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Abstract: Multilevel inverters are proficient in achieving a high-quality staircase output voltage
waveform with a lower amount of harmonic content. In this paper, a new hybrid multilevel inverter
topology based on the T-type and H-bridge module is presented. The proposed topology aims to
achieve a higher number of levels utilizing a lower number of switches, direct current (dc) voltage
sources, and voltage stresses across different switches. The basic unit of the proposed single T-type
and double H-bridge multilevel inverter (STDH-MLI) produces 15 levels at the output using three
dc voltage sources. The proposed topology can be extended by connecting a larger number of dc
voltage sources in the T-type section. The nearest level control (NLC) switching technique is used to
generate gate pulses for switches to achieve a high-quality output voltage waveform. In addition,
a simplified way to achieve NLC is also described in the paper. A detailed comparison with other
similar topologies is provided to set the benchmark of the proposed topology. Finally, experimental
work is carried out to validate the performance of the proposed topology.

Keywords: H-bridge; hybrid inverter; multilevel inverter; nearest level control; pulse width
modulation (PWM); T-type; reduced switch count; PLECS

1. Introduction

Over the past two to three decades, multilevel inverters have become a favorite choice for
industrial applications due to their advantages, such as better output voltage quality, reduced
electromagnetic interference (EMI), a lower voltage rating of switches for higher voltage generation
with high efficiency, and a decrease in the size of the filter compared to their two-level counterpart.
Multilevel inverters (MLIs) arrange the power electronics components and direct current (dc) voltage
sources with or without capacitors to achieve an output voltage waveform close to a sinusoidal
waveform. Three conventional MLI topologies, i.e., neutral point clamped (NPC) multilevel inverter,
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flying capacitor (FC) multilevel inverter, and cascade H-bridge (CHB) multilevel inverter, have been
extensively explored and commercialized. As the number of levels increases, the number of components
increases significantly, i.e., clamping diodes with switches in NPC, flying capacitors in FC, and isolated
dc voltage sources in CBH [1–3]. In order to overcome these drawbacks, hybrid MLIs have become an
area of intense research [4,5].

A hybrid MLI topology has been divided into two sections. The first section is commonly known as
a level generation unit, which generates the different voltage levels in unidirectional polarity. To convert
the output of the level generation unit into an alternating quantity, an H-bridge structure is commonly
used. The H-bridge generates both positive and negative polarities across the load. Several hybrid MLI
topologies that employ an H-bridge have been proposed in the literature. Hinago and Koizumi in [6]
suggested a hybrid topology. The proposed switched series/parallel sources (SSPS) topology has the
ability to utilize the different dc voltage sources in series and parallel combinations to provide affability
in terms of voltage and current obligations for different loads. A topology similar to [6] has been
suggested in [7]. In this topology, only a series connection of different dc voltage sources is possible.

Another category of hybrid topologies has been suggested in [8–11]. These topologies have a
notable difference in connecting an additional dc voltage source that precedes the H-bridge. In [8–10],
the dc voltage source has been directly connected to the H-bridge. In such configurations, the number
of levels has been reduced as one of the voltage sources will appear in each of the voltage levels
across the load. This problem has been solved in [11], as the dc voltage source has been configured
in a half bridge with two switches. With this configuration, the number of levels doubles. In all the
topologies, the main problem has been the higher switch count to generate a particular number of
levels at the output.

In recent years, there has been some improvement in the hybrid topologies. In [12], a hybrid
single-phase MLI has been proposed employing one H-bridge and two power frequency transformers.
Two dc voltage sources with 10 switches and two transformers were used to achieve 19 levels at the
output having different transformer turn ratios. The use of two transformers made the topology bulky
and costly. A single-phase hybrid seven-level MLI has been proposed in [13]. It uses one dc voltage
source with three capacitors with eight switches. The use of capacitors in the topology conveys the
problem of capacitor voltage balancing with additional losses associated with them. Similarly, another
single-phase hybrid MLI topology for nine levels at the output by means of 12 switches and four
capacitors was proposed in [14]. Likewise, a nine-level single-phase hybrid MLI has been reported
in [15] for grid connection using 10 switches and three capacitors. In all these topologies, the use of an
H-bridge increases the total standing voltage (TSV) of the topology as the switches connected to the
H-bridge need to block the maximum output voltage.

