be
made—for example, the aircraft does not change its velocity. So, (u̇ = v̇ = ẇ = 0), it does not have
sideslip velocity (v = 0), u = Va cos θ, and w = Va sin θ [27].

ŷ =

 qVa sin θ + g sin θ

rVa cos θ − pVa sin θ − g cos θ sin φ

−qVa cos θ − g cos θ cos φ

+ νk. (25)
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The EKF algorithm estimates 18 states with the equations derived, as follows [9]:

Initial computation (algorithm):

1. Navigation EKF controller using a local (north, east, down (NED)) Earth frame;
2. XYZ body fixed frame;
3. Sequential position and velocity measurements;
4. True airspeed;
5. Magnetic flux measurement;
6. 18-state architecture;
7. IMU data;
8. IMU angles and velocities are recorded with specified sample time.

State vector:

1. Quaternions (q0, q1, q2, q3);
2. Velocity—m/s (NED);
3. Position—m (NED);
4. Delta Angles bias—rad;
5. Delta Velocities bias—m/s);
6. Wind Vector—m/s (NE);
7. Earth Magnetic Field—milligauss (NED)
8. Body Magnetic Field —milligauss (X,Y,Z).

Observations:

1. Velocity—m/s;
2. Position—m;
3. TAS—m/s;
4. XYZ magnetic flux—milligauss;
5. XY line of sight angular rate measurements from a downwards-looking optical flow sensor range

to terrain measurements.

Time-varying parameters:

1. Delta angle measurements in body axes—rad;
2. Delta velocity measurements in body axes—m/s.

As shown in the algorithm, angular positions are calculated using angular rates, accelerations
are transformed from (X,Y,Z) to Earth NED axes and corrected, while velocity is calculated using
accelerations and position is calculated with velocity. Other states are considered, such as gyro
biases, vertical acceleration, accelerometer bias, wind vector, compass biases, and the magnetic
field. Hence, gyro and accelerometer noise are used to estimate error in calculated angles, velocities,
and position. Error can be considerably high if corrections are not made. These estimated errors are
captured in the state covariance matrix [9].The extended Kalman filter uses the correlations of errors
and states to correct the measured states. In addition, GPS is able to correct errors in velocity, position,
gyro bias, and angles.

4. Airplane Dynamic Model

To create the equations of motion, it is necessary to consider the UAV as a rigid body and consider
the influence of mass and the moment of inertia. Aerodynamic damping effects are also considered,
neglecting aeroelasticity effects. Study of the dynamic stability, control, and response of an aircraft
implies the consideration of some assumptions established by Bryan [28]. It must be considered that
the aerodynamic forces and moments depend only on the instantaneous values of the motion variables
in the three aircraft axes. Aerodynamic forces and moments vary linearly with the motion variables.
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Therefore, the equations are nonlinear and are united in a single set [29]; this is why an analytical
solution is difficult to obtain. Therefore, it is assumed that the movement followed after a disturbance
is characterized by small amplitudes in all disturbed variables [30]. On the other hand, the aircraft has
a vertical plane of symmetry and it is possible to linearize and separate the equations of motion into
two groups—longitudinal motion lateral directional motion. For the formulation of the flight dynamics
of an aircraft, it is necessary to consider different coordinate systems in such a way that the position,
velocity, forces, and moments acting on the aerial vehicle can be specified. The coordinate systems are
as follows: inertial axis system, fixed axle system to ground, navigation system, and system of body
axes [31].

xlon =
[
u w q θ

]T
, ẋlon = Alonxlon + Blonδelev. (26)

First, longitudinal dynamics is decoupled and analyzed taking into account the state equation where:

Alon =


Xu Xw Xq −We −g cos θe

Zu Zw Zq + Ue −g sin θe

Mu Mw Mq 0
0 0 1 0

 , Blon =


Xδelev

Zδelev

Mδelev

0

 . (27)

Matrices Alon and Blon represent state constants, where Ue and θe represent the trim condition.
The linearized acceleration measurements are given by:

ax = u̇ + qWe + g cos θeθ + g sin θe, az = ẇ− qUe + g sin θeθ − g cos θe. (28)

Likewise, lateral direction is coupled between roll and yaw conditions, so the state equation and
acceleration are given by:

xlat =
[
v p r φ ψ

]T
, Mlat ẋlat = A′latxlat + B′lat

[
δail
δrud

]
, (29)

