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Abstract: Compared with conventional hydropower units, the pumped storage unit has the
characteristics of diverse working conditions and frequent switching. Therefore, the stability and
regulation quality of the primary frequency modulation transition process of the regulating system is
very important. Due to the “S” characteristics of the pumped storage unit (PSU), the pumped storage
unit regulating system has a strong nonlinearity, and the conventional proportional-integral-derivative
(PID) controller cannot provide high-quality control under low water head conditions. In this paper,
the nonlinear PSU model with an elastic water hammer effect is studied, and the fuzzy fractional-order
PID (FFOPID) controller is designed to improve the stability of the system. The membership function
and the control parameters of the fractional-order PID are optimized based on the multi-objective
gravitational search algorithm (MOGSA). The experimental results show that the optimized design of
the FFOPID controller has better control quality than the traditional PID controller, the fractional-order
PID (FOPID) controller, and the fuzzy PID controller (FPID) when the system is disturbed by the
rotating speed under low water head.

Keywords: fuzzy fractional-order PID controller; pumped storage unit regulating system;
multi-objective gravitational search algorithm; primary frequency modulation; low water head

1. Introduction

With the constant cost of traditional energy sources and the increasing pollution of the environment,
the use of renewable energy has received extensive attention. Due to the simple adjustment process,
fast adjustment speed, and economy of the pumped storage unit (PSU), it mainly undertakes the task
of peaking and frequency modulation in the power system [1,2]. In recent years, with the formation
of regional power grids, equipment fault diagnosis and the primary frequency modulation of the
pumped storage unit regulating system has played a vital role in the safe and stable operation of the
power system [3–6]. In previous primary frequency modulation studies, the modeling of PSU usually
adopts the simplified linear model and the water diversion system model is based on the rigid water
hammer theory [7,8]. However, the model of PSU is a complex nonlinear system [9]. In addition,
the impact of elastic water hammer on pipeline must be considered for the pumped storage unit
regulating system with a long water diversion system [10]. Therefore, it is necessary to establish a
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nonlinear pumped storage unit regulating system model to obtain the transient characteristic curves
under primary frequency modulation.

Moreover, when the pumped storage unit regulating system performs a frequency modulation
under low water head conditions, the unit speed of PSU will be relatively large, and it is easy to enter
the anti-pump area in the “S” area, which will lead to low-frequency oscillation [11–13]. As pumped
storage units play an increasingly important role in grid frequency modulation, it is essential to propose
a new type of controller to replace the traditional proportional-integral-derivative (PID) controller.
Hence, this paper proposes a fuzzy fractional-order PID (FFOPID) controller for the pumped storage
unit regulating system. Compared with the traditional integer-order PID controller, the fractional-order
PID (FOPID) controller, the fuzzy logic control has proven to be a successful control method for many
complex nonlinear systems, and even non-analytical systems [14–18]. In [14], Li et al. designed a fuzzy
PID controller for a nonlinear hydraulic turbine governing system. In [15], Mohanty et al. presented a
comprehensive analytical study of a fuzzy proportional–integral–derivative controller with a derivative
filter for automatic generation control in the multi-area power system. In [16], Sahu et al. proposed a
fuzzy PID controller for power systems based on the LUS–TLBO algorithm. In [17], Xu et al. studied an
adaptive controller based on fuzzy theory for the pumped storage unit. In [18], Wang et al. represented
a linear CARMA model for nonlinear systems with the help of the Takagi–Sugeno fuzzy linearization
theory. Furthermore, in many cases, the FFOPID controller has been proposed as an alternative to
traditional control techniques. Zamani et al. proposed the use of an FFOPID controller in a smart
vibration isolation structure [19]. Arya et al. designed an FFOPID controller for automatic generation
control of multi-zone multi-source power generation systems [20]. The above researches have proven
that the FFOPID controller shows better performance and robustness.

In the process of primary frequency modulation, two factors are mainly considered. The first is the
settling time of the rotational speed of the PSU, which reflects the stability time of the grid frequency. The
other is the change law of the vane, which affects the water fluctuation in the pressure pipeline [21,22].
To obtain a comprehensive index between the guide vane opening and frequency variation, the
multi-objective gravitational search algorithm (MOGSA) was adopted [23–26]. The gravitational search
algorithm (GSA) is a random search algorithm based on the law of interaction between gravity and
mass [27,28]. Standard GSA, standard MOGSA, and some improved GSA algorithms are widely used
in the field of new energy, such as parameter optimization and identification of nuclear [29], wind [30],
and hydropower generating unit regulation systems [8,31]. Based on the above, MOGSA is selected as
the joint optimization membership function and parameter optimization tool of the fuzzy controller in
this paper.

