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Abstract: Diesel engines are widely used in marine transportation as a direct connection to the
propeller and as electrical principal or auxiliary generator sets. The engine is the most critical
piece of equipment on a vessel platform; therefore, the engine’s reliability is paramount in order to
optimize safety, life cycle costs, and energy of the boat, and hence, vessel availability. In this paper,
the improvements of a failure database used for a four-stroke high-speed marine diesel engine are
discussed. This type of engine is normally used in military and civil vessels as the main engine of
small patrols and yachts and as an auxiliary generator set (GENSET) for larger vessels. This database
was assembled by considering “failure modes, effects, and criticality analysis (FMECA),” as well as
an analysis of the symptoms obtained in an engine failure simulator. The FMECA was performed
following the methodology of reliability-centered maintenance (RCM), while the engine response
against failures was obtained from a failure simulator based on a thermodynamic one-dimensional
model created by the authors, which was adjusted and validated with experimental data. The novelty
of this work is the methodology applied, which combines expert knowledge of the asset, the RCM
methodology, and the failure simulation to obtain an accurate and reliable database for the prediction
of failures, which serves as a key element of a diesel engine failure diagnosis system.
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Highlights

1. A marine diesel engine failure database was developed using reliability-centered maintenance
(RCM).

2. Symptoms of 15 most typical failures were evaluated using a failure simulator of diesel engine.
3. Failure database was optimized using RCM and failure simulations.

1. Introduction

The diesel engine is the most often used engine type in naval propulsion, as well as in electrical
energy generation of the military vessels. While it is common in civil vessels to use large two-stroke
engines, military vessels use four-stroke engines due fundamentally to size restrictions. Diesel engines
have a high density of power, very good efficiency, high reliability, and better response to load changes
than other solutions, such as a gas turbine [1,2].

Propulsion and power generation are the most critical systems on the vessel platform. Therefore,
the optimization of its reliability has an important impact on vessel availability, safety, and life-cycle
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cost. In addition, the maintenance energy cost is estimated to be around 2% of the energy in the life
cycle of a diesel engine. Apart from reliability, efficiency is also important since fuel consumption is
one of the largest operating costs in a vessel’s life cycle [3]. However, reliability is the priority in the
Army as the objective is to maximize the vessel’s availability. A breakdown in diesel engines in a vessel
may compromise a military mission or leave the vessel in port unavailable for use. At worst, it could
jeopardize the safety of the crew.

The most-used method for maximizing the reliability of assets, installations, and platforms as a
whole is the RCM [4,5]. The RCM, since its creation in the 1960s [6], was extended and standardized
for the defense sector in the 1990s [7,8], and finally for the industry with its newer versions RCM2 [9]
and RCM3 [10]. The RCM was analyzed in detail by Rausand [11], where the author demonstrates its
utility for the improvement of reliability. An example of the application of such a method for wind
turbines can be seen in Igba et al. [12], while in Milkie et al. [13], it is used to plan overhauls of marine
diesel engines, and in Carretero et al. [14], it is applied to a whole railway network infrastructure. One
of the most important features of the RCM is that it prioritizes the condition-based maintenance (CBM),
which focuses on preventive and corrective maintenance when designing the maintenance strategy.

CBM is essential if reliability is intended to be maximized. CBM monitors and processes the
parameters of interest to obtain efficiency and failure indicators. The architecture and functionalities
that a suitable CBM system must have are defined by international standards [15].

CBM has evolved to systems that develop the modules of diagnosis much more deeply to aid with
prognoses and decision-making [14,15]. These modules give the ability to detect, diagnose, predict
problems, and help the user in order to make correct decisions [16]. The most complete proposed
concept of CBM used for vehicles corresponds to the Integrated Vehicle Health Management System
(IVHMS) [17], a concept that can be applied to all aerial, terrestrial, or marine vehicles, including
unmanned vehicles.

Several diagnosis systems are found in the literature and they can be classified in two philosophies:
statistical models based in data failures and experimental behavior, and physical models based on the
knowledge of thermodynamic laws of processes inside the engines. Between both philosophies, there
are diagnosis systems that are purely statistical pure, purely physical, and hybrid systems, also called
semi-physical, as shown in Das [18]. The simplest statistical systems are based on the establishment
of limit values and trend tracking, which are compared with respect to these limits. There are other
increasingly sophisticated algorithms that include artificial intelligence [19,20], with neural networks
being the most used [21]. These types of methods require a large amount of reliable operating data for
both normal and failure operation, as well as enough time for model training. In the other side, there
are the physical models of diesel engines, which are based on models of thermodynamic behavior [22];
these need a deep knowledge of the engine. Although they also need to obtain experimental data,
a limited series of specific tests for the characterization and engine model adjustment is enough.
Physical models can identify a wide variety of failures, and in addition, they are better adapted to
environmental conditions other than those tested. Furthermore, there is usually no large amount of
historical data available. In that case, a mathematical model that faithfully represents the physical
processes of the asset gives better results regarding failure detection and failure diagnosis than using
statistical systems/artificial intelligence. The thermodynamic physical diagnosis systems proposed so
far in the literature usually use operational data and instantaneous in-cylinder pressure [23–26]. The
third and last approach is the use of a hybrid diagnosis, which combines advantages from both the
physical models and the statistical/artificial intelligence models [26–28].

A suitable diagnosis system needs a complete and reliable database that facilitates the identification
and diagnosis of a failure when the symptoms that characterize it are activated. In this paper, this
database is generated by applying the RCM methodology and using expert knowledge and a failure
simulator of the asset. According to the RCM methodology, the list of asset functions, failure modes,
failure symptoms produced by these failures, and the criticality of the consequences are defined.
Moreover, the monitored signals intersect with the symptoms identified in the failure database, and
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thus, it is possible to identify and diagnose the failure or potential failures that may be occurring.
The methodology RCM is the one used to make a failure modes, effects, and criticality analysis (FMECA)
database, which is intended to be a systematic and effective procedure that has demonstrated great
results in aeronautics, the military, and in industry in general.

Although the RCM [4] has proven to be an effective methodology for defining failure modes
reliably if applied correctly and having ample knowledge about the asset, it is possible to improve the
result with the proposed methodology. The proposed methodology consists of causing failures in a
marine diesel engine simulator built in AVL Boost© and analyzing the model symptoms in terms of
the parameters monitored on board. In addition, the main problems and worst effects of the relatively
constrained experimental database are two-fold: first, obtaining a false positive failure, and second,
not detecting little failures that could eventually become a fatal failure. To improve the database with
modeling is possible because the precision of a well-adjusted physical model is able to reproduce the
behavior of a situation that maybe an equipment expert can never imagine. In this way, there is a
symbiosis between the experience and the objective information obtained by a reliable model.

2. Work Methodology

2.1. RCM in Naval Platforms

Papers from Society of Automotive Engineering, SAE’s Papers JA1011 [4] and JA1012 [5] standards
specify what a maintenance plan must accomplish to be considered an RCM. The main RCM concept is
that it maintains functions [9], not the asset. It could be defined as a process that is used to determine
which maintenance actions should be performed such that the assets continue to perform the functions
required of it.

The RCM procedure establishes seven steps in which to define the asset functions, functional
failures, causes of failure, the effects of the failure, the consequences of the failure, and the maintenance
task to prevent them from happening. The process involves answering questions in the first to fourth
steps, resulting in a FMECA failure database, which is why the RCM is used in this paper. The fifth,
sixth, and seventh steps correspond to the second phase, which determines the maintenance tasks to
be performed on the asset. This methodology aims to define the most cost-effective maintenance tasks.
The cost-effective concept means the best relationship between the cost of the consequences of a failure
and the cost of the maintenance task to prevent it from occurring. Among all types of maintenance tasks,
this methodology prioritizes predictive or condition-based maintenance. As long as it is technically
feasible and economically profitable with regard to the consequences of the failure, a predictive task
will be carried out. In order to carry out a predictive maintenance task, the concept of the P–F curve [8]
is important. The interval P–F, is the time that exists between the detection of the potential failure P
and the failure F. The higher the P–F interval, the more time to plan the repair/replacement such that it
has a lower impact on the operation and availability of the asset. Another important concept is the
existence of six types of failure patterns [8]. Traditional preventive maintenance assumed that there
is only one failure pattern, which considers that the probability of the failure of any element begins
to increase exponentially at a given moment. However, the RCM indicates that there is not always a
point where the probability of failure is rapidly increasing; as such, a useful life time period cannot be
defined. Finally, a fundamental aspect is the operational context [8]. Two equal assets cannot have
the same maintenance strategy if they have a different operational context. The operational context is
made up of the environmental conditions, operating profile, different demanding functions on one
asset from another of the same type, etc.

The RCM methodology has been adapted for naval platforms by the defense industry [7,8].
This specific industry defines operational and quite rigid dock maintenance periods, which are
established at the warship design stage and are difficult to change during a vessel’s life cycle. Another
important adaptation of the RCM to the naval defense industry is the type of consequences, i.e.,
warship mission fulfilment is more important than economic savings. In addition, there is no single
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operational context, but several contexts ranging from the extremes of peace to war. A summary of the
specific process for designing the maintenance plan for a military vessel is as follows: determination
of the operational context, functional breakdown of the vessel, analysis and determination of critical
systems/assets, performing the RCM analysis of critical platform systems, combat system and structures,
definition of maintenance programs adapting to the maintenance cycle defined for the vessel, and
determination and organization of spare parts that are on board and on shore. A risk matrix is
defined [8], where a risk is considered a combination of the probability of occurrence and severity
of the consequences in case a failure occurs. Selvik [29] shows the importance of risk assessment in
complex platforms.

2.2. Construction of a Failure Database for Marine Diesel Engine Using RCM

The first steps toward creating a complete and reliable failure database of a marine diesel engine are
to define the operational context and functions of the vessel. In this case study, the diesel engine is part
of a Generator SET (GENSET), and a vessel power plant is composed of four identical GENSETs. Table 1
and Figure 1 show the general characteristics and a diagram of the points monitored, respectively, of
the marine diesel engine simulator used in this study.

Table 1. General specifications of marine diesel engine.