Mlat =


1 0 0 0 0
0 1 −Ixz/Ixx 0 0
0 −Ixz/Izz 1 0 0
0 0 0 1 0
0 0 0 0 1

 , A′lat =


Yv Yp −We Yr −Ue g cos θe 0
Lv Lp Lr 0 0
Nv Np Nr 0 0
0 1 tan θe 0 0
0 0 sec θe 0 0

 ,

B′lat =


Yδail Yδrud

Lδail Lδrud

Nδail Nδrud

0 0
0 0

 ,

(30)

ay = v̇− pWe + rUe − g cos θeφ. (31)

Longitudinal and lateral-directional control and stability derivatives, velocity, and equilibrium
terms were obtained using XFLR5. The angular rate stability derivatives were taken from values
estimated from gathered flight data. The explicit values of aircraft stability (Alon and A′lat) and control
(Blon and B′lat) parameters are shown in Equations (32) and (33). They were defined according to [23].
Along with the tested UAV mass, the longitudinal and lateral-directional baseline model is given by:
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Alon =


−0.43 0.65 −0.38 −9.81
−0.48 −6.81 13.32 −0.10
0.19 −7.24 −37.23 0

0 0 1 0

 , Blon =


−0.43
−3.13
−96.32

0

 , (32)

Mlat =


1 0 0 0 0
0 1 −0.143 0 0
0 −0.001 1 0 0
0 0 0 1 0
0 0 0 0 1

 , A′lat =


−1.35 0.63 −17.5 9.81 0
−1.13 −11.41 23.71 0 0
0.33 −0.13 −6.14 0 0

0 1 0.001 0 0
0 0 1 0 0

 ,

B′lat =


0 5.2
−45.1 17.3
−7.01 −16.5

0 0
0 0

 .

(33)

Longitudinal and lateral-directional dynamics are computed from an eigenvalue of the system
state matrix and presented in Table 1.

Table 1. Starting point longitudinal lateral-directional dynamics.

Mode Natural Frequency, rad/s Damping Ratioor Time Constant, s

Phugoid 0.3671 rad/s 0.6142
Short period subsidence mode 1 0.0297 s -
Short period subsidence mode 2 0.0963 s -

Spiral 20.8768 s -
Dutch roll 4.0796 rad/s 0.9796

Roll 0.0913 s -

5. Experimental Arrangement

The physical properties of the Kadet Senior UAV system, as well as its hardware and sensor setup
are presented in this section. Two test platforms were used to obtain attitude and navigation data,
Kadet K1 and Kadet K2, shown in Figure 4. K1 was used to determine pitch, roll, and yaw responses
using manual mode to get initial data. K1 is a trainer model that uses an ArduPilot Mega APM 2,
which includes one IMU with a barometer, magnetometer, 4 MB dataflash, a GPS uBlox NEO6, a 6 DoF
Accelerometer/Gyro MPU-6000 using Atmel’s ATMEGA2560 and ATMEGA32U-2 chips for processing.
On the other hand, the K2 UAV was equipped with 3D Robotics Pixhawk autopilot. Both airplanes
had a 1300-W brushless motor powered by two 25-V lithium polymer batteries. The payload bay for
sensors weighed 800 g to reach a maximum endurance of 15 min at 2600 m above sea level, where flight
test were performed. The operation was performed from a ground control station using Mission
Planner software, allowing the monitoring of UAV flight data in real time.

K1 and K2 models were 1645 mm long and 2045 mm span, weighed 4950 g (without payload),
and had 76.1 dm2 of wing area with an average wing load of 65 g/dm2. The power systems consisted
of one brushless DC electric motor driving a 14× 7 in propeller, delivering about 1.4 kg of thrust.
Stall speed was 9 m/s and maximum airspeed was 35 m/s.

The K2 UAV Was a conventional fixed-wing airframe with high wing configuration. Two ailerons,
one rudder, and one elevator were used as control surfaces. In addition, control surfaces were actuated
by Hitec R© electric servos providing a maximum ailerons deflection of 35 deg, maximum rudder
deflection of 25 deg, and maximum elevator deflection of 20 deg. The properties of the airframe are
shown in Table 2, and the moments of inertia were calculated using XFLR5, as shown in Figure 5 [32].



Energies 2020, 13, 14 11 of 18

Figure 4. Test platforms (left) K1 (blue) (right) K2 (red).

Table 2. Kadet UAV physical properties.