The main contribution of this paper is the design and optimization of an FFOPID controller for the
nonlinear pumped storage unit regulating system with elastic water hammer effect under the condition
of primary frequency modulation. Firstly, an FFOPID controller based on the fuzzy theory is designed
for the nonlinear PSU model. Secondly, a multi-objective method is adopted to optimize the speed
regulation time of PSU and the change law of guide vane at primary frequency modulation.

The rest of this paper is organized as follows: Section 2 gives the models of the pumped storage unit
regulating system nonlinear model and the design of the FFOPID controller. In Section 3, the MOGSA
algorithm is presented and verified. Section 4 gives the experimental results. Section 5 presents
the conclusion.

2. Model of the Pumped Storage Unit Regulating System

The pumped storage unit regulating system is a feedback control system composed of a water
diversion system, governor (including servo mechanism and controller), pumped storage unit,
generator, and load units. In this section, the mathematical model of a single pipe and a single turbine
is established. Figure 1 is the structure of a pumped storage unit regulating system.
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Figure 2. Force diagram of the micro-water body in the pressure pipeline. 

The differential segment dx is subject to the friction force ADF  against the fluid from the pipe 

wall on surface AD , the pressure ABF  on surface AB , the pressure BCF  on the fluid from the pipe 

wall on surface BC , the pressure CDF  on surface CD , and the gravity G . Before deriving 

Equation (1), the following assumptions must be made: The flow in the pipeline system is one-

dimensional flow; the flow in each section of the pipeline system is assumed to be gradual flow; the 

resistance loss formula for calculating the constant flow in the pipeline can also be used to calculate 
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where P  is the pressure at the center of the AB  section; A  is the flow area of the pipeline; 0  is 

the shear stress of the pipe wall acting on the fluid periphery; D  is pipe diameter;   is the fluid 

bulk density;   is the angle between the pipe centerline and the horizontal line; and V  is the 

average velocity. 

Figure 1. The structure of a pumped storage unit regulating system.

2.1. The Model of the Water Diversion System

The elastic water hammer in the pressure pipeline considers the compressibility of water and the
elasticity of the pipe. The basic equation of the water hammer consists of two equations: The motion
equation and the continuous equation in the water hammer process [32,33]. The basic equation of the
water hammer is the mathematical expression of the law of constant flow with pressure, which reflects
the change law of flow velocity and water head in the hydraulic transition process. The differential
segment with length dx taken out of the pipeline system is shown in Figure 2.
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Figure 2. Force diagram of the micro-water body in the pressure pipeline.

The differential segment dx is subject to the friction force FAD against the fluid from the pipe
wall on surface AD, the pressure FAB on surface AB, the pressure FBC on the fluid from the pipe
wall on surface BC, the pressure FCD on surface CD, and the gravity G. Before deriving Equation
(1), the following assumptions must be made: The flow in the pipeline system is one-dimensional
flow; the flow in each section of the pipeline system is assumed to be gradual flow; the resistance loss
formula for calculating the constant flow in the pipeline can also be used to calculate the unsteady
flow. According to Newton’s second law, the force equation of the differential segment dx is as follows:

A
∂p
∂x

+ τ0πD + γA sinα+ ρA
dV
dt

= 0 (1)

where P is the pressure at the center of the AB section; A is the flow area of the pipeline; τ0 is the shear
stress of the pipe wall acting on the fluid periphery; D is pipe diameter; γ is the fluid bulk density; α is
the angle between the pipe centerline and the horizontal line; and V is the average velocity.

Since the shear stress τ0 of a non-constant flow is a very complicated and unresolved problem,
we have to borrow the research results of the constant flow to approximate the shear stress in the
unsteady flow. The shear stress direction is always opposite to the flow velocity. In the actual work,
we use the water head H as the main parameter, so we change P to H. In the water diversion system
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of a hydropower station, the rate of change of the flow rate Q with space is small, so it is neglected.
Moreover, the rate of change of the density p and the flow area of the pipeline A along x is much smaller
than the rate of change of the flow rate V, so it is ignored. According to Equation (1), the basic equations
describing water hammer can be obtained as the motion equation and the continuous equation:

gA2 ∂H
∂x

+ Q
∂Q
∂x

+ A
∂Q
∂t

+
f Q

∣∣∣Q∣∣∣
2D

= 0 (2)

∂H
∂t

+ V
∂H
∂x

+ Vsinα+
a2

g
∂V
∂x

= 0 (3)

where Q is the flow rate of a certain section at time t; |Q| is the absolute value of the flow, which
is positive or negative depending on the direction of the flow; H is the water head at time t of the
section at a corresponding datum; g is the acceleration of gravity; a is the propagation velocity of water
hammer wave; and f is the pipeline friction coefficient.