Parameter Value

Cycle Four stroke
Number of cylinders 12 V

Engine Rating ISO 3046/1 (25/25/1) 1200 kW
Engine speed 1800 rpm
Cylinder bore 165 mm

Stroke 185 mm
Compression ratio 15.5:1

Mean effective pressure 16.8 bar
Application GENSET

Fuel Marine Diesel Oil F76
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Figure 1 identifies the monitored points of the engine with the symptom identification code of the
failure database defined later. Both propulsion engines and GENSETs were always within the vessel
RCM analysis since they are systems whose loss is critical. Subsequently, the limits of the asset in the
analysis must be clearly defined; in this case, the entire diesel engine and its auxiliary services are
included (sea water and hot water refrigeration systems, lubrication system, fuel supply system up to
the daily service tank, and air inlet and gas exhaust system).

Once the limits of the analysis are defined, the construction of the failure database was started by
defining the engine functions, then the failure modes of each function, and finally its effects/symptoms.
It includes the probability, consequences, and criticality that corresponds to each one of the failure
modes considered. The number of failures defined is limited by all those that have a realistic probability
of occurring, as well as those that are critical, whose consequences are very serious even if the
probability is scarce.

As for the symptoms, it should be considered how they can be detected in the real installation. For
this purpose, it is vitally important to consider the available failure indicators, which in this study are:
the operating parameters monitored in real-time on board, the fluid parameters obtained via periodic
analyses, and visual inspections that the crew carries out daily.

Following the procedure indicated, a complete failure database was performed by the authors
in References [28,30]. This database is composed of a total of 69 functions, 209 failure modes, and
54 potential symptoms, of which 154 failures have some operating parameter as a symptom. Among
these last 154, 69 failures come from thermodynamic processes inside the engine. Furthermore, among
the total amount of 209, 43 failure modes have some parameter from the analysis of fluids (oil, water
cooling or fuel) as a symptom. Table 2 shows an example of information included for each failure
mode in Pagan [28].

Table 2. Example of a failure extracted from a complete failure database [28].

Nº Cod. Function Cod. Functional
Failure Cod. Failure

Mode Operative Parameters Fluid
Parameters

Daily Visual
Inspections

37A7 37

Contain
water in

hot water
cooling
circuit

A
Does not
contain
water

7

Seawater/hot
water cooler

leakage
(freshwater

side)

TT11 H PT10 L AG-FQ-Clor H - -

Criticality Checkup if
failure not clear Evidences/Symptoms

0.76

Perform hot
water analysis
and perform

pressure test to
the hot water/sea

water cooler

Hot water temperature high. There could be low hot water pressure. If there is
communication between hot water and seawater, hot water goes to sea water circuit when
the engine is running, so hot water level goes down. When the engine stops, seawater enter

hot water circuit so level goes up. In this case, there could be engine corrosion in engine
parts cooled by hot water and high chloride content in the water. If hot water leakage goes

outside the engine, it is visible in joints between cooler plates.

The failure database [28] codifies each function, functional failure, and failure mode according to
the RCM methodology. Table 2 shows failure mode number 37A7 as an example. Condition-based
parameters related to this failure are the “high” refrigerating hot water temperature TT11, “low”
refrigerating hot water pressure PT10, and “high” chloride content in the refrigerating water AG-FQ-Clor.
The value of criticality goes from “0” when it is negligible to “1” when it is critical.

Among the 69 failure modes with thermodynamic symptoms, the 15 most frequent were extracted
in order to introduce them in a thermodynamic model of the diesel engine [28,30] to act as a failure
simulator and accurately and quantifiably check the symptoms produced in terms of engine parameters.
The analysis of the symptoms allows for optimizing the original FMECA failure database made using
the RCM. The database size of the 15 selected failure modes was reduced from the total amount of
209 failure modes × 54 symptoms to 15 failure modes × 30 symptoms.

Table 3 shows the simplified database that includes 15 thermodynamic failure modes. The failures
are represented by the rows from F1 to F15. The potential symptoms are represented in columns
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from symptom S1 to S30 [30]. The failure modes were: excessive pressure drop in the air filter (F1),
efficiency reduction in the air cooler (F2), excessive pressure drop in the air cooler (F3), air compressor
failure (F4), air leak in the intake manifold (F5), inlet valve leakage (F6), partial misfiring (F7), cylinder
compression ratio loss (F8), low clearance between the rocker arm and cylinder valves (F9), high
clearance between the rocker arm and cylinder valves (F10), timing failure—injection advance (F11),
timing failure—injection delay (F12), turbine failure (F13), exhaust manifold gas leakage (F14), and
excessive gas pressure drop in exhaust ducts after turbine (F15).

Table 3. Simplified failure database: 15 most typical thermodynamic failures.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30

F1 L L H L H H H H H H H H H H H H H H
F2 L L H H H H H H H H H H H H H H H H L
F3 L L H L H H H H H H H H H H H H H H H
F4 L L H L H H H H H H H H H H H H H H
F5 L L H L H H H H H H H H H H H H H H
F6 L L H H H H H H H H H H H H H H H

F7 L L H H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L L H

F8 L L H H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L H H H H H H

F9 L L H H H H H H H H H H H H H H H

F10 L L H H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

H,
L

F11 L L H H H H H H H H H H H H H H H
F12 L L H H H H H H H H H H H H H H H
F13 L L H L H H H H H H H H H H H H H H H H
F14 L L H L H H H H H H H H H H H H H H
F15 L L H H H H H H H H H H H H H H H

Key.

F Failure H High
value

S Symptom L Low value

Moreover, the potential symptoms of the considered failure modes were: engine speed (S1);
electric active power (S2); fuel consumption (S3), intake manifold air pressure (S4), intake manifold
air temperature (S5), outlet exhaust gas temperature in cylinder 1A to 6B (S6–S17), inlet exhaust gas
temperature in turbochargers A and B (S18 and S19, respectively), outlet exhaust gas temperature in
turbochargers A and B (S20 and S21, respectively), cooling hot water pressure (S22), lubrication oil
pressure (S23), chromium content in the lubrication oil S24), copper content in lubrication oil (S25), iron
content in lubrication oil (S26), manganese content in lubrication oil (S27), silicon content in lubricating
oil (S28), vanadium content in lubricating oil (S29), and oil contamination by fuel (S30). All symptoms
are described in detail in Pagan [30].

The “high” (H) and “low” (L) values shown in Table 3 indicate whether the symptom value is
high or low, respectively, relative to the nominal value for the failure mode.

2.3. Optimization of the FMECA Failure Database

The response of engine parameters, which are symptoms of the original FMECA failure database,
as well as other potential symptoms were analyzed in the simulator under failure conditions. Following
this simulation and analysis, an improved FMECA failure database was obtained.

The magnitude of a parameter’s variation in failure condition with respect to its normal value
is traditionally given by experience [6]. In this paper, it is proposed that the variation of engine
parameters are objectively based on the results that produce the failure simulation to determine the
symptoms. A minimum threshold of 5% was set as the parameter variation considered as a symptom.
Although experience may be enough to propose approximate variations for each failure mode, having
a failure simulator allows one to know the variation of each parameter for each failure with a much
greater accuracy. This limit of 5% was established as an agreement between robustness and diagnostic
capacity. It would be possible to slightly reduce the limit to a value equal to the accuracy of each sensor
plus a small margin, but in that case, there would be a different limit for each parameter. Moreover,
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this reduction in the variation limit would not significantly improve the detection capacity; however, it
would increase the risk of false positives.

All the symptoms were analyzed and are presented in Tables A1 and A2 showing when each
parameter of interest was considered an indicator/symptom of a failure mode using the criterion
indicated above. Appendix A offers a large important part of the data and the discussion for each
symptom separately. From that analysis, new symptoms were obtained: the cooler inlet air temperature
(S31 and S32), respectively; exhaust manifold gas pressure (S33); indicated main effective pressure
(IMEP) (S34); turbocompressor speed (S35 and S36); and air mass flow (S37).

As an example, Table 4 shows the effect of each failure (F1 to F15) regarding the cooler inlet air
temperature as symptoms S31 and S32.

Table 4. Activation of the cooler inlet air temperature as a fault symptom (S31 and S32).

Cooler Inlet Air Temperature (S31 and S32)

- F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% 1.29 0.55 −1.06 12.85 −1.96 −5.42 −1.86 −8.03 −0.07 0.16 −1.52 1.85 −7.25 −2.81 −1.54

2.83 1.01 −4.21 45.89 −3.81 −7.28 −3.63 −13.28 −0.33 0.13 −2.91 3.81 −18.92 −5.50 −3.26
50% 1.15 0.06 −0.95 −4.26 −2.78 −5.47 −2.79 −9.63 0.06 0.02 −2.12 2.42 −10.12 −3.07 −2.57

1.97 0.04 −2.99 12.36 −5.50 1.26 −5.57 −18.56 −0.17 0.02 −4.12 5.13 −28.57 −5.93 −5.39
75% 1.15 0.53 −0.21 7.62 −2.20 2.79 −2.53 −2.27 −0.02 0.00 −2.05 2.20 −7.47 −2.03 −3.06

2.53 1.09 −0.79 23.99 −4.27 5.76 −0.04 −5.88 −0.06 0.03 −3.99 4.47 −13.56 −3.98 −6.18
100% 1.69 1.69 0.07 10.34 −1.68 −1.26 −2.41 −5.31 0.00 −0.01 −1.62 1.74 −8.54 −1.51 −4.10

3.56 3.25 0.14 32.42 −3.34 30.91 −12.11 −0.10 −0.04 0.02 −3.14 3.51 −9.98 −3.04 −8.31
>±5% - - - H L L, H L L - - - H L L L
Key: Activation symptom for High level (H)

Activation symptom for Low level (L)

In Table 4, it can be seen that S31 and S32 are symptoms of failures F5–F8 and F13–F15 when it is
lower than its normal value, while it is a symptom of failures F4, F6, and F12 if it is higher; therefore,
S31 and S32 can be indicative of a large number of thermodynamic failures. The variation of these
parameters was mainly due to these failures being involved in both the gas/air management and the
energy balance of the engine. For example, if the turbine has a failure (F13), the energy available for the
compressor will be reduced; therefore, it compresses less intake air, and consequently, S31 or S32 will
be reduced. The response of several symptoms can be explained with energy balance that provokes
each failure within the engine. For example, S31 and S32, combined with S33 (exhaust manifold gas
pressure), can be a symptom for failures related with energy losses in the engine, such as fouling in the
air filter (F1) and in the air cooler (F3), a reduction in the energy efficiency of the compressor (F4), the
more difficult to detect failure of F6 (inlet valve leakage), etc.

Table 5 shows the comparison between both databases, original (a) and after the optimization (b).
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Table 5. Comparison of original fault of the original database (a) and the optimized database (b).