Some topologies based on the T-type have also been published in several papers. References [16]
and [17] present two similar topologies based on a back-to-back connection of T-types. Thirteen levels
can be produced in the E-type [16] and 17 levels in the ST-type [17] using four dc voltage sources with
10 and 12 switches, respectively. Similarly, other MLI topologies have been proposed in [18–28].

This paper proposes a new hybrid multilevel inverter topology that combines a T-type MLI and an
H-bridge to achieve a staircase output voltage. The proposed topology aims to achieve a larger number
of levels with a reduction in the number of switches and dc voltage sources along with reduced voltage
stress across switches. This paper is organized as follows. Section 2 gives the description and analysis of
the proposed topology along with the mathematical formulation of TSV. A detailed comparative study
with several recently proposed topologies has been carried out in Section 3. The control technique used
for the proposed MLI has been described in Section 4, and Section 5 deals with the power loss analysis.
The results and discussion are provided in Section 6. The proposed topology has been summarized in
Section 7.
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2. Description and Analysis of the Proposed Topology

2.1. Basic Unit of the Proposed Topology

Figure 1 depicts the circuit diagram of the basic unit of the proposed multilevel inverter topology.
As shown in Figure 1, the basic unit consists of eight unidirectional switches and one bidirectional
switch with three dc voltage sources. Two dc voltage sources with a magnitude of 3Vdc are connected
on the left-hand side of the basic unit. These two dc voltage sources along with the bidirectional switch
S1 form the T-type section of the proposed basic unit. The T-type section is operated at a high voltage
and a low frequency. The switches S2–S9 form two H-bridges, i.e., one H-bridge (H1) formed by S2, S3,
S8, and S9 and remaining switches S4–S7 form the other H-bridge (H2) with a dc voltage source with a
magnitude of Vdc. H1 works at the low switching frequency and H2 operates at the high switching
frequency. The load is connected between these two H-bridges. Therefore, the proposed topology
can be termed as a “Single-T Double H-bridge” (STDH) MLI. The different switching strategy of the
proposed STDH-MLI to generate different voltage levels at the output is given in Table 1. Similarly,
Figure 2a–h demonstrate the different combinations of switches and dc voltage sources of the basic
unit in the positive half cycle.
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Figure 1. Basic unit of proposed multilevel inverter topology.

Table 1. Switching Table of the Proposed Basic Unit.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Vo

0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 0 1 1 0 Vdc
1 0 0 0 1 1 0 1 0 2Vdc
1 0 0 0 1 0 1 1 0 3Vdc
1 0 0 1 0 0 1 1 0 4Vdc
0 0 1 0 1 1 0 1 0 5Vdc
0 0 1 0 1 0 1 1 0 6Vdc
0 0 1 1 0 0 1 1 0 7Vdc

0 0 1 0 1 0 1 0 1 0
0 0 1 0 1 1 0 0 1 −Vdc
1 0 0 1 0 0 1 0 1 −2Vdc
1 0 0 1 0 1 0 0 1 −3Vdc
1 0 0 0 1 1 0 0 1 −4Vdc
0 1 0 1 0 0 1 0 1 −5Vdc
0 1 0 1 0 1 0 0 1 −6Vdc
0 1 0 0 1 1 0 0 1 −7Vdc
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Figure 2. Different switching states of the proposed basic unit in a positive half cycle (a) Vo = 0, (b) Vo

= Vdc, (c) Vo = 2Vdc, (d) Vo = 3Vdc, (e) Vo = 4Vdc, (f) Vo = 5Vdc, (g) Vo = 6Vdc, and (h) Vo = 7Vdc.

2.2. Generalized Structure of the Proposed Topology

To increase the number of levels at the output, the suggested basic unit can be extended as
shown in Figure 3. This is done by adding more dc voltage sources to the T-type section. Therefore,
when adding one dc voltage source, one bidirectional switch needs to be added to the basic unit.
The equations for the proposed STDH-MLI with k number of dc voltage sources are given as:

Number of Levels = Nlevel = n = 3(2k− 1) (1)

Number of Switches = Nswitch = 2k + 4 (2)

Number of Driver Circuits = Ndriver = k + 6 (3)

Variety of dc sources = Nvariety = 2 (4)
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2.3. Calculation of Total Standing Voltage (TSV)

The total standing voltage (TSV) of the topology is an important parameter as it decides the
voltage rating of switches to be used in the MLI. TSV is the sum of all the voltage stresses across each
switch considering each level at the output. For the proposed STDH-MLI, TSV can be expressed as:

