
energies

Article

DEA Non-Radial Approach for Resource Allocation
and Energy Usage to Enhance Corporate
Sustainability in Japanese Manufacturing Industries

Toshiyuki Sueyoshi 1,2,* and Mika Goto 3

1 New Mexico Institute of Mining & Technology, Department of Management, 801 Leroy Place,
Socorro, NM 87801, USA

2 Tokyo Institute of Technology, Tokyo Tech World Research Hub Initiative, School of Environment and
Society, 3-3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan

3 Tokyo Institute of Technology, School of Environment and Society, 3-3-6 Shibaura, Minato-ku,
Tokyo 108-0023, Japan; goto.m.af@m.titech.ac.jp

* Correspondence: Toshiyuki.Sueyoshi@nmt.edu; Tel.: +1-575-835-6452

Received: 14 March 2019; Accepted: 6 May 2019; Published: 10 May 2019
����������
�������

Abstract: This article discusses how to enhance corporate sustainability by simultaneously measuring
operational and environment achievements. In past decades, most companies have made steady
efforts to enhance their sustainability levels. However, they still have strategic space for improving
sustainability. This research proposes a new use of environmental measurement by data envelopment
analysis. We apply the approach to Japanese industrial sectors and obtain five implications. First,
they maintain a high level of unified efficiency on resource allocation and energy usage under
natural disposability (priority: operation). Second, the efficiency under managerial one (priority:
environment) is generally lower than that of natural disposability. Third, among the industries with
high operational achievement, only the pharmaceutical product industry presents high attainment
on environmental protection. Fourth, the pulp and paper industry as well as the textile product
industry have a potential for efficiency improvement by investing in green technology. Finally,
desirable congestion indicates a potential of performance improvement by investing in green
technology. Those results imply that the current business situation is different from the previous
image on Japanese industries, often referred to as “Japan Inc.”, where all firms used to operate like a
single entity under the governmental regulation.

Keywords: sustainability; green technology; Japanese industries; Data Envelopment Analysis (DEA)

1. Introduction

Japan’s Prime Minister, Shinzo Abe, has recently proposed a new economic policy, referred to
as “Abenomics,” which suggests various directions for Japanese productivity improvements.
A report prepared by McKinsey and Company [1] has discussed a guidance regarding the Japanese
industrial direction.

Acknowledging the importance of such a new policy direction, we have two major concerns.
One of them is that Japan has been gradually losing productivity growth in manufacturing
industries. The Japanese firms are now facing fierce competition with overseas firms. The Japanese
manufacturing sectors need to improve their productivity. See a report by Nissay Asset Management [2].
The other concern is that Japan has historically faced various environmental problems along with
its industrialization.

Besides the two concerns, the participation in international agreements on pollution prevention
(e.g, the Kyoto protocol in 1997 and the Paris agreement in 2016) provide the Japanese government
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with an official excuse on strict regulation, in particular on greenhouse gas (GHG) emission. A policy
drawback of the Abenomics is that it does not explicitly discuss the policy necessity in addressing
environmental pollution associated with economic activity and growth of industries. Saito [3] has
discussed the business direction of Japanese manufacturing sectors.

In discussing the current policy issues from Japanese sustainability, this study conducts an
empirical investigation concerning the manufacturing industries. We use data envelopment analysis
(DEA) that can provide us with a total performance measure on operational and environmental
attainments. The method was first proposed by Charnes et al. [4]. For additional references, see Glover
and Sueyoshi [5] and Sueyoshi and Goto [6]. The latter provides a detailed historical review on
the method.

This research uses DEA for our empirical purpose since it can avoid a specifying error to decide
a functional form between production factors (i.e., inputs and outputs). The method provides a
multi-dimensional productivity measurement. In DEA, the term of “efficiency” is specified by a
percentage expression and it is used to measure a total productivity level that is different from a single
performance measure such as “labor productivity”.

The purpose of this research is to measure the performance of Japanese manufacturing industries
by Data Envelopment Analysis (DEA). To investigate our research concern, discussed above, we first
restructure the method in the manner that it can measure their achievements on operational and
environmental attainments. Then, we apply it to the Japanese industries and then discuss business
implications obtained from the proposed application.