(a) Original DATABESE

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30

F1 L L H L H H H H H H H H H H H H H H
F2 L L H H H H H H H H H H H H H H H H L
F3 L L H L H H H H H H H H H H H H H H H
F4 L L H L H H H H H H H H H H H H H H
F5 L L H L H H H H H H H H H H H H H H
F6 L L H H H H H H H H H H H H H H H
F7 L L H H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L L H
F8 L L H H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H H H H H H
F9 L L H H H H H H H H H H H H H H H
F10 L L H H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L H, L
F11 L L H H H H H H H H H H H H H H H
F12 L L H H H H H H H H H H H H H H H
F13 L L H L H H H H H H H H H H H H H H H H
F14 L L H L H H H H H H H H H H H H H H
F15 L L H H H H H H H H H H H H H H H

(b) Optimized DATABESE
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 2S31 2S32 2S33 2S34 2S35 2S36 2S37

F1 L L H L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1L
F2 L L H 1H H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L
F3 L L H L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1L 1L
F4 L L H L H H H H H H H H H H H H H H 1H 1H 1H 1H 1L 1L 1L 1L
F5 L L H L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1L 1L
F6 L L H 1L 1H H H H H H H H H H H H H H H 1H 1H 1L,H 1L,H 1L 1L 1H 1H 1L
F7 L L H 1L 1L 1L 1L 1L 1L 1L 1L 1L 1L 1L 1L 1L 1 1 L H 1L 1L 1L 1L 1H 1H 1L
F8 L L H 1L H H H H H H H H H H H H 1H 1H 1H 1H H H H H H H 1L 1L 1L 1L 1L 1L 1L
F9 L L H 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F10 L L H 1 1 1 1 1 1 1 1 1 1 1 1

F11 L L H 1L 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F12 L L H 1H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1H 1H
F13 L L H L H H H H H H H H H H H H H H H H 1L 1L 1H 1L 1L 1L 1L
F14 L L H L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1L 1L 1L
F15 L L H 1L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1H 1H 1L 1L 1H 1H
Key. F Failure H High value (1) Symptom updated in optimized failure database

S Symptom L Low value (2) New parameter added in optimized failure database as potential symptom
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3. Results and Discussion

3.1. Results

Once the symptoms of each of the failures was determined via simulations, it was possible to
update the original failure database to improve it. Table 5 shows the original failure database as
Table 6a and the optimized failure database as Table 6.

In the same way as in Table 3, the “high” (H) and “low” (L) values that appear in Table 5 indicates
whether the symptom value is high or low, respectively, for the failure mode. Table 5 is marked in
green plus index “1” in the boxes of the symptoms that have changed relative to the original database,
and in blue plus index “2” for the symptoms that have been added to the original database, which
were not considered beforehand. All green-colored boxes were an improvement over the original
database, either by correcting or by activating symptoms that were considered in the original database.
The squares in green with the index “1” without any value indicate that there was a symptom, but
the simulation has shown that the variation was not significant enough to be considered. Therefore,
the parameter of the column corresponding to that box ceased to be a symptom for the row failure
corresponding to that box.

Basically, the symptoms defined in the optimized database were similar to those of the original
database. However, it was improved in two ways. First, by increasing the number of parameters
that were used as potential symptoms (S31–S37), and second, existing parameters changed its
condition to symptoms for some failures. All these changes can be seen in Table 5, where the F1 to
F15 rows correspond to the simulated failures and the columns from S1 to S37 correspond to the
potential symptoms.

The effect of including new parameters is that the optimized database Table 5 has seven more
columns, which correspond to new parameters considered as symptoms. The new symptoms are:
cooler inlet air temperature in banks A and B (S31 and S32, respectively), exhaust manifold gas pressure
(S33), IMEP (S34), speed of the turbocompressor banks A and B (S35 and S36, respectively), and air
mass flow (S37). The existence of new parameters made it possible to identify many of the failures
more accurately. The most striking case was the set of failures F6, F9, F11, F12, and F15, which in the
original database shared symptoms, while in the optimized database, they can be distinguished from
each other.

The effect of the symptom condition change for the existing parameters was that the original
symptoms have been updated, in particular, their activation or exclusion as symptoms. For example,
the high air pressure in inlet manifold (S4) for the detection of the efficiency failure in the air cooler
(F2), or on the other hand, deactivation of the gas output temperature of cylinders (S6 to S17) was
added for the failures F1–F3, F5, F9–F12, F14, and F15. In the first case, the symptoms were dismissed
by the experts, and in the second case, the symptoms estimated by the experts did not have enough
variation according to the simulations.

3.2. Comparative Evaluation between the Original and Optimized Failure Databases

In this section, a comparison is made between the two failure databases, namely the original and
optimized ones. The objective was to compare the results they offer when both are fed the same input
data and their failure-diagnosis capabilities are compared.

There is no real historical data of the 15 most typical thermodynamic engine failures. This is due
to two main reasons. First, the number of monitored engines to which the author has access to is
limited. Second, we have only been monitoring engine behavior relatively recently, for less than five
years. Among all the data monitored, we have data only of the failure F7, misfiring/failure in the fuel
supply system. This failure has been identified and verified using historical maintenance reports.

Two evaluations were carried out. The first one was made of the complete failure database of
the 15 failures studied using a thermodynamic model to simulate the diesel engine under a failure
condition. In the second evaluation, a real historic engine data was used, which had the failure F7.
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Both evaluations were carried out in a blind way, where active symptoms were fed into the databases
without these databases having previous information of the real failure. For the evaluation, the two
databases were placed in parallel and fed with the same input parameters from the simulator and the
real engine.

As shown in Figure 2, the behavior with real or simulated failure produced active symptoms
when the variation of parameters reached at least 5% of its normal value. The parameters that met
this criterion were labelled with the high value “H” or low value “L” depending on whether the
value was greater than or less than the normal value, respectively. The normal value was set by the
parameter value running under normal conditions without failures for different operating points. The
two failure databases that are compared were those that are shown in Table 6. The two evaluation
processes and the results obtained from both the original and optimized databases are described below.
Evaluation 1 was based on parameters monitored in an engine simulator and evaluation 2 was based
on a real engine.
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3.2.1. Evaluation 1—Entering Data from the Engine Simulator under Failure Conditions

The database will interpret the parameters as symptoms when the data variation coming from
the simulator is higher enough. Then, the combination of symptoms provided by the databases that
are active at each moment indicates the type of failure that is occurring. For this evaluation, a typical
operating profile was simulated: engine starts, connects to the vessel power plant, increases its load
(25%, 50%, 75%, and 100%), and finally reduces the load until it stops. It was assumed that the failure
already existed before starting the engine or occurred before the first load step was taken. In this way,
it was possible to check the diagnostic accuracy at each operating point of the simulated engine.

The results obtained in this study and the results of each failure simulation are shown in
Tables A3–A7 of Appendix A of this paper. These tables indicate the symptoms that identify
the original failure database (a) and the optimized database (b) at each operating point and the
corresponding diagnosis. In this part of the paper, only the detection of F4 (air compressor failure)
was used as an example of the methodology used for this detection; Table 6 shows the comparison
between both databases used. Highlighting in red was used when there was no diagnosis, in orange
when the exact combination of symptoms was not fulfilled and a multiple diagnosis exists with several
possible failures, and in green when the diagnosis was unmistakable because a unique combination of
symptoms was fulfilled in the database.

It is important to remark that not just the number of symptoms that is important for detecting a type
of failure; what is more important is the type of symptom and in what situations this symptom appears.

To perform a better comparative evaluation, the diagnosis was offered with two different premises:
first, using only parameters that the diesel engine thermodynamic model can simulate: S4–S21 and
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S31–S37 (see Tables A1 and A2), and secondly, taking into account the rest of the potential symptoms
included in the databases: S1–S4 (see Table 3). These other symptoms are the same in both databases.

As a summary of the failures detected between both databases, Figure 3 shows a comparison
between the number of symptoms detected with the original and improved databases (columns
correspond to the left axis) and the probability of failure detection (red and blue points correspond to
the right axis).
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improved failure databases.

With the improved database, the number of detected symptoms was higher in almost all failure
types, and therefore, it was possible to detect the type of failure in 13 of 15 failures types with a 100%
probability. However, with the original database, it was possible to detect a failure, but it was not
possible to detect the exact type of failure (as in the cases of F1, F3–F6, F9–F12, F14, and F15); with the
improved database, only two failures were not detected (F9 and F10).

The probability of failure was calculated as follows:

Probability of Failure (%) = (# failures types − (# possible failure types − 1))/(# failures types).

In addition, Table 6 shows a summary of the analysis between the original failure database and
the optimized failure database.

This table shows that the optimized failure database using the methodology proposed in this
paper offered a much more precise diagnosis in most of the failures. Nevertheless, the diagnostic
capability was different depending on the operating point. This was mainly because of different
sensitivity of engine parameters under failure depending on the load. Also, the values used for the
diagnosis were relative to the normal operating value; this meant that when a value was high and the
variation was small, it was sometimes below the threshold of the 5% variation taken to avoid false
positives. In this way, the system offered a variable diagnosis in terms of possible failures that may be
occurring until it reached the point of operation in which it was diagnosed unequivocally. Despite this,
it is considered that this system significantly improves upon earlier systems. In short, in most of the
cases, the original database was not able to differentiate between one failure or another by considering
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the symptoms; however, the optimized database uniquely managed to diagnose all the failure modes
studied, as shown in the next section.

Table 6. Summary of comparative diagnostics made by original versus optimized database under
simulated failures.

Simulated Failures F1 F2 F3 F4 F5 F6 F7 F8

Final
Diagnostic (a)

6
possible
failures

2
possible
failures

6
possible
failures

6
possible
failures

6
possible
failures

7
possible
failures

3
possible
failures

7
possible
failures

(b) F1 F2 F3 F4 F5 F6 F7 F8
Simulated Failures F9 F10 F11 F12 F13 F14 F15

Final
Diagnostic (a) nothing

detected
nothing
detected

nothing
detected

nothing
detected F13

6
possible
failures

nothing
detected

(b) nothing
detected

nothing
detected F11 F12 F13 F14 F15

Key:
(a) Original FMECA failure database
(b) Optimized database

Failure detected
Several failure detected

Nothing detected

There was an exception to the above assertion, which was the valve clearance failures (F9 and
F10), which share the symptoms of low S1, low S2, and high S3. The simulator indicated that the rest
of the thermodynamic parameters suffered a variation of much less than 5%. For these two failures,
it would not work to reduce the limit of detection to the precision of the instrumentation (approx.
3%) because these failures produce a variation of the symptoms of less than 1%. Therefore, it was not
possible to detect using actual instrumentation.