By integrating Equations (2) and (3) along the characteristic line C+ and C−, as shown in Figure 3,
it can be converted into the following characteristic equation [33]:

C+ : QP = Cp −CaHp (4)

C− : QP = Cn + CaHp (5)

where CP = QR + CaHR −RQR|QR|, Cn = QS −CaHS −RQS|QS|, Ca =
gA
a , R =

f ∆t
2DA . The Ca and

R are constants; ∆t for time step, it is necessary to meet the Courant stability condition ∆t < ∆x
(a+V)

. For
the internal nodes of the pipeline, the value of flow QP can be solved:

QP =
(CP+Cn)

2
(6)

The value of HP can be obtained by Equation (4) or Equation (5). In this way, the pressure and flow
rate of each node in the pipeline can be obtained at all times.
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2.2. The Model of Fuzzy Fractional-Order PID Controller

2.2.1. FOPID Controller

The transfer function of conventional integer solution PID controller can be described as:

G(s) =
U(s)
E(s)

= Kp +
Ki
s
+ Kds (7)

where U(s) is the output of the controller, and E(s) is the error input of the controller. The traditional
integer-order PID controller adjusts the system performance by Kp, Ki, and Kd. The fractional-order
PIλDµ controller has the same three parameters as the PID controller: Kp, Ki, and Kd. Two new
parameters are added: Integral order λ and differential order µ. The conventional PID controller is just
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fixed value on the coordinate axis, while the fractional order PIλDµ controller is fixed value on the
entire coordinate plane.

The transfer function of FOPID controller can be described as [34]:

G(s) =
U(s)
E(s)

= Kp +
Ki

sλ
+ Kdsµ (8)

Depending on the order of the control object, the λ and µ ranges are adjusted. λ mainly affects
the steady-state accuracy of the system, while µ mainly affects the overshoot of the system. With
the addition of two degrees of freedom, the FOPID controller is more flexible and has a wider range
of control. The most common method to realize fractional-order transfer functions in simulation or
practical research is to approach them by integer-order transfer functions [31]. In [35], Oustaloup
proposed an approximate method using the recursive distribution of N poles and N zeros. To achieve
a balance between the complexity and accuracy of the FFOPID controller, a 5th order Oustaloup’s
recursive approximation is performed for the integral-differential operator in the selected frequency
band of ω ∈

{
10−2, 102

}
rad/s. The high-order filter is as follows:

G f (s) = sα = K
N∏

k = −N

s +ω′k
s +ωk

(9)

where the poles ω′k, zeros ωk, and gain K of the filter are obtained from the following formula:

ω′k = ωb

(
ωh
ωb

) k+N+ 1
2 (1−α)

2N+1

,ωk = ωb

(
ωh
ωb

) k+N+ 1
2 (1+α)

2N+1

, K = ωαh (10)

where α is the order of differ-integration and α ∈ (0, 1), (2N + 1) is the order of filter. The Laplace
transform α-th derivative with α ∈ R+ of a signal x(t) relaxed at t = 0 is as follows:

L
{
aDt

αx(t)
}
= sαX(s) (11)

2.2.2. FFOPID Controller

Based on fuzzy set theory and fuzzy reasoning, fuzzy control transforms the knowledge and
control experience expressed by expert language into fuzzy rules, which are controlled by computer.
When the rotational speed of PSU deviates from the rated value, the FFOPID controller in the system
operation process continuously calculates e (deviation) and ec (rate of deviation change), according
to the fuzzy rule principle online adjustment

{
Kp, Ki, Kd

}
, so that the system can reach a stable state.

The basic structure of FFOPID controller is shown in Figure 4.Energies 2019, 12, x FOR PEER REVIEW 6 of 21 
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The modules MF, R, and fd in the “knowledge base” in Figure 4 are, respectively, the membership
function, the fuzzy rule, and the sharpening algorithm, which are obtained offline. The core modules
of the fuzzy controller: Fuzzy module (D/F), approximate reasoning module (A∗oR), and sharpening
module (F/D). The D/F module completes the operation of converting the clear quantity into the
fuzzy quantity. In this experiment, the fuzzy set of the input quantity and the output quantity is
[NB, NM, NS, ZO, PS, PM, PB], respectively, represent negative big, negative medium, negative small,
zero, positive small, positive medium, and positive big. The membership function of the input quantity
is shown in Figure 5a,b. The membership function of the output quantity is represented by a Gaussian
function, because the membership function of this kind is smooth, non-zero at all points, which may be
more suitable to describe a complicated fuzzy relationship. The position parameters {cenp, ceni, cend}

and scale parameters {
→

widp,
→

widi,
→

widd} of Gaussian function are set as optimization variables. In this
paper, the location parameters and the scale parameters of the Gaussian function are optimized. The
A∗oR module completes the approximate inference operation of the input fuzzy quantity through fuzzy
rules and obtains the output fuzzy quantity U. The settings of the fuzzy rules are shown in Tables 1–3.
The F/U module completes the conversion of fuzzy quantity U to clear quantity. The relationship is
as follows: 