TSV = TSVT + TSVH1 + TSVH2 (5)

where TSVT is the TSV of the T-section consisting of all bidirectional switches S11 to Sk−2,k−2. TSVH1

and TSVH2 represent the TSV of H-bridge H1 (made up of S2, S3, S8, and S9) and H-bridge H2 consisting
of switches S4 to S7, respectively. TSVT can be calculated as follows:

TSVT = M× 3Vdc (6)

where M in terms of k is given by

M = 3k2
−4k+1

4 for an odd number of k
M = 3k2

−4k
4 for a even number of k

(7)

The voltage across each switch connected in H1 is (k − 1)V1 as all the switches of H1 are connected
to the dc voltage sources connected in the T-section. Therefore,

TSVH1 = 4(k− 1) × 3Vdc (8)

Similarly,
TSVH2 = 4Vdc (9)

Therefore, from (6)–(9), total TSV of the proposed MLI is given as:

TSV = (3M + 12k− 8)Vdc (10)

3. Comparative Study

3.1. Comparison of Basic Units

The performance of the proposed basic unit is determined by comparing with it with several new
topologies with three dc voltage sources and is given in Table 2. From Table 2, the proposed topology
generates the maximum number of levels along with [18], but [18] has higher TSV. TSV is an important
factor in the selection of switches. The proposed topology has the least TVS/Nlevel, which appears to be
an essential factor for an MLI. In addition, the proposed topology does not use any power diode apart
from the antiparallel diodes connected to the switches, which results in a lower amount of losses.

Table 2. Quantitative Comparison of the Basic Unit with Topologies having Three direct current (dc)
Voltage Sources.

Topology A B C D E TSV (×Vdc) TVS/D

[18] 10 10 0 15 3 42 2.80
[19] 12 9 0 11 2 35 3.18
[20] 7 7 4 9 2 26 2.89
[21] 7 7 4 9 2 21 2.33

Proposed 10 9 0 15 2 31 2.07

3.2. Comparison of Generalized Structure

The proposed topology can generate any number of levels using the generalized structure.
The generalized structure has been compared with some similar MLI topologies to prove the superiority
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of the proposed topology. The comparison has been carried out in terms of the number of switches,
the required number of driver circuits, the number of dc voltage sources, and TSV against the number
of levels across the load. Figure 4a presents the variation of number of switches corresponding to the
number of levels across the load. The proposed topology requires a lower number of switches with
contrast to the other topologies as shown in Figure 4a. As the proposed topology uses bidirectional
switches made up of two unidirectional switches connected in a common emitter configuration,
the required number of driver circuits is less than the number of switches used in the topology.
Figure 4b correlates the required number of driver circuits and the number of levels at the output.
The proposed topology uses a minimal number of driver circuits compared to all other topologies used
for the comparison.
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A figure correlating the number of dc voltage sources with the number of levels across the load
is shown in Figure 5a. As shown in the figure, the proposed topology requires a lower number
of dc voltage sources except [17]. Similarly, the voltage stress represented as TSV has been shown
in Figure 5b. The proposed topology has a lower TSV compared to [6,19]. From this comparison,
the proposed topology has a lower number of switches, driver circuits, dc voltage sources, and TSV.
The lower number of components along with the lower amount of TSV gives an upper edge to the
proposed topology for low- and medium-voltage applications. The lower number of components also
reduces the cost and size of the proposed topology.
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4. Nearest Level Control Modulation Method

Several modulation techniques have been researched and applied to multilevel inverters, such
as carrier-based (CB) PWM, Space Vector (SV) PWM, and selective harmonic elimination (SHE)
PWM. CBPWM techniques use multiple carrier signals to generate gate pulses but cause higher
switching losses. In SVPWM, the complexity of the algorithm increases as the number of levels at the
output increases. Likewise, with SHEPWM, the calculation of switching angles becomes more and
more complex with increases in the number of levels [29–32]. The nearest level control (NLC) is a
low-switching-frequency PWM technique [33]. In the NLC method, the calculation time is reduced
with the complexity in the implementation with an increase in the number of levels compared to
SVPWM and SHEPWM. In this method, the sampled waveform can be generated by comparing
the sinusoidal reference signal with the existing voltage level at the output as shown in Figure 6a.
Figure 6b shows the general control diagram for the NLC. A simplified NLC implementation scheme
is given in Figure 6c, where x = (n − 1)/2. The reference signal is multiplied by x to obtain the amplified
signal. This signal is compared with different constant dc lines to generate the pulses, and a switching
logic is used to combine different pulses to generate the switching pulses for the different switches.