Regarding the performance of the engine’s efficiency and power, it is possible to say that all tested
failures are going to produce a reduction of both engine energy and efficiency because a little failure
means a deviation from the optimal operational adjustment for the engine. Since a predicted diagnosis
can be detected before and corrected during normal maintenance control, this can improve the energy
efficiency of the engine at the same time that it is possible to increase the life cycle of the engine, and to
avoid a catastrophic failure of the engine.

3.2.2. Evaluation 2—Entering Data from a Real Engine under Failure Conditions

Historical data of a real diesel engine installed on board was used. There were 2 months of real
operating data, January and February 2015, where data were recorded every 1 min, providing a total of
17,377 records after having applied a filter to eliminate the data in which GENSET was not working.
These records are the same as those used to validate the artificial-intelligence-based anomaly detection
system [31]. Among all operating records, the detection system identified 78 events that represented a
potential anomaly, and among them, it automatically determined that 13 were records of real anomaly.
Once the anomalous behaviors were identified, it was necessary to diagnose the anomaly. If no failure
database is available, an expert must do it manually, observing the altered parameters in those records.
In this case, the proposed diagnosis system has a failure database that can do that work automatically.

Analogous to the previous evaluation of the 15 most typical thermodynamic failures using data
from the simulations, in this case, the active symptoms produced by real historical records and
identified as anomalies were insert into the two databases. Table 7 shows the results.

Table 7 shows the diagnoses offered by the original failure database and the optimized failure
database for a real failure of partial misfiring (F7) that happened in an engine of the same model as
the one studied. It was observed that both databases detected almost the same symptoms. However,
there was a slight difference that made the original database offer three possible failures—F7, F8, or
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F10—while the optimized database unequivocally identified the actual failure as F7. The only symptom
that the optimized database detected and the original did not was a low S4, which in this case made the
difference in isolating the failure. This symptom was added in the optimized database thanks to the use
of the engine model, which was able to detect that this symptom dropped more than 5% when failure
F7 occurred. In the original failure database, this symptom was not considered by expert knowledge.

Table 7. Comparative evaluation between the original database versus the optimized database under a
real failure F7.

Partial Misfiring (F7)

Symptoms (Si) Diagnostics (Fi)

40–50% load (a) S6L,S7L,S8L,S9L,S10L,S11L,
S12L,S13L,S14L,S15L,S16L,S17L

F7,F8,F10

(b) S4L,S6L,S7L,S8L,S9L,S10L,S11L,
S12L,S13L,S14L,S15L,S16L,S17L

F7

Key: (a) Original FMECA failure
database. “-” No diagnostics made

(b) Optimized database. “Fi”
Several diagnostics

possible

SiL
Symptom Si activated by

low “L” level. “Fi”
A unique diagnostic

made
SiH Symptom Si activated by hig “H” level.

The result of this comparison under a real failure F7 was similar to the previous one using the
simulation of the failure F7. However, there was a substantial difference between the simulated failure
F7 and the real failure F7. In the simulated case, the partial misfiring failure occurred in a single
cylinder, 1A, whereas in the real case, it occurred in all cylinders at the same time. The symptoms were
the same, only that in the real case, the effect on the engine was much greater, as we would expect.

4. Conclusions

The main conclusion of this work was that the proposed optimized failure database significantly
improved the detection of engine failures. The early detection of most typical failures was possible
thanks to the methodology used, which combined expert knowledge, the RCM methodology, and
engine modelling of failure conditions.

The conclusions are organized into two different areas: construction of the original failure database
using RCM and optimization of the failure database using a diesel engine simulator.

4.1. Conclusions Regarding the Preparation of the Failure Database Using RCM

A failure database of the diesel engine was made using the RCM methodology with a highly
detailed list of possible symptoms and causes. The same level of detail reached in this work has not
been found in the literature to date [30].

This database defined not only the effects of each failure mode, but also the inspection tasks
to be performed in case there were several possible failure modes. This level of detail made this
original failure database a very valuable product in itself. For its construction, it required knowledge
of the methodology, experience in operation, maintenance of this type of diesel engine, and existing
techniques of predictive maintenance.

The obtained result was a failure database that contained 209 failure modes. The methodology
described by the RCM was valid and valuable for the realization of the FMECA databases, which
allowed for a correct failure diagnosis of assets and systems, in this case of a marine diesel engine.

Almost 170 of the 209 failures were detectable using the failure database, so 39 could not be
detected as there was no monitored indicator that could detect that type of failure and/or the evolution
of it. Therefore, it was not possible to predict all failures of a diesel engine, unless the monitoring is
combined with periodic inspections and engine dismantling.

The greater the number of failures covered, the greater the reliability and the lower the need for
dismantling, which would also reduce the cost of maintenance.



Energies 2020, 13, 104 14 of 28

4.2. Conclusions Concerning the Optimization of the Original Failure Database Using a Diesel
Engine Simulator

One of the most important results derived from this work was the obtaining of an optimized
failure database.

The failure simulation in the model allowed us to correct some symptoms associated with the
failures in the original failure database, as well as to know what additional parameters would have to
be monitored and included as symptoms in the database to obtain the best possible diagnosis ability.

A comparative evaluation between the two databases was obtained using a double evaluation:
first, by inserting failures in the model and feeding the databases with the symptoms provided by the
model, and second, by using data monitored from a vessel engine with a real known failure that was
verified by the maintenance service.

The optimized failure database unequivocally identified failures and worked much better than
the original failure database.

All failures were detected, except for the two valve clearance failures because the alterations
in engine behavior were less than 3%, and therefore had not been included as symptoms in the
improved database.

To take advantage of the full capacity of the new database, it is necessary to add new
instrumentation not available in the actual installation. Due to the cost and difficulty of measuring the
pressure inside the cylinder and the air mass flow, they can be replaced by measurements calculated in
real time.

The IMEP may be calculated using the torque, engine speed, and the mass flow via the inlet air
manifold temperature and pressure measurements. The greater the number of signals available among
those listed above, the greater the diagnostic capability provided by the optimized failure database
that is leveraged.

Another great advantage of the proposed diagnosis system is the avoidance of installing expensive
real-time monitoring systems based on incorporating new pressure instrumentation inside the cylinder,
such as accelerometers, which are an important barrier for ship-owners.

The proposed system takes advantage of all the variables that are usually monitored in marine
engines and adds only a few signals that are easy to install, allowing for a great diagnostic capacity
without having to make a great investment.

With the incorporation of direct real-time measurements of cylinder pressure, vibration, and
others that can be made at an affordable cost, the proposed system will be able to be updated to take
into account new indicators and cover even more failure modes.

This methodology offers an important reduction of the energy and time losses dedicated to
maintenance tasks, and at the same time, it is possible to reduce the energy consumption of the
engine through monitoring and modelling to improve the performance of the engine working in
different situations.
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Nomenclature

Acronyms
GENSET Generator SET
FMECA Failure Mode, Effects, and Criticality Analysis
RCM Reliability-Centered Maintenance
CBM CONDITION Based Maintenance
IVHMS Integrated Vehicle Health Maintenance System
SAE Society of Automotive Engineers
IMEP Indicated Mean Effective Pressure
List of Failures
F1 Excessive pressure drop in the air filter
F2 Efficiency reduction in the air cooler
F3 Excessive pressure drop in the air cooler
F4 Air compressor failure
F5 Air leak in the intake manifold
F6 Inlet valve leakage
F7 Partial misfiring
F8 Cylinder compression ratio loss
F9 Low clearance between the rocker arm and cylinder valves
F10 High clearance between the rocker arm and cylinder valves
F11 Timing failure (injection advance)
F12 Timing failure (injection delay)
F13 Turbine failure
F14 Exhaust manifold gas leakage
F15 Excessive gas pressure drop in the exhaust ducts after the turbine
List of
Symptoms
S1 Engine speed
S2 Electric active power
S3 Fuel consumption
S4 Intake manifold air pressure
S5 Intake manifold air temperature
S6 to S17 Outlet exhaust gas temperature in cylinders 1A to 6B
S18 and S19 Inlet exhaust gas temperature in turbocharger banks A and B
S20 and S21 Outlet exhaust gas temperature in turbocharger banks A and B
S22 Cooling hot water pressure
S23 Lubrication oil pressure
S24 Chromium content in the lubrication oil
S25 Copper content in the lubricaton oil
S26 Iron content in the lubrication oil
S27 Manganese content in the lubrication oil
S28 Silicon content in the lubrication oil
S29 Vanadium content of lubrication oil
S30 Oil contamination by fuel
S31 and S32 Cooler inlet air temperature banks A and B
S33 Exhaust manifold gas pressure
S34 Indicated mean effective pressure
S35 and S36 Speed of turbocompressor banks A and B
S37 Air mass flow

Appendix A

Appendix A shows the results obtained for the activated/deactivated symptoms from the modelled
results and the results obtained after the improvements of the FMECA database for both the failures
and loada tested with the model describe in this article. Appendix A.1 shows the justification of
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activated/deactivated symptoms, while Appendix A.2 shows the number and type of symptoms
detected for each failure modelled with four different loads (25%, 50%, 75%, and 100%).

Appendix A.1. Justification for Activation Symptoms for Optimization of the FMECA Failure Database

In this part of Appendix A, a huge important part of the data and the discussion for each symptom
separately is offered as justification of improved database.