Kp = Kp0 + Kp
′(e, ec)

Ki = Ki0 + Ki
′(e, ec)

Kd = Kd0 + Kd
′(e, ec)

(12)

In the formula, Kp0, Ki0, and Kd0 are the initial parameters. e is the deviation between the actual
speed and the rated speed of the PSU. Because the FOPID controller has {Kp0, Ki0, Kd0, λ, µ} five
parameters that need to be designed, coupled with the introduction of the fractional-order, makes the
design more difficult. So, this paper uses the MOGSA algorithm to set the initial parameters of the
FOPID controller.

Table 1. Fuzzy rule of Kp.

ec
e

NB NM NS ZO PS PM PB

NB PB PB PM PM PS Z Z
NM PB PB PM PS PS Z NS
NS PM PM PM PS Z NS NS
ZO PM PM PS Z NS NM NM
PS PS PS Z NS NS NM NM
PM PS Z NS NM NM NM NB
PB Z Z NM NM NM NB NB

Table 2. Fuzzy rule of Ki.

ec
e

NB NM NS ZO PS PM PB

NB NB NB NM NM NS Z Z

NM NB NB NM NS NS Z Z

NS NB NM NS NS Z PS PS

ZO NM NM NS Z PS PM PM

PS NM NS Z PS PS PM PB

PM Z Z PS PS PM PB PB

PB Z Z PM PM PM PB PB
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Table 3. Fuzzy rule of Kd.

ec
e

NB NM NS ZO PS PM PB

NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS Z
NS Z NS NM NM NS NS Z
ZO Z NS NS NS NS NS Z
PS Z Z Z Z Z Z Z
PM PB NS PS PS PS PS PB
PB PB PM PM PM PS PS PB
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2.3. The Model of Servo Mechanism

According to the output u controlled by the governor, the servo mechanism of the governor
operates the guide vanes of the PSU to control the flow of the unit. The servo mechanism is composed of
assistant servomotor and main servomotor. Due to the existence of a dead zone module and saturated
zone module, it is a typical nonlinear link. The structure is shown in Figure 6.

y1(s)
u(s) = k0

1+Tybs
y(s)
y1(s)

= 1
Tys

(13)

where u is the output signal of the controller; k0 is the amplification factor; Tyb is the time constant
of the assistant servomotor; Ty is the main servomotor time constant; y1 is the main pressure valve
opening; and y is the guide vane of the PSU.
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2.4. Model of the Pumped Storage Unit

There is a nonlinear relationship between the relative value of the change of the guide vane
opening degree of the PSU and the relative value of the displacement of the servomotor. At present,
no specific mathematical model can be established. Therefore, the simulation calculation of the PSU
should be based on the full characteristic curve [36]. The full characteristic curve of the PSU is based
on the vane opening θ as an intermediate variable to establish the flow characteristic curve Q11 −N11

and torque characteristic curve M11 −N11, as shown in Figure 7. The different combinations of these
operating parameters divide the full characteristic curve into five operating conditions, including:
The pump zone, the pump brake zone, the turbine zone, the turbine brake zone, and the reverse
pump zone. {

Q11 = Q11(θ, Q11)

M11 = M11(θ, M11)
(14)

When the frequency is adjusted in the working condition of the turbine, especially in the case of
external load reduction under low water head, the unit speed of the turbine is shown as follows:

n11 =
nD
√

H
(15)

where Q11 is the unit flow, M11 is the unit torque, n11 is the unit rotation speed, n is the rotation speed,
and D is the nominal diameter of the PSU.

It can be seen from Figure 7 that the flow characteristic curve and torque characteristic curve of
the PSU are overlapped and twisted in the area, with a relatively large rotational speed, which is the
“S” characteristic area. The nominal diameter D of the PSU is constant, and the reduction of external
load leads to the increase of the unit rotation speed n. Then, the unit rotation speed n11 with lower
water head H is relatively large, which makes the PSU easily run into the reverse pump zone under
the influence of “S” characteristics, thus causing the rotation speed n to fluctuate around the network
frequency value.