Energies 2019, 12, 1810 8 of 15

Energies 2019, 12, x FOR PEER REVIEW 7 of 15 

 

 
(a) 

 
(b) 

Figure 5. Variation of (a) number of dc voltage sources and (b) voltage stress in terms of total standing 
voltage (TSV) with respect to number of levels. 

4. Nearest Level Control Modulation Method 

Several modulation techniques have been researched and applied to multilevel inverters, such 
as carrier-based (CB) PWM, Space Vector (SV) PWM, and selective harmonic elimination (SHE) 
PWM. CBPWM techniques use multiple carrier signals to generate gate pulses but cause higher 
switching losses. In SVPWM, the complexity of the algorithm increases as the number of levels at the 
output increases. Likewise, with SHEPWM, the calculation of switching angles becomes more and 
more complex with increases in the number of levels [29–32]. The nearest level control (NLC) is a 
low-switching-frequency PWM technique [33]. In the NLC method, the calculation time is reduced 
with the complexity in the implementation with an increase in the number of levels compared to 
SVPWM and SHEPWM. In this method, the sampled waveform can be generated by comparing the 
sinusoidal reference signal with the existing voltage level at the output as shown in Figure 6a. Figure 
6b shows the general control diagram for the NLC. A simplified NLC implementation scheme is 
given in Figure 6c, where x = (n − 1)/2. The reference signal is multiplied by x to obtain the amplified 
signal. This signal is compared with different constant dc lines to generate the pulses, and a switching 
logic is used to combine different pulses to generate the switching pulses for the different switches. 

 
(a) 

  

0

10

20

30

15 21 27 33 39 45 51

N
um

be
r o

f d
c 

V
ol

ta
ge

 
So

ur
ce

s

Number of Levels

[Proposed] [6] [16]

[17] [19] [22]

0

40

80

120

160

200

15 21 27 33 39 45 51

TS
V

 (×
V

dc
)

Number of Levels

[Proposed] [6]

[17] [19]

Energies 2019, 12, x FOR PEER REVIEW 8 of 15 

 

 
(b) 

 
(c) 

Figure 6. Nearest level control (NLC) with (a) sampled reference voltage, (b) Implementation of NLC 
and (c) and simplified NLC implementation. 

5. Power Loss Analysis 

For any power converter with power semiconductor devices, two major losses take place, 
namely conduction loss (Pc) and switching loss (Psw) [27]. Equivalent resistance and On-state voltage 
drop of devices are the main factors that decide the amount of conduction loss. The conduction loss 
for a switch (𝑃 ) and its antiparallel diode (𝑃 ) is calculated as follows: 𝑃 = 𝑉 𝑖(𝑡) + 𝑅 𝑖 (𝑡) (11)𝑃 = 𝑉 𝑖(𝑡) + 𝑅 𝑖 (𝑡) (12)

where 𝑉  and 𝑉  represent the On-state voltage drop of the switch and its antiparallel diode, 
respectively. 𝑅  and 𝑅  are the equivalent resistance of the switch and diode, respectively, and the 
constant 𝛽 depends upon the different parameters of the switch. All these factors associated with 
the conduction losses can be found from the datasheet of the switch. The average conduction loss for 
a fundamental period (2π) is calculated as: 

𝑃 = 12𝜋 𝑉 𝑖(𝑡) + 𝑅 𝑖 (𝑡) 𝑑𝑡 + 12𝜋 𝑉 𝑖(𝑡) + 𝑅 𝑖 (𝑡) 𝑑𝑡. (13)

Switching losses are another type of losses associated with semiconductor devices. Switching 
losses occur due to the non-ideal operations of the power semiconductor devices. To calculate 
switching losses, it is assumed that the voltage and current during turn-ON and turn-OFF vary 
linearly. Thus 

𝑃 = 𝑁 𝐸 + 𝑁 𝐸 × 𝑓 (14)

where 𝑁  and 𝑁  represent the number of turn-ONs and turn-OFFs during one complete cycle 
for the xth switch. 𝐸  and 𝐸  are the energy losses during turn-ON and turn-OFF in one 
complete cycle for the xth switch and its anti-parallel diode, respectively, and f represents the 
fundamental frequency of the output voltage. Therefore, total losses (Pt) is the sum of both conduction 
and switching losses, given by 𝑃 = 𝑃 + 𝑃 . (15)

Therefore, the efficiency (𝜂) of the converter with output power Po is given by 

Figure 6. Nearest level control (NLC) with (a) sampled reference voltage, (b) Implementation of NLC
and (c) and simplified NLC implementation.