Table A1 shows when the intake manifold air pressure (S4), intake manifold air temperature
(S5), outlet exhaust gas temperature in cylinder 1A to 6B (S6–S17), inlet exhaust gas temperature in
turbocharger (S18 and S19), and outlet exhaust gas temperature in turbocharger (S20 and S21) can be
used as failure symptoms. It is shown that S4 can be a symptom of the failures F1, F3–F8, and F13–F15
when its value is lower than normal, and of the failures F2 and F12 if it is higher. Therefore, this
parameter is a symptom of many failures. Its combination with other symptoms identifies the failure
that occurs in each case. Similar to the previous case, the variation of S5 can be used as a symptom
of F2 or F6 failures when it is higher than its normal value. It was observed that for the rest of the
failures, this parameter was almost not affected. It is also shown that S6–S17 could be a symptom of
the failures F4, F6, F8, and F13 when it is higher than its normal value, while it is a failure symptom of
F7 if it is lower. S18 and S19 appears as a symptom of most failures. A rise is shown in this parameter
for almost all failures, except the failures of F7 and F11, which show a reduction. However, it can only
be used as a failure symptom in F4, F6, F8, and F13 when its variation is more than 5%. In the rest of
failure modes, its variation is not high enough to consider it a symptom. As in the previous case, S20
and S21 can be used as symptom of the majority of failures. S20 and S21 rise significantly when the
turbine fails F13, as expected. Moreover, they are also symptoms of F4, F6, F8, and F15 failures when
they are higher than their normal value. It is noteworthy that S20 and S21 can detect an increase in the
exhaust pressure after the turbine F15, while S18 and S19 are not able to detect this failure because the
variation of these last parameters is less than the minimum variation of the 5% imposed to be relevant.
Therefore, S20 and S21 has a higher influence as a symptom to the failures than S18 and S19 since its
nominal value is considerably lower and its perceptual variation relative to the normal is higher. This
has a positive effect in the sense that it is easier to detect the symptom, and negative, in the sense that
small variations due to factors other than a failure can be mistaken for one, and as such, give false
positives. However, by maintaining the 5% criterion, false positives should not occur.

In a similar way, Table A2 shows when other parameters not identified as symptoms in the original
failure database (Table 3) can be used as failure symptoms according to the failure simulator. These
new symptoms are the cooler inlet air temperature (S31–S32), exhaust manifold gas pressure (S33),
indicated main effective pressure (IMEP) (S34), turbocompressor speed (S35–S36), and air mass flow
(S37). It can be seen that S31 and S32 is a symptom of failures F5–F8 and F13–F15 when it is lower than
its normal value, while it is a symptom of failures F4, F6, and F12 if it is higher. As S4, S31, and S32
can be indicative of a large number of thermodynamic failures, the variation of these parameters is
mainly due to the effect that these failures are involved in the engine gas exchange. For example, if the
turbine has a failure, the energy available for the compressor will be reduced; therefore, it compresses
the intake air less, and consequently, S31 or S32 will be reduced. The response of S31 and S32 to other
failures can be explained in the same way. S33 can be a failure symptom of failures F3, F4, F6–F8, and
F14 when it is lower than its normal value and of the failures F13 and F15 if it is higher. Most of these
failure modes are related to the engine gas exchange in the intake manifold (F3 and F6), in the exhaust
manifold (F14 and F15), or the turbocompressors (F4 and F13). However, it is also related to the amount
of fuel injected into the engine (F7), or the compression ratio loss in the cylinder (F8). As expected,
the failure in the turbine F13 is the one that influences the most in the variation of this symptom. S34
could also be used as a failure symptom. It indicates a possible failure F6–F8 or F13 when it is lower
than its normal value. In a similar way to S37, S34 falls under almost any thermodynamic failure.
S35 and S36 can also be used as a failure symptom; it may indicate failures F4, F8, or F13 when it is
lower than its normal value or failure F6 or F7 if it is higher. It is important to distinguish between the
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monitoring of the average regime of the turbocompressor, a symptom that is analyzed in this section, to
the measurement of turbocompressors’ instantaneous regime. The instantaneous regime measurement
of the turbocompressors provides a greater chance of detecting engine failures, but their measurement
is much more complicated and less reliable. Moreover, S37 could be a symptom of failures F1, F3, F4,
F6–F8, F13, and F15 when it is lower than its normal value. As it can be seen, all the failures make S37
lower, except F12, because this failure is a delay in the injection timing, which usually comes with a
greater energy in the exhaust gases, and therefore a higher energy in the turbocompressor. It should be
noted that the effect on this symptom is important in almost all cases.

Table A1. Activation of the engine parameters as fault symptoms (part 1 of 2).

Intake Manifold Air Pressure (S4)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% −1.85 0.70 −5.83 −20.34 −2.09 −2.20 −1.45 −6.33 −0.12 0.12 −1.33 1.63 −5.44 −2.19 −1.15

−3.88 1.20 −21.61 −37.05 −4.04 −2.03 −2.88 −10.51 −0.12 0.08 −2.54 3.37 −14.34 −4.31 −2.47
50% −1.64 0.34 −4.02 −32.91 −3.14 −5.75 −2.81 −9.49 −0.10 0.01 −2.22 2.57 −9.69 −3.07 −2.53

−4.03 0.57 −14.10 −52.75 −6.18 −7.01 −5.60 −18.05 −0.10 0.01 −4.28 5.53 −26.65 −5.85 −5.26
75% −2.04 1.35 −2.34 −26.24 −2.96 −5.48 −2.86 −12.32 0.01 0.00 −2.43 2.63 −7.66 −2.20 −3.24

−4.26 2.73 −8.65 −49.61 −5.70 −11.73 −11.11 −17.85 0.01 0.05 −5.10 5.36 −24.01 −4.31 −6.56
100% −2.35 4.05 −1.37 −25.34 −2.63 2.45 −2.56 −5.72 0.04 0.00 −1.97 2.12 −8.24 −1.52 −4.10

−5.01 8.09 −5.20 −46.68 −5.15 −22.86 −21.27 −22.61 0.04 0.06 −3.83 4.28 −28.47 −3.11 −8.54
>±5% L H L L L L L L H L L L

Intake Manifold Air Temperature (S5)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% 0.00 −0.94 0.00 0.00 0.00 7.31 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −1.87 0.00 0.00 0.00 29.74 0.00 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00
50% −0.01 0.69 0.00 −0.01 0.00 9.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.38 0.00 −0.01 0.00 32.67 0.00 0.00 0.00 0.00 0.00 0.00 −0.02 0.00 0.00
75% 0.00 3.42 0.00 0.00 0.00 9.60 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 6.92 0.00 −0.01 0.00 29.73 −0.02 −0.02 0.00 0.00 0.00 0.00 −0.02 0.00 0.00
100% 0.00 5.69 0.00 0.00 0.00 9.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 11.67 0.00 −0.01 0.00 26.44 −0.44 −0.52 0.00 0.00 0.00 0.00 −0.09 0.00 0.00
>±5% H H

Outlet Exhaust Gas Temperature in Cylinder (S6−S17)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% 0.14 −0.51 0.55 2.02 0.18 10.27 −8.68 7.00 0.34 −0.27 −0.60 0.50 2.05 0.14 0.25

0.34 −0.98 2.20 3.84 0.40 36.19 −17.67 15.09 1.08 −0.38 −1.08 1.17 6.51 0.22 0.72
50% 0.11 0.28 0.78 6.45 0.56 15.44 −10.33 10.00 00.27 −0.17 −0.56 0.34 4.19 0.34 0.82

0.81 0.59 2.83 11.37 1.14 27.18 −21.34 21.72 1.03 −0.19 −0.84 0.86 12.50 0.81 1.81
75% 0.62 1.40 0.65 7.76 0.77 18.35 −11.14 14.41 0.15 0.01 −0.34 0.36 5.77 0.44 1.38

1.26 2.78 2.48 17.07 1.46 17.89 −22.04 29.07 0.77 −0.09 −0.61 0.72 20.13 0.88 2.87
100% 0.86 1.79 0.51 10.26 0.96 20.40 −12.09 12.71 −0.16 0.17 −0.28 0.34 7.93 0.32 2.10

1.94 3.67 1.95 21.87 1.91 16.52 −21.55 34.46 0.31 0.15 −0.54 0.56 28.19 0.80 4.47
>±5% H H L H H

Inlet Exhaust Gas Temperature inTurbo (S18 and S19)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

25% 0.18 −0.47 0.52 1.83 0.19 3.61 −1.61 0.73 0.05 −0.04 −0.71 0.78 1.42 0.15 0.23
0.36 −0.93 1.97 3.47 0.36 13.25 −3.11 1.24 0.16 −0.04 −1.33 1.63 4.32 0.29 0.51

50% 0.26 0.27 0.66 5.73 0.51 5.74 −1.69 1.78 0.02 −0.02 −0.64 0.65 2.71 0.45 0.56
0.68 0.57 2.41 9.98 1.01 20.80 −3.28 3.37 0.16 −0.02 −1.23 1.32 8.01 0.85 1.19

75% 0.50 1.34 0.56 6.86 0.70 6.63 −1.66 3.43 0.03 0.00 −0.56 0.58 3.24 0.48 0.92
1.05 2.69 2.13 14.58 1.36 22.86 −1.93 5.09 0.12 −0.01 −1.10 1.18 10.98 0.94 1.93

100% 0.74 1.87 0.43 8.96 0.82 5.34 −1.69 2.24 0.01 0.01 −0.45 0.48 4.42 0.42 1.46
1.62 3.85 1.66 18.57 1.63 28.60 1.42 7.82 0.09 0.01 −0.87 0.99 16.67 0.88 3.15

>±5% H H H H

Outlet Exhaust Gas Temperature inTurbo (S20 and S21)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

25% 0.18 −0.51 0.58 2.13 0.22 4.08 −1.58 1.03 0.06 −0.05 −0.68 0.74 1.87 0.25 0.33
0.37 −1.01 2.22 3.98 0.42 14.42 −3.07 1.73 0.19 −0.05 −1.28 1.57 5.57 0.48 0.71

50% 0.27 0.29 0.78 7.53 0.64 6.71 −1.57 2.51 0.03 −0.02 −0.55 0.54 3.85 0.67 0.85
0.73 0.62 2.83 12.69 1.28 22.98 −3.05 4.80 0.19 −0.02 −1.04 1.08 11.13 1.28 1.79

75% 0.56 1.48 0.67 8.62 0.88 7.69 −1.52 4.30 0.04 0.00 −0.42 0.42 4.74 0.71 1.51
1.16 2.94 2.52 18.41 1.72 25.90 −1.57 6.52 0.14 −0.01 −0.82 0.86 14.96 1.41 3.11

100% 0.84 1.98 0.51 11.45 1.02 6.36 −1.50 3.15 0.02 0.01 −0.29 0.30 6.90 0.65 2.57
1.82 4.10 1.97 23.74 2.04 32.98 2.44 9.89 0.11 0.01 −0.56 0.65 23.21 1.35 5.42

>±5% H H H H H
Key: Activation symptom for High level (H)

Activation symptom for Low level (L)
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Table A2. Activation of engine parameters as fault symptoms (part 2 of 2).