In order to solve the single input–multiple out problem in “S” area, the Suter transformation
method was adopted to convert the full characteristic curve of the PSU in the four quadrants into
two inquire transformation curves. The transformed whole characteristic curve was transformed
into WM(x, y) and WH(x, y) curves on the x axis, but there were still some problems such as uneven
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opening distribution [37]. In view of the above problems, the improved Suter transformation was
adopted [38]. The transformation relations are as follows. WH(x, y) = h

a2+q2+Chh (y + Cy)
2

WM(x, y) = m+k2h
a2+q2+Chh (y + Cy)

2 (16)

 a ≥ 0, x = arctan
[
q + k1

√
h/a

]
a < 0, x = π+ arctan

[
q + k1

√
h/a

] (17)

where a = n
nr

; q = Q
Qr

; m = M
Mr

; h = H
Hr

; k1 is the coefficient, 0.5–1.2; k2 >
|M11max |

M11
; Cy1 is the

coefficient, 0.1–0.3; Cy2 is the coefficient, 0.4–0.6; and the subscript r represents the rating. According to
the improved Suter transformation, the calculation model of pump turbine is expressed as follows: hn+1 = WH(yn+1, x(qn+1, nn1)) · (q2

n+1 + n2
n+1)

mn+1 = WM(yn+1, x(qn+1, nn1)) · (q2
n+1 + n2

n+1)
(18)

In Equation (14), h11 and m11 represent the interpolation of the characteristic curve of the PSU.
The improved Suter transformation can effectively solve the obstacle of single input–multiple output
in the “S” area.Energies 2019, 12, x FOR PEER REVIEW 9 of 21 
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Figure 7. The characteristic curves of pump turbine.

2.5. The Model of Generator and Loads Unit

The dynamic equilibrium relationship between the PSU’s active torque mt and the generator’s load
torque mg is described by the motion equation [39]. According to the dynamic principle, the motion
equation can be established as follows:

n(s)
mt(s) −mg(s)

=
1

(Tas + eg)
(19)

where Ta is inertia time of the generator, and eg is the self-regulating coefficient of the generator.
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3. Multi-Objective Gravitational Search Algorithm (MOGSA)

3.1. MOGSA

3.1.1. Gravitational Search Algorithm (GSA)

The gravitational search algorithm (GSA) optimization algorithm mainly uses the gravity law
between two objects to guide the motion of each particle to optimize the search for the optimal solution,
the position of each particle corresponds to a solution to the problem. In the whole search space, the
particle with the largest inertia mass represents the optimal solution to the problem. The optimization
process of GSA is as follows.

Initialize each parameter and population position, suppose there is a particle in a separate system.
Define the position of the particle as follows:

xi =
(
x1

i , xd
i , . . . , xd

i , . . . , xn
i

)
f or i = 1, 2, . . . , N, (20)

where xd
i is the position of the ith mass in dth dimension, and N is the size of the population. The

inertial mass is calculated by the fitness value of the particle:
mi(t) =

f it(t)−wrost(t)
best(t)−wrost(t)

Mi(t) =
mi(t)∑N

j = 1 m j(t)

(21)

where f iti(t) represent the fitness value of the agent i at the time t, the best and worst fitness values are
defined below (for a minimization problem):{

best(t) = min f it j(t)
wrost(t) = max f it j(t)

, j ∈ (1, . . . , N) (22)

Calculate the joint force of gravitation on the dth dimension space of ith agent at the time t:

Fd
i (t) =

N∑
j = 1, j,i

rand · Fd
ij(t) (23)

where Fd
ij(t) is the magnitude of the gravitational force on particle i from particle j at t moment.

Fd
i (t) = G(t)

Mi(t) ·Mi(t)
Ri j(t) + ε

(xd
j (t) − xd

i (t)) (24)

where the G(t) is the gravitational constant at t time, Ri j is the distance between the ith agent and dth
agent, ε is a constant which is set for avoiding the divisor equal to zero.

G(t) = G(G0, t) (25)

Ri j(t) =
∣∣∣|x i(t), x j(t)

∣∣∣∣∣∣
2 (26)

According to the law of motion, the acceleration ad
i (t) of agent i at t time, and in direction dth is

given as follows:

ad
i (t) =

Fd
i (t)

Mi(t)
(27)

Then, calculate the velocity and position value of the agent i at the next moment:

vd
i (t + 1) = randi · vd

i (t) + ad
i (t) (28)
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xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (29)

3.1.2. Multi-Objective Optimization

Different from the single objective particle swarm optimization, the multi-objective particle swarm
optimization has no single optimal solution, but a group of non-dominant solutions. The flowchart
of the MOGSA algorithm is shown in Figure 8 and the detailed process of MOGSAs algorithm is
as follows:
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Figure 8. Flowchart of the multi-objective gravitational search algorithm (MOGSA).