5. Power Loss Analysis

For any power converter with power semiconductor devices, two major losses take place, namely
conduction loss (Pc) and switching loss (Psw) [27]. Equivalent resistance and On-state voltage drop
of devices are the main factors that decide the amount of conduction loss. The conduction loss for a
switch (PcS ) and its antiparallel diode (Pcd ) is calculated as follows:

PcS = VSON i(t) + Rsiβ(t) (11)

Pcd = VdON i(t) + Rdi2(t) (12)

where VSON and VdON represent the On-state voltage drop of the switch and its antiparallel diode,
respectively. Rs and Rd are the equivalent resistance of the switch and diode, respectively, and the
constant β depends upon the different parameters of the switch. All these factors associated with the
conduction losses can be found from the datasheet of the switch. The average conduction loss for a
fundamental period (2π) is calculated as:

Pc =

Ns∑
x=1

1
2π

∫ 2π

0

(
VSON i(t) + Rsiβ(t)

)
dt +

Nd∑
x=1

1
2π

∫ 2π

0

(
VdON i(t) + Rdi2(t)

)
dt. (13)

Switching losses are another type of losses associated with semiconductor devices. Switching losses
occur due to the non-ideal operations of the power semiconductor devices. To calculate switching
losses, it is assumed that the voltage and current during turn-ON and turn-OFF vary linearly. Thus

Psw =

 Ns∑
x=1

(NONxEONx + NOFFxEOFFx)

× f (14)
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where NONx and NOFFx represent the number of turn-ONs and turn-OFFs during one complete cycle
for the xth switch. EONx and EOFFx are the energy losses during turn-ON and turn-OFF in one complete
cycle for the xth switch and its anti-parallel diode, respectively, and f represents the fundamental
frequency of the output voltage. Therefore, total losses (Pt) is the sum of both conduction and switching
losses, given by

Pt = Pc + Psw. (15)

Therefore, the efficiency (η) of the converter with output power Po is given by

η =
Po

Po + Pt
× 100%. (16)

The PLECS software has been used for the calculation of power loss of the semiconductor devices
of the proposed topology. The thermal modeling of the proposed topology has been simulated using
the parameters of the IGBT switch IKW20N60H3. The energy losses EON and EOFF are associated with
the ON-state current and OFF-state blocking voltages. For the selected IGBT, the curves of energy
loss with respect to the ON-state current (iON) and OFF-state blocking voltage (Vblock) are given in
Figure 7. Figure 7a,b show the curve of energy loss for turn-ON losses and turn-OFF losses, respectively.
Figure 7c relates the ON-state voltage drop with ON-state current and it is used for the calculation of
the conduction losses.
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Figure 8a shows the efficiency of the proposed converter with respect to the output power Po.
The estimated efficiency of the proposed converter comes out to be 97.8% at the output power of
50 W. The efficiency of the output power at 5 kW was found to be 93.7%. Furthermore, the proposed
topology has been compared with the topology proposed in [18] in terms of efficiency and the results
are shown in Figure 8b. To estimate the efficiency, NLCPWM was used with the same peak voltage
for both topologies. It is clear from Figure 8b that the efficiency of the proposed topology is better
compared to [18].
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Figure 8. Estimated efficiency of (a) the proposed topology, and (b) comparison of efficiency of the
proposed topology and the topology of [18].

In terms of efficiency, the proposed topology has been analyzed with both low- and
high-switching-frequency techniques. For the low-switching frequency, NLC is used and for the
high-switching frequency, sinusoidal PWM (SPWM) is used with the in-phase disposition configuration
of the carrier signals. Figure 9a–d show the output voltage waveform of the proposed topology with
different switching frequencies and NLCPWM. For SPWM, the carrier frequency has been selected as 5 kHz,
2.5 kHz, and 1 kHz, and the respective 15-level output voltage is depicted in Figure 9a–c, respectively.
Figure 9d shows the output voltage waveform with NLCPWM. For all the above four cases, the efficiency
has been calculated and the different efficiency versus output power curves are shown in Figure 10.
As shown in Figure 10, the proposed topology with NLC gives improved efficiency compared to SPWM.
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Figure 9. Fifteen-level output voltage with (a) SPWM with fc = 5 kHz, (b) SPWM with fc = 2.5 kHz,
(c) SPWM with fc = 1 kHz, and (d) NLCPWM.
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Figure 10. The efficiency versus output power curve with different switching frequencies.