Cooler inlet Air Temperature (S31 and S32)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% 1.29 0.55 −1.06 12.85 −1.96 −5.42 −1.86 −8.03 −0.07 0.16 −1.52 1.85 −7.25 −2.81 −1.54

2.83 1.01 −4.21 45.89 −3.81 −7.28 −3.63 −13.28 −0.33 0.13 −2.91 3.81 −18.92 −5.50 −3.26
50% 1.15 0.06 −0.95 −4.26 −2.78 −5.47 −2.79 −9.63 0.06 0.02 −2.12 2.42 −10.12 −3.07 −2.57

1.97 0.04 −2.99 12.36 −5.50 1.26 −5.57 −18.56 −0.17 0.02 −4.12 5.13 −28.57 −5.93 −5.39
75% 1.15 0.53 −0.21 7.62 −2.20 2.79 −2.53 −2.27 −0.02 0.00 −2.05 2.20 −7.47 −2.03 −3.06

2.53 1.09 −0.79 23.99 −4.27 5.76 −0.04 −5.88 −0.06 0.03 −3.99 4.47 −13.56 −3.98 −6.18
100% 1.69 1.69 0.07 10.34 −1.68 −1.26 −2.41 −5.31 0.00 −0.01 −1.62 1.74 −8.54 −1.51 −4.10

3.56 3.25 0.14 32.42 −3.34 30.91 −12.11 −0.10 −0.04 0.02 −3.14 3.51 −9.98 −3.04 −8.31
>±5% H L L, H L L H L L L

Exhaust Manifold Gas Pressure (S33)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% −0.31 0.99 −1.66 −6.82 −0.75 −11.66 −1.55 −7.99 −0.21 0.16 −0.91 1.10 37.02 −2.77 5.00

−0.64 1.92 −6.14 −11.30 −1.45 −27.48 −3.04 −13.40 −0.68 0.16 −1.73 2.28 116.47 −5.38 10.84
50% −0.39 −0.31 −1.76 −21.98 −1.75 −13.61 −2.79 −10.89 −0.07 0.05 −1.72 1.96 29.90 −3.51 3.76

−1.18 −0.67 −6.05 −32.72 −3.52 −28.01 −5.51 −20.76 −0.49 0.05 −3.34 4.17 87.79 −6.78 8.10
75% −0.81 −1.39 −1.22 −17.24 −1.93 −12.35 −3.07 −11.09 −0.08 0.00 −2.10 2.27 34.30 −3.02 3.31

−1.67 −2.74 −4.51 −32.98 −3.74 −27.19 −7.63 −17.76 −0.30 0.02 −4.06 4.65 105.90 −5.90 7.16
100% −1.19 −0.87 −0.82 −18.37 −1.85 −9.12 −3.31 −9.14 −0.03 −0.02 −1.95 2.11 32.73 −2.59 2.07

−2.56 −1.86 −3.13 −33.51 −3.64 −30.63 −12.98 −19.65 −0.20 0.00 −3.78 4.28 91.76 −5.17 4.42
>±5% L L L L L H L H

Indicated Mean Effective Pressure (S34)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% −0.04 0.16 −0.12 −0.47 −0.02 −28.63 −26.67 −26.69 0.07 −0.04 0.19 −0.46 −1.69 0.05 −0.22

−0.10 0.26 −0.54 −0.95 −0.08 −68.90 −54.94 −48.04 0.07 −0.11 0.01 −1.20 −5.57 0.08 −0.49
50% −0.07 −0.07 −0.19 −1.23 −0.11 −23.39 −24.84 −22.13 0.02 −0.04 0.61 −0.87 −1.77 −0.05 −0.27

−0.20 −0.14 −0.62 −2.36 −0.23 −70.27 −51.16 −39.81 −0.03 −0.11 0.93 −1.96 −5.51 −0.08 −0.60
75% −0.12 −0.33 −0.13 −1.59 −0.15 −21.28 −24.17 −19.73 0.03 −0.05 1.09 −1.29 −1.96 −0.06 −0.34

−0.26 −0.66 −0.50 −3.49 −0.30 −68.19 −49.96 −35.33 0.00 −0.12 1.92 −2.80 −7.12 −0.12 −0.74
100% −0.15 −0.34 −0.08 −1.79 −0.16 −19.27 −23.83 −18.85 0.05 −0.07 1.40 −1.57 −2.14 −0.03 −0.42

−0.34 −0.68 −0.34 −4.39 −0.32 −72.50 −45.31 −31.40 0.02 −0.13 2.59 −3.31 −6.97 −0.09 −0.91
>±5% L L L L

Turbo Speed (S35 and S36)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% 0.31 0.34 −0.60 −5.15 −0.57 −3.56 −0.85 −3.54 −0.06 0.07 −0.58 0.71 −3.34 −1.26 −0.72

0.70 0.65 −2.28 −7.41 −1.09 −2.84 −1.63 −5.82 −0.23 0.07 −1.10 1.47 −8.56 −2.44 −1.51
50% 0.65 0.01 −0.68 −20.77 −1.67 −4.15 −1.87 −6.86 0.03 0.02 −1.34 1.47 −7.38 −2.05 −1.73

1.08 −0.03 −2.23 −29.34 −3.38 3.32 −3.86 −14.08 −0.13 0.02 −2.65 3.08 −22.65 −4.08 −3.73
75% 0.58 0.29 −0.09 −10.82 −1.10 2.27 −1.25 −0.67 −0.01 0.00 −1.02 1.08 −3.68 −0.99 −1.50

1.27 0.60 −0.32 −22.47 −2.14 4.02 0.24 −2.46 −0.02 0.02 −1.98 2.18 −6.23 −1.96 −3.05
100% 0.85 0.92 0.06 −9.55 −0.85 −0.34 −1.17 −2.59 0.00 0.00 −0.79 0.84 −4.12 −0.72 −1.98

1.79 1.81 0.19 −19.45 −1.69 12.39 6.95 3.67 −0.02 0.01 −1.54 1.69 −3.97 −1.46 −4.05
>±5% L H H L L

Air Mass Flow (S37)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
25% −1.44 0.84 −1.37 −18.07 0.60 −11.35 −1.21 −4.95 −0.22 0.10 −0.31 0.37 −5.29 −1.70 −1.09

−3.06 1.65 −5.00 −38.48 1.16 −29.39 −2.31 −8.52 −0.66 0.13 −0.59 0.77 −14.73 −3.32 −2.25
50% −1.45 −0.40 −1.54 −24.80 0.07 −8.92 −2.20 −6.96 −0.13 0.05 −0.84 0.96 −8.80 −2.33 −2.22

−3.20 −0.81 −5.42 −46.33 0.09 −33.95 −4.41 −12.69 −0.52 0.05 −1.62 2.06 −23.16 −4.53 −4.59
75% −1.98 −1.80 −1.23 −25.90 −0.23 −16.73 −2.73 −11.82 −0.08 0.00 −1.25 1.35 −9.39 −2.07 −3.38

−4.17 −3.54 −4.55 −50.48 −0.46 −20.08 −11.46 −17.70 −0.30 0.00 −2.43 2.77 −28.64 −4.06 −6.87
100% −2.68 −1.73 −0.87 −27.85 −0.37 −8.37 −2.83 −5.95 −0.03 −0.01 −1.23 1.31 −11.40 −1.69 −4.84

−5.66 −3.53 −3.30 −52.85 −0.77 −60.69 −66.70 −53.52 −0.17 −0.02 −2.38 2.66 −44.92 −3.39 −9.96
>±5% L L L L L L L L

Key: Activation symptom for High level (H)
Activation symptom for Low level (L)

Appendix A.2. Comparative Diagnosis between the Original FMECA Database and the Improved Database

In this part of Appendix A, a comparison between the detection of failures is presented for each
failure. Highlights in red are used for when there is no diagnosis, in orange when the exact combination
of symptoms is not fulfilled and a multiple diagnosis exists with several possible failures, and in green
when the diagnosis is unmistakable because a unique combination of symptoms is fulfilled in the
database. The results of each failure simulation are shown in Tables A3–A7. These tables indicate
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the symptoms that identify the original failure database (a) and the optimized database (b) at each
operating point and the corresponding diagnosis.

To perform a better comparative evaluation, the diagnosis is offered with two different premises;
first, using only parameters that the diesel engine thermodynamic model can simulate: S4–S21 and
S31–S37 (see Tables A1 and A2), and second, taking into account the rest of the potential symptoms
included in the databases: S1–S4 (see Table 3). These other symptoms are the same in both databases.

First, Table A3 shows the results of an excessive pressure drop simulation in filter bank A (F1). It
was observed that the system only detected simulated symptoms when the engine reached full load,
before this it detected nothing. At that time, the original database diagnosed six possible failures:
F1–F5, F13, or F14. For its part, the optimized database unequivocally diagnosed the failure F1 that
was actually occurring. In this case, the fundamental difference was the identification of the symptom
of a low S37. The other symptom detected by both databases was a low S4. In the event that all the
database symptoms were taken into account, including the non-simulated ones, the difference was
that a problem would have been detected from the beginning, but without knowing which of the
15 failures would be the one that was occurring. This was because the symptoms of a low S2 and a high
S3 would be activated according to both databases defined by experts using the RCM methodology.
The symptom of a low S1 would be activated only at full load because the engine could not satisfy
100% of the power demanded. At full load, the diagnosis would be the same as the one indicated after
taking into account only the simulated parameters, so nothing new was provided except for a higher
diagnostic quality because there were more symptoms that identified the failure.

Second, Table A3 shows the results of the air cooler efficiency reduction (F2). It was observed
that the system began to detect the simulated symptoms at a 75% load. At that time, both failure
databases offered two options as a diagnosis, F2 and another one. The other possible failure according
to the original failure database was F3, while the optimized database offered F6 as a second option. It
was necessary to reach full load such that the optimized failure database unequivocally diagnosed
the actual failure that was occurring, which was F2. If all the database symptoms were considered,
including the non-simulated ones, both databases diagnosed the failure F2 unequivocally from the first
moment. This was because although the symptoms of a low S1 and S2, and a high S3 occurred in the
15 failures, the symptom of a low S22 is only produced in F2.