Property Value Unit

Mass m 4.95 kg
Wing span b 2.045 m

Mean aerodynamic chord c̄ 0.38 m
Wing area S 0.76 m2

Moment of inertia Ixx 0.3175 kg m2

Moment of inertia Iyy 0.3493 kg m2

Moment of inertia Izz 0.5931 kg m2

Moment of inertia Ixz 0.002593 kg m2

K2 aircraft was instrumented with a redundant IMU that measured angular rates and translational
accelerations. Pixhawk provided actuator commands at 30 Hz, IMU data were recorded at 25 Hz,
and the telemetry link sent 3.56 data parameters per second. Flight tests were limited to line-of-sight
due to Colombian Civil Aviation Regulations. In addition, the pilot performed takeoff and landing
maneuvers. Tests were performed in cruise regime with 60% throttle and 15 m/s desired airspeed.

Figure 5. XFLR5 aerodynamic and stability analysis.
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6. Flight Experiment and Initial Tuning

In this section flight test planning and initial tuning methods are presented to create the
conditions for the experimental validation divided into three segments (takeoff, cruise for experiments,
and landing) [33]. All conditions are described in cruise and small disturbances for climb, descent,
and coordinated turns to validate both EKF and TECS algorithms.

Flight Test

For this case, the study was focused on a typical flight dynamics test pattern [16], whereby the
system or process corresponds to each of the flight stages to be evaluated, in order to enhance some
analysis or simply to evaluate how far the actual behavior of the aircraft is compared to the predictions
obtained from theoretical models. A diagram with the system is shown in Figure 6.

According to Figure 6, prior to designing a flight plan that allows the aircraft dynamic information
to be acquired accurately, it is important to determine inputs and outputs from the experiment.
In addition, controllable and uncontrollable factors must be considered to determine the possible
sources of error that may affect the output variables. The aim of the study was to analyze the critical
dynamic parameters during cruise, climb and descent. Thus, variables that needed to be analyzed
were selected and a flight plan focused on their measurement was generated in certain periods of time.
The experiment airfield was first selected, as described in Table 3.

Figure 6. Factors involved during the experiment.

Table 3. Experimental location parameters.

Parameter Value

Airfield location Bogota, Colombia
Runway altitude 2570 m a.s.l
Runway length 300 m
Runway width 30 m

Latitude/Longitude 4.8240903 deg/−74.1560519 deg
Runway heading 314◦–134◦

During test flights, information related to the variables listed in Table 4 was recorded, filtered,
and analyzed to evaluate parameters’ change with respect to time and flight stage.
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Table 4. Parameters measured in-flight.

Parameter Symbol Unit

Time t s
Relative altitude h m

Airspeed Va m/s
Ground speed Vg m/s

Wind speed Vw m/s
Wind direction B deg
Vertical speed Vν m/s

Battery remaining BR %
Battery voltage VB V

Roll angle φ deg
Yaw angle psi deg
Pitch angle θ deg

Roll rate p deg/s
Yaw rate r deg/s
Pitch rate q deg/s

Throttle position TP %
Elevator servo PWM ms

Mission Planner software was used to create the flight plan from specified waypoints along with
some pre-established commands such as loiter, climb, or descend to return to home. Figure 7 shows the
proposed flight pattern which was intended to evaluate the aircraft behavior during the climb, cruise,
and descent phases. It was proposed to run several repetitions (at least eight) of the pattern for each
phase at three different heights, in intervals of 100 m, and to indirectly modify other non-controllable
variables such as pressure, temperature, and wind direction.

Figure 7. Experimental flight path (left) during ascent (right) during descent.

Experiments were performed in three paths defined at three different heights. Therefore,
taking advantage of the variation of heights between each cruise phase, we proposed to evaluate three
climbs and three descents for the TECS algorithm. Also, it was defined based on evaluation through
a spiral loiter with constant radius, unlike the other two ascents that were made in a straight line
for the EKF algorithm. Similarly, for descent, the first two flight lines were set in straight trajectories
and the last descent was conditioned to the command Return to Launch (RTL), which must take the
aircraft back to 100 m from a height of 300 m to switch to manual mode for landing. On the other
hand, the runway selected for tests usually presents winds in the heading of 314 deg. For this reason,
a standard heading for all heights was selected for the cruising stages, which was rectangular in shape
with 500 m in the direction of 314 deg, to avoid cross-winds during the experiment, and had paths of
350 m perpendicular to the runway to evaluate the parameters under small disturbance conditions
caused by lateral winds. The characteristics of the cruise pattern, climb, and descent are detailed in
Figure 8.
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Figure 8. Top view of cruise pattern.