The remainder of this study is organized as follows: Section 2 summarizes a literature study
related to this research. Section 3 discusses underling concepts used for the DEA assessment on
industrial sectors. Section 4 describes DEA’s analytical structure. Section 5 reorganizes the method so
that we can use the new approach for our empirical study. Section 6 applies the new formulations
for measuring the performance of Japanese manufacturing industries. Section 7 concludes this study
along with addressing future research tasks. The end of this article lists all abbreviations and variables
used in the article.

2. Literature Summary

Previous studies on DEA applied to Japanese pollution prevention are classified into the following
three groups:

The first group discussed DEA environmental assessment applied to Japanese industries.
The group started with Sueyoshi and Goto [7]. Their study applied DEA to assess the performance of
Japanese manufacturing industries. The research indicated that large firms had financial and managerial
capabilities to improve their environmental attainments because of their capital accumulations.
However, the study could not find the similar business linkage in small and medium companies.
Sueyoshi and Goto [8] applied DEA for comparison between Japanese Chemical and Pharmaceutical
industries. The research investigated their scale measures (i.e., returns to scale (RTS) and damages to
scale (DTS)). Finally, Sueyoshi and Goto [9] conducted comparisons between Japanese manufacturing
and service industries. They concluded that the former outperformed the latter in their efficiencies.

The second group contained various studies on statistics and econometrics applied to Japanese
industries. The group used DEA and traditional measures (e.g., total-factor productivity). The group
was interested in performance assessment on many types of industrial sectors that utilized input
resources to yield outputs, but often excluded pollution in their assessments. The group included
Honma [10] which discussed total-factor energy efficiency measurement regarding the Japanese
regional economics. Sueyoshi et al. [11] discussed a corporate governance issue from operational
performance in the manufacturing industries. Oggioni et al. [12] measured the environmental efficiency
of the world’s cement industries, including the Japanese ones. Wen et al. [13] proposed an asset
based business model for sustainability competitiveness and applied it to examining the Japanese
semi-conductor industry. Goto et al. [14] discussed the deregulation issue between generation and
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transmission in the Japanese electric power industry. Sotome and Takahashi [15] indicated that Japanese
employment systems influenced corporate productivity. They also discussed that their employment
systems harmed the productivity improvements. Honma and Hu [16] discussed the total-factor energy
efficiency in developed countries by comparing them with Japanese ones.

The third group was related to the energy and the environment. Sueyoshi et al. [17] contained
693 articles on DEA applications on energy improvement and environment protection. Sueyoshi and
Goto [6] also included approximately 800 peer reviewed articles that discussed a use of DEA for
environmental advancement and sustainability enhancement. Since both [6] and [17] summarize a
long list of previous studies, this research does not need to specify them, except noting two findings on
DEA applications. First, the electric power industry is the main research target in the early stage of
DEA applications due to data accessibility to the industry. Second, the research on energy is classified
into (a) electricity, (b) oil, (c) coal, (d) gas, (e) heat, (f) renewable and (g) energy efficiency and saving.
The previous works on energy included 4 articles in the 1980s, 20 articles in the 1990s, 94 articles in the
2000s and 289 articles in the 2010s. Meanwhile, the environment and sustainability included 1 article in
the 1980s, 6 articles in the 1990s, 41 articles in the 2000s and 222 articles in the 2010s. The applications
in the two areas have been rapidly increasing during the past four decades.

This study methodologically belongs to the first and the third research groups. The DEA application
belongs to the second group, but this study utilizes the method differently from the previous one used
in the second group.

The proposed approach has four unique features. First, this research classifies outputs into two
categories (i.e., desirable and undesirable). Then, we combine them for DEA-based performance
assessment. Second, this study discusses how to identify a possible occurrence of undesirable congestion
(UC, i.e., a limit on production) and that of desirable congestion (DC, i.e., eco-technology). Third,
we reorganize DEA formulations under an occurrence of DC under the assumption that “undesirable
outputs are the by-products of desirable outputs”. Lastly, this study discusses an analytical rationale
concerning why we can examine DC in the DEA environmental assessment.

3. Concepts

This section prepares underlying concepts for the methodological development used in this study.

3.1. Disposability

To examine the performance of Japanese manufacturing industries, this study introduces two
disposability concepts, where each concept implies the elimination of inefficiency. One of them is
“natural disposability” where the priority is economic success. The other is “managerial disposability”
whose priority is pollution reduction.