Finally, Table A3 shows the results of an air cooler excessive pressure drop simulation (F3). It
can be seen that the system detected symptoms from the beginning when the engine was running at
low load. However, both the original database and the optimized database offered six failure mode
options. At low load, both databases detected a low S4 as a symptom, while the optimized database
also detected a low S33. When half the load was reached, the optimized database diagnosed the
failure unequivocally as being F3 thanks to the detection of a third symptom, a low S37. To reach
this diagnosis, it was necessary to monitor the parameters S33 and S37 of the engine that the original
database did not consider. The results did not change if the non-simulated symptoms were added.

Moreover, the top of Table A4 shows the results of a failure simulation in air compressor bank
A (F4). In this case, the system also detected symptoms from the beginning, when the engine was
running at a low load. The original database diagnosed six options F1, F3–F5, F13 and F14, while the
optimized database unequivocally identified the actual failure as being F4 from the beginning. Both
databases detected a low S4 and high S6 and S18 as symptoms. In addition, the optimized database
detected a high S20 and low S33, S35, and S37. In this case, it did not change the result of the diagnosis
if non-simulated symptoms were added in both databases.

In the middle of Table A4, the results of an air leak simulation failure in the intake manifold bank
A (F5) are presented. The system detected a single symptom from the beginning, a low S4. The original
database diagnosed six possible failures, while the optimized database offered eleven possible failure
modes. This high number of options was because this unique parameter changes under many failure
modes, as shown in the comparison of both databases (Table 5). An exception occurred at the 50% load
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point, where the optimized database detected a new symptom, a low S31. This new symptom caused
the real failure F5 to be diagnosed unequivocally.

The bottom of Table A4 shows the results of an intake valve failure simulation in cylinder 1A
(F6). It can be seen that the system detected symptoms from the first moment. The original database
diagnosed seven options, while the optimized database diagnosed the real failure in a unique way
from the beginning. Both databases detected high S6 and S18 as symptoms. Apart from that, the
optimized database detected high S20 and S31, and low S4, S33–S35, and S37. The combination of this
high number of symptoms produced a unique and robust diagnosis by the optimized database. The
diagnosis did not change when non-simulated symptoms were added in both databases.

At the top of Table A5, the results of a partial misfiring simulation in cylinder 1A (F7) can be seen.
It was observed that the system detected symptoms from the beginning when the engine ran at a low
load. The original database diagnosed three options, while the optimized database unequivocally
identified the real failure as being F7 from the beginning. The two databases detected a low S6 as a
symptom. In addition, the optimized database detected a high S35 and low S4, S33, S34, and S37. If all
database symptoms were considered, including the non-simulated ones, both databases diagnosed
the failure F7 unequivocally from the beginning. This was because although a low S1, low S2, and
high S3 symptoms occurred in all failures, the symptoms of a low S23 and S30 are only produced in
F7. However, it was necessary to have the results of the periodic analysis of S30 to be able to ensure
the failure type F7 in the case of using only the original database. Using the optimized database, the
failure could be diagnosed using only the data that is continuously monitored, which made it possible
to predict the failure before it became important.

The middle of Table A5 shows the results of the low cylinder compression rate simulation in
cylinder 1A (F8). The system detected symptoms from the beginning when the engine ran at a low
load. The original database diagnosed 15 possible simulated thermodynamic failure modes, while the
optimized database unequivocally diagnosed the actual failure as being F8. At higher load values, the
original database reduced the number of possible failures it offered, but seven options remained. The
two databases detected high S6 and S18 as symptoms. In addition, the optimized database detected a
high S20 and low S4, S31, S33–S35, and S37. If all the database symptoms were considered, including
the non-simulated ones, both databases diagnosed the failure F8 unequivocally from the beginning.
This was because although the low S1, low S2, and high S3 symptoms are produced in all failures, the
symptoms of a low S23 and high S24–S28 are produced only in F8. The symptoms of metal content in
oil will appear and increase its value as the piston rings/cylinder liner wear increases. The symptoms of
the content of metal particles in oil usually appears from an initial phase; therefore, they are expected
to appear from the beginning. To dispose of them, it is necessary to carry out periodic analyses with
the appropriate frequency or to have an oil monitoring system on line.

At the bottom of Table A5, the results of a simulation of a low clearance between the rocker arm
and valves in cylinder 1A (F9) can be seen. The system did not detect any symptoms in any load, nor
the original database, nor the optimized database. This was because although there are symptoms, they
vary below the minimum level of variation set at 5% compared to the value when it works normally.
If all the database symptoms were taken into account, including the non-simulated ones, the difference
was that a problem was detected from the beginning but without knowing which of the 15 failures
would be the one that was occurring. This was because the symptoms of low S1, low S2, and high S3
would be activated according in both databases defined by experts using the RCM methodology.

The top of Table A6 shows the results of a simulation of a high clearance between the rocker arm
and valves in cylinder 1A (F10). The result was exactly the same as in the previous simulation failure
F9. Therefore, the same conclusions are applicable in this case.

The middle of Table A6 shows the results of the injection timing failure simulation in cylinder 1A
(injection advance) (F11). It can be seen that the system began to detect symptoms when the engine
reached a 75% load. At this load, the original database still did not detect anything, while the optimized
database detected the symptom of a low S4, which was enough to diagnose the actual failure F11 that
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was simulated because it was the only one that has this very symptom. Other failures have it, but
combined with other symptoms that do not appear in this case. If all the database symptoms were
considered, including the non-simulated ones, they would have been detected from the beginning
that there was a problem, although not knowing which of the 15 failures would be the one that
was occurring.

The bottom of Table A6 shows the results of the timing injection failure simulation in cylinder 1A
(injection delay) (F12). The system began to detect symptoms when the engine reached a 50% load.
When the engine rose to a 75% load, the diagnosis was not as efficient because the variation of a low S4
was lower than 5% and was no longer considered a symptom. On the other hand, the original database
still did not detect anything. In general terms, the optimized database diagnosed the failure that was
occurring any time the engine reached a 50% load. If all the symptoms were considered, they would
have been detected that there is a failure from the beginning, although not knowing which of the
15 failures would be the one that was occurring. When the engine reached a 50% load, the diagnosis
would be the same as the one indicated by considering only the simulated parameters.

The top of Table A7 shows the results of a failure simulation in turbine bank A (F13). The
system detected symptoms from the first moment when the engine was at a low load. Both the
original database and the optimized database offered failure F13 unequivocally. The diagnosis was
maintained throughout the load range. The two databases detected a low S4 and high S6, S18, and S20
as symptoms. In addition, the optimized database detected low S31, S34, S35, and S37, and high S33
as symptoms. In this case, the diagnosis capacity was the same for the two databases, although the
optimized database offered greater diagnostic reliability since it was composed of a combination of a
larger number of symptoms.

The middle of Table A7 shows the results of a leakage in the exhaust manifold bank A (F14). It
can be seen that the optimized database detected symptoms from the beginning, while the original
database only did so at a 50% load. At a low load, the optimized database offered four possible failures
as a diagnosis. When the engine reached a 50% load, it was able to uniquely diagnose the failure as
being F14. For its part, the original database, which did not detect anything at low load, offered six
options as a diagnosis when it reached a 50% load. The original and optimized databases detected the
same symptom, a low S4; however, the optimized database also detected low S31 and S33 symptoms,
whose combination produced the unmistakable diagnosis of the failure F14 at a 50% load. Considering
the non-simulated symptoms with both databases did not change the result of the diagnosis made by
the optimized database. Instead, the original database did detect that there was an anomaly but did
not know what type of failure was occurring.

The bottom of Table A7 shows the simulation of an excessive pressure drop in the exhaust ducts
(F15). It was observed that the original database did not detect anything at any time. Meanwhile,
the optimized database detected symptoms from the beginning, although at low and medium load
offered of two possible failures as a diagnosis; at a 75% load was when it unequivocally identified the
failure as being F15. At low and medium loads, the optimized database first identified first a high S33,
and later low S4 and S31, as symptoms. When it reached a high load, it also detected the symptoms
of low S37 and high S20, which was when it diagnosed the failure in an unequivocal way. If all the
database symptoms were considered, including the non-simulated ones, the diagnosis of the optimized
database was the same. Instead, it improved the diagnosis made by original database, which went
from not detecting anything identifying that there was an anomaly, but it could not distinguish the
failure among the 15 possible failure modes.

Table 6 shows a summary of the analysis between the original failure database and the optimized
failure database.
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Table A3. Comparative diagnostics made using the original versus optimized databases under
simulated failures (part 1 of 5).
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Excessive Air Filter Pressure Drop (F1 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) - - b) S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

a) - - a) S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) - - b) S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

a) - - a) S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) - - b) S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L ,S37 L F1 b) S1 L , S2 L , S3 H F1

a) F1,F3,F4,F5,F13,F14 a) F1,F3,F4,F5,F13,F14

b) F1 b) F1

Reduction of Air Cooler efficiency (F2)

Symptoms (S i) Diagnosis (F i) Symptoms (S i) Diagnosis (F i)

a) - - a)S1 L , S2 L , S3 H , S22 L F2

b) - - b) S2 L , S3 H , S22 L F2

a) - - a) S2 L , S3 H , S22 L F2

b) - - b) S2 L , S3 H , S22 L F2

a) S5 H F2,F3 a) S2 L , S3 H , S22 L F2

b) S5 H F2,F6 b) S2 L , S3 H , S22 L F2

a) S5 H F2,F3 a)S1 L , S2 L , S3 H , S22 L F2

b) S4 H ,S5 H F2 b)S1 L , S2 L , S3 H , S22 L F2

a) F2,F3 a) F2

b) F2 b) F2

Excessive Air Cooler Pressure Drop (F3)

Symptoms (S i) Diagnosis (F i) Symptoms (S i) Diagnosis (F i)

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L ,S33 L F3,F4,F6,F7,F8,F14 b) S1 L , S2 L , S3 H F3,F4,F6,F7,F8,F14

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L ,S33 L, S37 L F3 b) S1 L , S2 L , S3 H F3

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L F1,F3,F4,F5,F6,F7,F8,F11, b) S1 L , S2 L , S3 H F1,F3,F4,F5,F6,F7,F8,F11,
F13,F14,F15 F13,F14,F15

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L F1,F3,F4,F5,F6,F7,F8,F11, b) S1 L , S2 L , S3 H F1,F3,F4,F5,F6,F7,F8,
F13,F14,F15 F11,F13,F14,F15

a) F1,F3,F4,F5,F13,F14 a) F1,F3,F4,F5,F13,F14

b) F3 b) F3

Key: a) Original FMECA failure database. "-" No diagnostics made

b) Optimized database. "F i " Several diagnostics possible

SiL Symptom Si activated by low "L" level. "F i " A unique diagnostic made

SiH Symptom Si activated by hig "H" level.