Step 1: Set the maximum number of iterations N, population size nPop, Pareto Front size nRep,
dimension of search space D, and search space upper Smax and lower limits Smin.

Step 2: The population positions randomly initialized in the search space and then the velocity
vector corresponding to each particle is initialized to zero.

Step 3: Evaluate the fitness value of each agent on each object fitness function; next, update the
archive which has a grid structure.
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The grid structure is created as follows: Each dimension in the objective space is divided into
equal divisions, where the agent i denotes dimension index, and hence, for a k-objective optimization
problem, there will be different segments.

Step 4: Update the gravitational constant the acceleration for each agent, calculate the mass (active
mass) corresponding to each solution in the archive, and assign a uniform mass (passive mass) to the
search particles.

Step 5: By calculating the agent mass, the optimal non-dominant solution is selected from
the archive.

Step 6: For each individual population, update velocity and next position, respectively.
Step 7: Evaluate the fitness value of each agent’s new position. After, all of the new individuals

are exposed to uniform mutation operator and those individuals among the resulting population,
which is considered as non-dominated ones, are added to the archive. Finally, the keeping functionality
removes those solutions that have recently become dominated in the archive.

Step 8: Update the archive and check the number of non-dominant solutions. If the number of
elements in the archive gets to its limit, one of elements should be omitted from the archive.

Step 9: Determine whether the number of iterations N is reached; if the conditions are not met,
loop operation Step 3–Step 9. Otherwise, output the non-dominant solution stored in the archive.

3.2. Objective Functions

In order to obtain controller optimization parameters that can satisfy the comprehensive index
of the unit speed and the vane opening degree, two objective functions are set. The first objective
function considers the integral time absolute error (ITAE) of rotational speed, oscillation level of the
unit speed (OUS), and steady-state error (SSE) of the unit. The second objective function considers the
ITAE of guide vane opening and the degree of oscillation of the vane opening (OVO). The integral of
time multiplied absolute error ITAE criterion is generally used to minimize time multiplied absolute
error of the control system [40].{

J1 = ITAEX + w1 ·OUS + w2 · SSE
J2 = ITAEy + w3 ·OVO

(30)

where OUS = Max(x) −Min(x); SSE = x(N) − c; OVO = Max(y) −Min(y). x(N) is the rotation
speed of the unit after stabilization, c is the rated speed. Max(x) and Min(x), respectively, represent the
maximum and minimum values of the rotation speed in the adjustment process. Max(y) and Min(y),
respectively, represent the maximum and minimum values of guide blade opening in the regulation
process. w1, w2, and w3 are weight coefficients to set the value of the different indexes within the
same preset range. The importance of the three control indexes ITAEx, OUS, and SSE in J1 and the
two control indexes ITAEy and OVO in J2 have the same importance for the objective function value.
Therefore, when selecting the weight coefficients of w1,w2, and w3, matching with the magnitudes of
ITAEx and ITAEy should be considered, so that the actual values of the five control indicators are of
the same magnitude.

3.3. Optimization Variables

In order to obtain good stability in the regulation system, the controller parameters of the governor
are usually optimized by the optimization algorithm. Therefore, this paper adopts the MOGSA
algorithm to, respectively, optimize the parameters of PID control, FOPID controller, and FFOPID
controller. The optimization variables of the different controllers are listed in Table 4.
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Table 4. Optimization variables of different controllers.

Controller Optimization Variables

PID controller V1 =
(
Kp, Ki, Kd

)
FOPID controller V2 =

(
Kp, Ki, Kd, λ,µ

)
FPID controller V3 =

(
Kp0, Ki0, Kd0

)
center =

(
cenp, ceni, cend

)
width =

(
→

widp,
→

widi,
→

widd

)
FFOPID controller V4 =

(
Kp0, Ki0, Kd0, λ,µ

)
center =

(
cenp, ceni, cend

)
width =

(
→

widp,
→

widi,
→

widd

)
Definition: PID is proportional-integral-derivative
Definition: FOPID is fractional-order proportional-integral-derivative
Definition: FPID is fuzzy proportional-integral-derivative
Definition: FFOPID is fuzzy fractional-order proportional-integral-derivative

4. Experiences and Results Analysis

In this section, the nonlinear model of the pumped storage unit regulating system with elastic
water hammer effect was simulated in MATLAB. In order to show that the FFOPID controller has
a better control effect than the traditional controller, they were successively put into the multiple
simulation experiments for comparison.