To describe how we include the two disposability concepts in this research, we consider X ∈ Rm
+

as an input vector with m components, G ∈ Rs
+ as a desirable output vector with s components,

and B ∈ Rh
+ as an undesirable output vector with h components. The subscript (j) indicates the j th

decision making unit (DMU), whose components are strictly positive. Those components are specified
by x, g and b.

Natural (N) disposability and managerial (M) disposability expresses unified production and
pollution possibility sets as follows:

PN
v (X) =

(G, B) : G ≤
n∑

j=1
G jλ j, B ≥

n∑
j=1

B jλ j, X ≥
n∑

j=1
X jλ j,

n∑
j=1

λ j = 1&λ j ≥ 0 ( j= 1, . . . , n)

&

PM
v (X) =

(G, B) : G ≤
n∑

j=1
G jλ j, B ≥

n∑
j=1

B jλ j, X ≤
n∑

j=1
X jλ j,

n∑
j=1

λ j = 1&λ j ≥ 0 ( j= 1, . . . , n)

.

(1)

PN
v (X) indicates the set for natural disposability. Meanwhile, PM

v (X) is that of managerial disposability.
The subscript (v) implies variable RTS or DTS. The two axiomatic expressions incorporate the addition
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constraint (
∑n

j=1 λ j = 1) to express the variability on RTS or DTS. A difference between them is that
the production technology under natural disposability has X ≥

∑n
j=1 X jλ j. The constraint implies that

DMUs attempt to attain an efficiency frontier by reducing X. In contrast, the managerial disposability
has an opposite direction of X in the constraint of X <

∑n
j=1 X jλ j.

3.2. Disposability Unification

The proposed assessment needs to classify outputs into desirable (good) and undesirable (bad)
categories in this research because they are different in terms of their vector directions. After the
output separation, we need to develop a conceptual guideline and its related computational process
for unification.

Figure 1, separated from I to III, visually indicates the unification process. The three processes
(I, II and III) are later integrated into the proposed DEA approach. The figure depicts a case of a
single component of those vectors. Later, we extend the case to the case of multiple components in
our framework.
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Figure 1. Unification between two groups of outputs. EF indicates an efficiency frontier. (a) The g and
b stand for two different outputs. PrPS indicates a production possibility set, PoPS indicates a pollution
possibility set. (b) Pr&PoPS indicate a production and pollution possibility set. (c) The last process (III)
is for final unification by assuming that b is the by-product of g. This study considers the assumption
under managerial disposability.

The first process (I) has two sub-processes: (A) and (B). Process I (A) shows the relationship
between x and g. In this process, all DMUs have the same amount of b. The production possibility set
(PrPS) locates below a curve, depicting an efficiency frontier (EFg), in the x-g space. Most previous
DEA investigations have considered the assessment within the PrPS. In the region, a DMU needs to
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decrease or maintain the current level of x for performance improvement along with an increase of g.
Process I (A) depicts such a basis for measuring all conventional applications.

In environmental assessment, this research is conceptually different from the conventional DEA
efforts. Such a difference may be found in Process I (B). A pollution possibility set (PoPS) locates above
the curve, expressing an efficiency frontier (EFb), in the x-b space. In this case, all DMUs produce the
same amount of g. In depicted Process I (B), we consider that the PoPS is independent from the PrPS.
The relationship between them is different from the reality of modern business because b may not exist
without g.

Next, Process II unifies the two sets of Process I. In the process, the vertical axis indicates g and
b. The unification process identifies a region for production and pollution possibility set (Pr&PoPS)
between EFg and EFb. The set depicts the area where we can identify an existence of “sustainability”
in which all DMUs increase X and decrease B.

Such a case is attained in Process III that is the final stage for unification in which we incorporate
the by-product assumption. The assumption changes the two efficiency frontiers to be shaped by
convex curves, as visually specified in the bottom of Figure 1. In the unification, the EFg increase with
the enhancement of x. Meanwhile, the EFb increases and then decreases because of green technology
innovation on b. Both curves are convex because of the by-product assumption. As a result of the
assumption, the efficiency frontiers are structurally different from those of Processes I and II.