Flight tests were performed using trainer Kadet K1. Auto-tune mode was then used to setup the
aircraft’s initial PID values. Then, the auto-tune level parameter from ArduPilot controller was defined;
it controls how the tune is performed. The default level is 6, which produces a medium tune, but we
selected level 7, which tunes under faster attitude changes. The manual radio control HiTec Aurora R©

was calibrated because it only works for full control movements of pilot sticks. Manual tuning can
result in better performance, but it takes more time and effort. Figure 9 shows an example of a
2-min session.

Figure 9. Kadet K1, auto-tune session example.

Auto-tune uses a message called ATRP. The first value is for roll tuning, and for pitch tuning,
as follows:

1. ATRP.P is the controller P gain.
2. ATRP.Achieved is what the aircraft achieved in attitude change rate.
3. ATRP.Demanded is the demanded rate of attitude changes (roll rate or pitch rate) deg/s.

It can be seen in Figure 9 that the tune change with the demanded and achieved attitude
change started to converge [34,35]. A loop was generated until the airplane responded in the most
efficient way.
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7. Telemetry Analysis and Results

In this section, results validating the theory of TECS and EKF algorithms through flight tests
are presented. An 80-s flight path was selected for presentation purposes during different stages of
the profile mission. Figure 10 shows TECS validation using airspeed, throttle position, pitch angle,
and relative altitude. The TECS algorithm presented a 12.3% pitch, 5.5% airspeed, and 11.1% relative
altitude error when compared with the real model. From these results it can be established that algorithm
is very accurate and some variables needed to be taken into account to reduce disturbances errors.

On the other hand, the EKF algorithm was validated using equations of motion and system state
variables. It was very difficult to make a real estimation due to changes of angular positions and rates
due to wind and turbulence disturbances, taken into account and filtered by data extractions.

Figure 10. TECS validation (left) airspeed and throttle (right) pitch and relative altitude.

Figure 11 shows that the model precisely predicted the aircraft’s response. Therefore, the EKF
algorithm matched closely; it had an error of 9.5% on average. Besides, the longitudinal and
lateral-directional dynamics were decoupled due to elevator responses. The yaw rate response showed
discrepancy from the models, due to the use of the L1 controller for navigation between waypoints
that are out of range of this research. Regarding the XFLR5 simulation, an average error of 12.3% ws
observed between results and flight tests data from the experiment arrangement discussed in Section 6.

Figure 11. EKF validation (left) roll and yaw (right) pitch.

Using TECS as a potential and kinetic energy controller is the first step to implement the EKF for
applications to estimate vehicle position, velocity, and angular orientation based on rate gyroscopes,
accelerometers, compass, GPS, and airspeed and barometric pressure sensors. All these parameters
need to be accurately obtained to control and guide unmanned aerial vehicles used in civil and military
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platforms. Due to TECS and EKF implementation during the flight campaign, the air vehicles were
less susceptible to factors that could affect system performance and reliability.

8. Conclusions

A validation using flight tests and theoretical approaches of TECS and EKF algorithms was
developed to model the dynamics and control of fixed-wing UAVs. Aircraft dynamics and control
were analyzed in the time domain by adjusting nonlinear models to estimate time responses. From the
results, it is evident that longitudinal stability increased if the center of gravity was in a forward
position, within the allowed ranges. Due to disturbances by wind gusts during the experiment, it was
difficult for the aircraft to fly straight and level, which influenced the results, because most of the time
it did not maintain the 2 degrees of incidence. However, the reached value was maintained within
an acceptable range. Due to air disturbances, the aircraft could not maintain constant height during
cruise, but due to the corrections of the elevator it was kept oscillating within a range of 4 m. Because
the aircraft took a long time to stabilize during turns, it is recommended to increase the length of
the flight pattern for a more effective sampling. The main advantage of this paper is that it shows
the successful validation of aircraft dynamics and control using flight data from a single low-cost
inertial sensor. Analysis could not be performed in real time because data needed to be downloaded,
filtered, and analyzed after each flight. Furthermore, sensors’ sampling frequencies were corrected to
compare data at the same frequency. Future studies must be conducted using more accurate IMUs
which guarantee same amount of gathered data from each sensor on board. In summary, the procedure
can be applied to obtain models that are useful in control applications for aircraft equipped with
low-cost sensors.
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