4.1. Model Parameters

In the following simulation experiments, parameters of MOGSA were set as: N = 100, nPop = 50,
nRep = 30, G0 = 5, nGrid = 10. Optimization variables were searched within specified ranges, the
adopted search range for the PID controller parameters were restricted to

{
Kp, Ki, Kd

}
∈ [0, 8]. For

the FOPID controller, parameters were restricted to
{
Kp, Ki, Kd

}
∈ [0, 8], {λ,µ} ∈ [0, 2]. For the FPID

controller, parameters were restricted to
{
Kp0, Ki0, Kd0

}
∈ [0, 8],

{
cen,

→

wid
}
∈ [0, 10]. For the FFOPID

controller, parameters were restricted to
{
Kp0, Ki0, Kd0

}
∈ [0, 8], {λ,µ} ∈ [0, 2], and

{
cen,

→

wid
}
∈ [0, 10]. The

key parameters of the pumped storage unit regulating system are listed in Table 5.

Table 5. Key parameters of the pumped storage unit regulating system.

Median servomotor response time Ty1 0.05

Primary servomotor response time Ty 0.3

Water head loss coefficient f 0.75

Water hammer pressure wave time constant Tr 1.0

Inertial time constant of generator Ta 8.503

Adjusting coefficient of generator eg 0.1

Rated water head Hw 540.0

4.2. Comparison of the Performance of Different Controllers

In this part, the simulation experiments show that the pumped storage unit regulating system is
assumed to be disturbed by frequency under the 25% guide vane opening condition at low water head.
Furthermore, experiments were conducted under 526 m water head condition. The simulation time
was 100 s, and the relative values of 0.01 and −0.01 speed disturbance were added at 5 s. Four sets
of comparative experiments were carried out in the above conditions to compare the performance
of the different controllers, and optimization parameters of the group that can obtain the best speed
response curve were selected from the Pareto optimal solution set, respectively, as illustrated in Figure 9.
The specific results of the optimization parameters are shown in Table 6, and Figure 10 shows the
membership function of the output variable optimized by the MOGSA algorithm.
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Figure 9. Pareto optimal solutions obtained through MOGSA for speed disturbance of +0.01 and −0.01
under 526 m low water head.

Table 6. Optimal parameters of controllers for pumped storage unit regulating system under rotational
speed disturbance.

Speed Disturbance Controller Optimization Variables

+0.01

PID V1 = (1.3148, 0.5117, 1.5270)
FOPID V2 = (1.1553, 0.9757, 1.8070, 1.1971, 1.0196)

FPID

V3 = (1.3948, 0.4787, 0.3977)
centerbest = (5.5005, 7.9525, 0.9958)

widthbest =


9.1723 6.0674 5.7059 8.5711 5.0519 6.1979 2.2455
6.6428 9.0604 4.8956 7.0170 7.8289 6.4996 6.9872
5.7870 9.8610 5.2003 5.8614 8.8137 5.2139 5.7073


FFOPID

V4 = (1.7740, 1.0148, 2.0846, 1.2810, 1.1396)
centerbest = (6.1071, 8.6738, 9.8692)

widthbest =


9.6735 6.0843 1.0731 7.8910 7.5085 7.7632 8.5078
6.0727 6.6815 3.6551 9.0820 6.7214 6.7312 4.9343
4.1924 7.7019 8.7038 5.1356 9.2576 9.6115 9.4028


−0.01

PID V1 = (2.1505, 0.8765, 2.0909)
FOPID V2 = (1.1099, 0.9354, 1.7472, 1.1674, 1.0165)

FPID

V3 = (2.0945, 0.4879, 1.6760)
centerbest = (7.7436, 9.7880, 9.1701)

widthbest =


6.0918 3.3666 9.9720 1.2646 1.1026 6.4191 3.3703
9.4954 3.7979 9.9760 9.7331 2.7428 2.2519 6.4656
5.6639 1.8315 9.4198 2.3303 4.8298 8.5215 9.6070


FFOPID

V4 = (2.1915, 0.9876, 2.0599, 1.2133, 1.0548)
centerbest = (9.1896, 6.4108, 8.3543)

widthbest =


9.8247 5.4821 5.3268 5.5733 3.8928 9.8321 8.2310
8.0921 2.4436 3.0347 8.8413 5.5852 5.1895 6.3547
9.3628 4.3806 5.1396 4.8648 9.5264 9.8260 5.0988