3.3. Undesirable Congestion (UC) and Desirable Congestion (DC)

Figure 2 illustrates the type of congestion that may occur on g and b. The concept is classified
either UC or DC. The figure depicts dissimilarity between them. The left hand side shows the three
types of UC on the horizontal axis (b) and the vertical axis (g). The right hand side shows the three
types of DC in the space between g on a horizontal axis and b on the vertical axis.
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Figure 2. Undesirable congestion (UC) and desirable congestion (DC). (a) The left hand side indicates
an occurrence of UC while the right hand side indicates that of DC. The UC implies a production
capacity limit on g. The DC implies eco-technology innovation on b.
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The occurrence of UC can be identified on the slope of a supporting hyperplane. As depicted
in the left hand side, the negative slope indicates an occurrence of “strong UC”. The occurrence
indicates a capacity limit on a production facility that lessens efficiency (e.g., transmission congestion
in an electric power industry). In contrast, the positive slope implies an opposite case, or “no UC”.
The “weak UC” exists between them.

Admitting the importance of UC (e.g., Cooper et al. [18]) in production analysis, however, we are
interested in the sustainability development by pollution prevention. This research pays attention to
the occurrence of DC, not UC, because the DC implies a potential of green technology for sustainability
enhancement. The right hand side of Figure 2, along with Process III of Figure 1, exhibits such a DC
development. The negative slope indicates “strong DC”. In contrast, the positive slope implies an
opposite case, or “no DC”. The “weak DC” exists between them.

After describing the DC, we return to the three processes of Figure 1 to specify the lower and
upper bounds of an input change, because it is closely related to the scope of sustainability. First,
in this research, a DMU can reduce X until it can reach EFg. The frontier serves as a “lower bound” for
the input reduction. In contrast, the DMU can increase X until it can reach EFb. The frontier indicates
an “upper bound” for the input increase. Thus, the sustainably is defined by the two frontiers depicted
in Figure 1.

In other words, the sustainability is visually specified as Pr&PoPS surrounded by EFg and
EFb. See the last stage of Figure 1. The frontier on the left hand in the region serves as the lower
limit and the frontier in the right hand serves as the upper limit. In the sustainability development,
the DEA assessment measures the lower limit by natural disposability where we need to reduce X
(thereby reducing B) and increase G. In contrast, the assessment measures the upper limit by managerial
disposability where we need to increase both X and G. For the purpose, green technology and pollution
prevention (e.g., recycling) are necessary in reducing B.

Here, it is important to note that this research needs to discuss the economic activities of DMUs in
terms of the sustainability measurement, but not considering their financial measures such as return
on assets (ROA) and return on equity (ROE). Such financial measures are important in discussing
corporate “survival” (e.g., avoiding bankruptcy), but they are not directly linked to B. So, we do not
incorporate the financial measures in this research.

At the end of this section, Figure 3 shows a whole flow for computation incorporated into the
proposed DEA models. The application starts with specifying inputs and outputs. Then, we determine
which models are used for empirical investigation. The upper part depicts such a conventional use
of DEA. The lower part depicts how new concepts are included into the proposed DEA assessment.
The process classifies outputs into G and B. The distinction needs the two concepts (i.e., N and M) for
unifying between them. The unification includes equality allocation on constraints related to G or B so
that we can identify an occurrence of DC and/or that of UC. This study also incorporates the hypothesis
that B is the by-product of G. Finally, our new assessment produces the three types of unified efficiency
measures under the two disposability concepts and the by-product assumption.
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Figure 3. A conceptual flow incorporated into environmental assessment. (a) The upper part visually
describes that DEA starts with specifying X and G. Then, it determines which models are used for the
proposed research. The process excludes B. The part depicts a conventional use of DEA that assesses
the performance of DMUs. (b)The lower part depicts how new proposed concepts are included into
the proposed assessment. The process distinguishes between G and B. The separation needs two
disposability concepts (i.e., N and M) for the unification between them. Then, we incorporate equality
constraints on G or B to identify a potential of green technology innovation or that of a capacity limit
on a production system, respectively. We also incorporate the new assumption that B is the by-product
of G. Finally, the assessment produces three unified efficiency measures under the two disposability
concepts and the by-product assumption.

4. Methodology

4.1. Formulations

An underlying assumption is that DEA relatively evaluates n DMUs, denoted by j. Each DMU
uses m inputs, denoted by i, to yield s desirable outputs, denoted by r. The production process is
associated with h undesirable outputs, denoted by f. The end of this article lists all variables used in
this section.