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms
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Table A4. Comparative diagnostics made using the original versus optimized databases under
simulated failures (part 2 of 5).
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Air compressor failure (F4 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

25% load a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L , S31 H , S33 L, S35 L, F4 b) S1 L , S2 L , S3 H F4

S37 L

50% load a) S4 L , S6 H , S18 H F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L , S6 H , S18 H , S20 H , F4 b) S1 L , S2 L , S3 H F4

, S31 H , S33 L, S35 L, S37 L

75% load a) S4 L , S6 H , S18 H F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L , S6 H , S18 H , S20 H , F4 b) S1 L , S2 L , S3 H F4

S31 H , S33 L, S35 L, S37 L

100% load a) S4 L , S6 H , S18 H F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L , S6 H , S18 H , S20 H , F4 b) S1 L , S2 L , S3 H F4

S31 H , S33 L, S35 L, S37 L

a) F1,F3,F4,F5,F13,F14 a) F1,F3,F4,F5,F13,F14

b) F4 b) F4

Intake Manifold Air Leakage (F5 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L F1,F3,F4,F5,F6,F7,F8,F11, b) S1 L , S2 L , S3 H F1,F3,F4,F5,F6,F7,F8,F11,
F13,F14,F15 F13,F14,F15

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L , S31 L F5 b) S1 L , S2 L , S3 H F5

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L F1,F3,F4,F5,F6,F7,F8,F11, b) S1 L , S2 L , S3 H F1,F3,F4,F5,F6,F7,F8,F11,
F13,F14,F15 F13,F14,F15

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L F1,F3,F4,F5,F6,F7,F8,F11, b) S1 L , S2 L , S3 H F1,F3,F4,F5,F6,F7,F8,F11,
F13,F14,F15 F13,F14,F15

a) F1,F3,F4,F5,F13,F14 a) F1,F3,F4,F5,F13,F14

b) F5 b) F5

Intake Valve Leakage (F6)

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i ) Diagnosis (F i )

a) S6H,S18H F6,F7,F8,F9,F11,F12,F15 a) S1 L , S2 L , S3 H F6,F7,F8,F9,F11,F12,F15

b) S5H,S6H,S18H,S20H,S31L F6 b) S1 L , S2 L , S3 H F6

S33L,S34L,S37L

a) S6H,S18H F6,F7,F8,F9,F11,F12,F15 a) S1 L , S2 L , S3 H F6,F7,F8,F9,F11,F12,F15

b) S4L,S5H,S6H,S18H,S20H, F6 b) S1 L , S2 L , S3 H F6

S31L,S33L,S34L,S37L

a) S6H,S18H F6,F7,F8,F9,F11,F12,F15 a) S1 L , S2 L , S3 H F6,F7,F8,F9,F11,F12,F15

b) S4L,S5H,S6H,S18H,S20H, F6 b) S1 L , S2 L , S3 H F6

S31H,S33L,S34L,S37L

a) S6H,S18H F6,F7,F8,F9,F11,F12,F15 a) S1 L , S2 L , S3 H F6,F7,F8,F9,F11,F12,F15

b) S4L,S5H,S6H,S18H,S20H, F6 b) S1 L , S2 L , S3 H F6

S31H,S33L,S34L,S35H,S37L

a) F6,F7,F8,F9,F11,F12,F15 a) F6,F7,F8,F9,F11,F12,F15

b) F6 b) F6

Key: a) Original FMECA failure database. "-" No diagnostics made

b) Optimized database. "F i " Several diagnostics possible

SiL Symptom Si activated by low "L" level. "F i " A unique diagnostic made

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms
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Table A5. Comparative diagnostics made using the original versus optimized databases under
simulated failures (part 3 of 5).
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Partial misfiring (F7)

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) S6 L F7,F8,F10 a) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

b) S6 L , S34 L F7 b) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

a) S6 L F7,F8,F10 a) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

b) S4 L , S6 L , S31 L , S33 L, S34 L F7 b) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

a) S6 L F7,F8,F10 a) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

b) S4 L , S6 L , S33 L , S34 L, S37 L F7 b) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

a) S6 L F7,F8,F10 a) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

b) S4 L , S6 L , S31 L , S33 L , S34 L , F7 b) S1 L , S2 L , S3 H ,S23 L ,S30 H F7

S35 H , S37 L

a) F7,F8,F10 a) F7

b) F7 b) F7

Low Cylinder Compression Rate (F8 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) S6 H F1,F2,F3,F4,F5,F6,F7,F8, a) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

F9,F10,F11,F12,F13,F14,F15 S26 H ,S27 H ,S28 H

b) S4 L , S6 H , S31 L , S33 L , S34 L, F8 b) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

S35 L , S37 L S26 H ,S27 H ,S28 H

a) S6 H F1,F2,F3,F4,F5,F6,F7,F8, a) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

F9,F10,F11,F12,F13,F14,F15 S26 H ,S27 H ,S28 H

b) S4 L , S6 H , S31 L , S33 L , S34 L, F8 b) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

, S35 L , S37 L S26 H ,S27 H ,S28 H

a) S6 H , S18 H F6,F7,F8,F9,F11,F12,F15 a) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

S26 H ,S27 H ,S28 H

b) S4 L , S6 H , S18 H , S20 H , S31 L , F6,F8 b) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

S33 L, S34 L , S37 L S26 H ,S27 H ,S28 H

a) S6 H , S18 H F6,F7,F8,F9,F11,F12,F15 a) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

S26 H ,S27 H ,S28 H

b) S4 L , S6 H , S18 H , S20 H , S31 L , F6,F8 b) S1 L , S2 L , S3 H ,S24 H ,S25 H, F8

S33 L, S34 L , S37 L , S26 H ,S27 H ,S28 H

a) F6,F7,F8,F9,F11,F12,F15 a) F8

b) F8 b) F8

Low Clearance Between Rocker Arm and Cylinder Valves (F9 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - a) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) - b) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

Key: a) Original FMECA failure database. "-" No diagnostics made

b) Optimized database. "Fi" Several diagnostics possible

SiL Symptom Si activated by low "L" level. "Fi" A unique diagnostic made

SiH Symptom Si activated by hig "H" level.

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms
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Table A6. Comparative diagnostics made using the original versus optimized databases under
simulated failures (part 4 of 5).
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High Clearance Between Rocker Arm and Cylinder Valves (F10 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - a) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) - b) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

Timing Failure - Inyection Advance (F11 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S4L F11 b) S1 L , S2 L , S3 H F11

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - a) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) F11 b) F11

Timing Failure - Inyection Delay (F12 )

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S4H,S31H F12 b) S1L,S2L,S3H F12

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S4H F2,F12 b) S1L,S2L,S3H F2,F12

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - a) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) F12 b) F12

Key: a) Original FMECA failure database. "-" No diagnostics made

b) Optimized database. "F i " Several diagnostics possible

SiL Symptom Si activated by low "L" level. "F i " A unique diagnostic made

SiH Symptom Si activated by hig "H" level.

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final diagnosis 
by all 

symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms
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Table A7. Comparative diagnostics made using the original versus optimized databases under
simulated failures (part 5 of 5).
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Turbine Failure (F13)

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) S4 L , S6 H , S18 H , S20 H F13 a) S1 L , S2 L , S3 H F13

b)S4 L , S6 H , S20 H , S31 L, S33 H F13 b) S1 L , S2 L , S3 H F13

S34 L , S35 L, S37 L

a) S4 L , S6 H , S18 H , S20 H F13 a) S1 L , S2 L , S3 H F13

b)S4 L , S6 H , S18 H , S20 H , S31 L F13 b) S1 L , S2 L , S3 H F13

S33 H , S34 L , S35 L, S37 L

a) S4 L , S6 H , S18 H , S20 H F13 a) S1 L , S2 L , S3 H F13

b)S4 L , S6 H , S18 H , S20 H , S31 L F13 b) S1 L , S2 L , S3 H F13

S33 H , S34 L , S35 L, S37 L

a) S4 L , S6 H , S18 H , S20 H F13 a) S1 L , S2 L , S3 H F13

b)S4 L , S6 H , S18 H , S20 H , S31 L F13 b) S1 L , S2 L , S3 H F13

S33 H , S34 L , S37 L

a) F13 a) F13

b) F13 b) F13

Exhaust Manifold Gas Leakage (F14)

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S31 L , S33 L F6,F7,F8,F14 b) S1 L , S2 L , S3 H F6,F7,F8,F14

a) S4 L F1,F3,F4,F5,F13,F14 a) S1 L , S2 L , S3 H F1,F3,F4,F5,F13,F14

b) S4 L , S31 L , S33 L F14 b) S1 L , S2 L , S3 H F14

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) - - b) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

a) - - a) S1 L , S2 L , S3 H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S33 L F3,F4,F6,F7,F8,F14 b) S1 L , S2 L , S3 H F3,F4,F6,F7,F8,F14

a) F1,F3,F4,F5,F13,F14 a) F1,F3,F4,F5,F13,F14

b) F14 b) F14

Excessive Gas Pressure Drop After Turbine (F15)

Symptoms (S i ) Diagnosis (F i ) Symptoms (S i) Diagnosis (F i)

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S33 H F13,F15 b) S1L,S2L,S3H F13,F15

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S4 L , S31 L , S33 H F13,F15 b) S1L,S2L,S3H F13,F15

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b) S4 L , S31 L , S33 H , S37 L F15 b) S1L,S2L,S3H F15

a) - - a) S1L,S2L,S3H F1,F2,F3,F4,F5,F6,F7,F8,

F9,F10,F11,F12,F13,F14,F15

b)S4 L , S20 H , S31 L , S33 H ,S37 L F15 b) S1L,S2L,S3H F15

a) - a) F1,F2,F3,F4,F5,F6,F7,F8,
F9,F10,F11,F12,F13,F14,F15

b) F15 b) F15

Key: a) Original FMECA failure database. "-" No diagnostics made

b) Optimized database. "F i " Several diagnostics possible

SiL Symptom Si activated by low "L" level. "F i " A unique diagnostic made

SiH Symptom Si activated by hig "H" level.

Final 
diagnosis by 
all symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final 
diagnosis by 
all symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms

Final 
diagnosis by 
all symthoms

25% load

50% load

75% load

100% load

Final diagnosis 
by simulated 

symptoms
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