The comparison of speed curves is shown in Figure 11. It can be seen from Figure 11 that when
the speed disturbance occurs, the response curve with the FFOPID controller fluctuates less and the
adjustment time is shorter. In order to show the optimization effect of the FFOPID controller, the
experimental results of control indices are shown in Table 7. By comparing the corresponding control
indices of the PID controller, FOPID controller, FPID controller, and FFOPID controller, the performance
of these controllers can be fully displayed. It can be seen from Table 7 that when the PSU is disturbed
by the relative speeds of 0.01 and −0.01 under the FFOPID controller, the control indexes ITAEx are
42.54 and 28.45, respectively, which are smaller than other controllers. The smaller ITAEx indicates
that the speed curve of the PSU has better dynamic characteristics. From Figure 11, it can be seen that
when the PSU is disturbed in 5 s, the speed curve enters into the oscillation area. Under the action
of the FFOPID controller, the speed fluctuation is small, and the control index OUS value is lower
than that of the traditional controller. According to the regulation time, the stability time values of the
two disturbances are 8.66 s and 8.32 s, respectively, which are far less than the PID, FOPID, and FPID
controllers. These indices show that the FFOPID controller is more suitable for improving the control
performance of the nonlinear pumped storage unit regulating system with elastic water hammer effect,
compared with other controllers.
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Figure 10. Optimal membership function by MOGSA.

The transient processes of the pumped storage unit regulating with different controllers
corresponding to rotational speed disturbance of 0.01 are shown in Figure 12, in which mechanical
torque, guide vane opening, and characteristic curves of the water hammer of the surge chamber can
be seen.
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Figure 11. Comparison of speed curves by different controllers.

Table 7. Control indices of controllers for pumped storage unit regulating system under rotational
speed disturbance.

Speed Disturbance Controller J1min(×105) J2min(×103) ITAEx ITAEy OUS Stable Time(s)

+0.01

PID 4.821 2.155 43.74 120.17 0.0176 11.48
FPID 5.55 1.55 52.84 99.89 0.0162 11.94

FOPID 3.884 2.061 59.03 152.10 0.0167 13.44
FFOPID 3.772 1.623 42.54 143.14 0.0166 8.66

–0.01

PID 5.016 1.948 31.76 122.47 0.0155 9.52
FPID 3.753 1.870 32.56 112.09 0.0142 10.54

FOPID 3.792 1.793 43.79 111.96 0.0135 12.98
FFOPID 3.299 1.458 28.45 99.59 0.0133 8.32
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Figure 12. Transient processes of the pumped storage unit (PSU) with different controllers:
(a) Mechanical Torque; (b) Guide Vane Opening; (c) Water Hammer of Up Surge Chamber; (d)
Water Hammer of Down Surge Chamber.
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As shown in Figure 12a, the FFOPID controller can control the mechanical torque to a stable state
faster than the PID controller and FOPID controller. It can also be seen from Figure 12b that under the
action of the FFOPID controller, the guide blade opening can be balanced quickly and rapidly, so the
corresponding rotational speed curve first reaches a stable state. Therefore, it can be considered that
the FFOPID controller is better. Meanwhile, the results show that the oscillation amplitude of the water
hammer in the surge chamber obtained by the FFOPID controller is smaller than that obtained by other
controllers, as shown in Figure 12c,d. The above conclusion indicates that the FFOPID controller can
provide more stable operating conditions.

4.3. Robustness Analysis of the Proposed Method

The low-frequency disturbance is the key factor to the stability of the pumped storage unit
regulating system under the condition of low water head. Furthermore, the water hammer effect
caused by the controller’s poor robustness is an important cause of PSU vibration. Therefore, in this
paper, the robustness test of the FFOPID controller was carried out by adjusting the value of a rotational
speed disturbance of 0.004, −0.004. Figure 13, respectively, gives the rotational speed response of
the pumped storage unit regulating system when subjected to low-frequency disturbance at 526 m
and 530 m water head during operation. It can be seen that the control performance of the FFOPID
controller under low-speed disturbance is obviously better than that of traditional controllers. The
experimental results show that the proposed FFOPID controller of the pumped storage unit regulating
system shows sufficient robustness to hydraulic parameter variation of the system under primary
frequency modulation.
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5. Conclusions 

In order to improve the stability of the pumped storage unit regulating system when it 
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condition of low water head. The experimental analysis results indicated that the FFOPID controller 

could effectively restrain the oscillation of rotational speed at low water head. In future work, we will 
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5. Conclusions

In order to improve the stability of the pumped storage unit regulating system when it encounters
rotation speed disturbance in low water head operation, this paper presented an FFOPID controller
based on the fuzzy theory and FOPID controller. Furthermore, a multi-objective optimization strategy
combining fuzzy rules and control parameters was applied to the primary frequency regulation of
the pumped storage unit regulating system. In the simulation experiment, the FFOPID controller
was compared with the FOPID controller, PID controller, and FPID controller. In order to verify
its robustness, different speed disturbance tests were carried out under the condition of low water
head. The experimental analysis results indicated that the FFOPID controller could effectively restrain
the oscillation of rotational speed at low water head. In future work, we will apply the FFOPID
controller to more operating conditions of the pumped storage unit regulating system to verify its
control performance.
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