In addition, the power loss distribution across the different switches has also been analyzed for
the proposed topology with different loading conditions with NLCPWM. Figure 11a–d show the
switching and conduction losses of different switches and their antiparallel diodes for different loading
conditions. The power losses across the complementary switches are similar, i.e., switch S2 and S3

have the same conduction and switching losses as both switches operate for an equal duration with
the same number of ON and OFF transitions. As the NLCPWM technique is used, the switching loss
has a negligible impact on the total power loss, and conduction loss is the major contributor to the
overall losses of the proposed topology.
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6. Results and Discussion

To verify the performance of the proposed topology, different experimental tests have been
performed on the prototype experimental setup as shown in Figure 12. TOSHIBA IGBT GT50J325 has
been used as a switch for the topology. dSPACE CP1104 has been used to generate the gate pulses for
all the switches using the NLC method described in Section 4. The gate drive circuits, made up of
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an NXP 74HC04N IC and an A3120 optocoupler, have been used to make the gate pulses suitable for
proper IGBT operation.
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Figure 12. The hardware setup of the proposed topology.

A different test has been performed for the basic unit, which generates 15 levels across the load.
The magnitude of the dc voltage source connected to the T-section has been selected as 90 V, and the
magnitude of the dc voltage source connected to H2 has been fixed to 30 V. This selection of dc voltage
sources results in an output voltage having a peak magnitude of 210 V with a 30 V voltage step
(Vdc = 30 V) as shown in Figure 13a.
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switches S1, S2, and S3 and (c) voltage stress across switches S5, S7, and S9.

The voltages stress across the switches has a crucial role in the design of an MLI topology. For the
proposed basic unit, the voltage stress across switches has been analyzed and is shown in Figure 13b,c).
The voltage stress across the bidirectional switch S1 is shown in Figure 13b, which varies from zero to
90 V, i.e., 3 Vdc. The switches connected to H1 (S2, S3, S8, and S9) have a maximum voltage stress equal
to 6 Vdc, i.e., 180 V. The voltage stress across switches S2 and S3 is shown in Figure 13b. Similarly, for the
switches of H2 (S4 to S7), the maximum voltage stress has been fixed to Vdc, i.e., 30 V. The voltage stress
across switches S5 and S7 along with the voltage stress of switch S9 are demonstrated in Figure 13c.

The proposed basic unit has been tested under different loading conditions and the results are
shown in Figures 14 and 15. Figure 14a depicts the output voltage and current waveform with a purely
resistive load having a magnitude of 100 Ω. With the resistive load, the current waveform is in phase
with the voltage waveforms as shown in Figure 14a. The different output parameters captured by
the power analyzer are provided in Figure 14b. For the 15-level output voltage with resistive load,
the voltage total harmonic distortion (THD) is 4.9% and the current THD has a similar magnitude to
the voltage THD. Furthermore, the output voltage and current waveforms with the series connected
resistive-inductive (RL) load are shown in Figure 14c. The values of resistance and inductance have
been selected as R = 100 Ω and L = 200 mH, respectively. With this load, the different output parameters
are given in Figure 14d.
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Additionally, the proposed topology has been analyzed with the change in the modulation indexes
with a load of R = 100 Ω, L = 200 mH. Figure 15a shows the output voltage and current for the change
in modulation index from 1.0 to 0.5 with RL load. Similarly, a change in modulation index from 0.2 to
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1.0 is provided in Figure 15b. From all these figures, the proposed topology performs well under
different loading conditions along with a change in the modulation indexes.

7. Conclusions

This paper presents the working concept of the proposed STDH-MLI, which is a hybrid combination
of one T-Type section and two H-Bridges. The basic unit of the proposed topology is able to generate
15 levels at the output employing three dc voltage sources. Moreover, the expansion of the basic
unit has been deliberated on with the mathematical formulation of the topology. A comparison with
existing topologies approves the merit of the proposed topology in terms of ability to achieve a higher
number of levels with a lower TSV using a low number of switches and total components. Finally,
the performance of the proposed STDH-MLI is verified through several experimental results using the
NLCPWM method.
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