DEA has three different models to measure the unified efficiencies of DMUs. Those are radial,
non-radial and intermediate models (e.g., [19]). This research uses the non-radial model because it
measures a level of unified efficiency by slacks on optimality, not depending upon an efficiency score,
as found in the other two models. The type of measurement is referred to as the Pareto–Koopmans
measure [20] and widely used in DEA-based assessment. Another benefit on the use is that the model
makes it possible that we can evaluate DMUs, whose data contains zeros and/or negative values in
a data set [21]. The analytical capability is important in assessing the attainment on various types
of DMUs.

In the proposed model, this study needs to specify the following three types of data ranges (R)
according to the upper and lower bounds on each factor:
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Rx
i = (m + s + h)−1(max

{
xi j

∣∣∣ j = 1, . . . , n
}
−min

{
xi j

∣∣∣ j = 1, . . . , n
}
)
−1

,

Rg
r = (m + s + h)−1(max

{
grj

∣∣∣ j = 1, . . . , n
}
−min

{
grj

∣∣∣ j = 1, . . . , n
}
)
−1

&

Rb
f = (m + s + h)−1(max

{
b f j

∣∣∣ j = 1, . . . , n
}
−min

{
b f j

∣∣∣ j = 1, . . . , n
}
)
−1

,

(2)

for all i, r and f. The rationale for them is that DEA can avoid the case where zero is found in a
dual variable(s). They function as weights among production factors. The zero implies that the
corresponding factor is not employed in the assessment. That is problematic. Aida et al. [22] first
proposed the range allocation and referred to it as “range adjusted measure (RAM)”. Thus, this research
has originated from the RAM. Sueyoshi and Sekitani [23] mathematically compared RAM’s strengths
and drawbacks with the other DEA models.

4.1.1. Formulation for Natural Disposability

To compute the level of UEN under natural disposability, this research combines G and B regarding
the k-th DMU under variable RTS. The resulting model becomes follows:

Maximize ε(
∑m

i=1 Rx
i dx−

i +
∑s

r=1 Rg
r dg

r +
∑h

f=1 Rb
f db

f )

s.t.
∑n

j=1 xi jλ j + dx−
i = xik (all i),∑n

j=1 grjλ j − dg
r = grk (all r),∑n

j=1 b f jλ j + db
f = b f j (all f ),∑n

j=1 λ j = 1, λ j ≥ 0 (all j),

dx−
i ≥ 0 (all i), dg

r ≥ 0 (all r) and db
f ≥ 0 (all f ).

(3)

The right hand side indicates an observed data concerning the k-th DMU. Meanwhile, the left
hand side shows the formulations for the best practice measures which are identified on the two
efficiency frontiers. They correspond to the first process (I) in Figure 1. Model (3) has the three types
of slacks, denoted by d-related variables, for the proposed inefficiency measurement. Among them,
the model includes input deviations (+dx−

i ) to attain the status of natural disposability.
The unified efficiency (UENNR

v ) of the k-th DMU is measured by:

UENNR
v = 1− ε(

m∑
i=1

Rx
i dx−∗

i +
s∑

r=1

Rg
r dg∗

r +
h∑

f=1

Rb
f db∗

f ). (4)

Here, NR stands for non-radial and the three d-related slack variables are obtained from the
optimality of Model (3). The equation within the parenthesis expresses the degree of unified inefficiency.
As specified by the above equation (4), we subtract the inefficiency from unity to decide the degree of
efficiency. The symbol (*) indicates optimality.

4.1.2. Formulation for Managerial Disposability

The managerial disposability compute the unified efficiency measure (UEMNR
v ) of the k-th DMU

under variable DTS by the subsequent model:

Maximize ε(
∑m

i=1 Rx
i dx+

i +
∑s

r=1 Rg
r dg

r +
∑h

f=1 Rb
f db

f )

s.t.
∑n

j=1 xi jλ j − dx+
i = xik (all i) and

same constraints in Model (3).

(5)

Model (5) considers input deviations (−dx+
i ) to attain the status of managerial disposability.

The other constraints in Model (5) are the same as those of Model (3).
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The unified efficiency (UEMNR
v ) concerning the k-th DMU becomes

UEMNR
v = 1− ε(

m∑
i=1

Rx
i dx+∗

i +
s∑

r=1

Rg
r dg∗

r +
h∑

f=1

Rb
f db∗

f ). (6)

where all the slacks are found on optimality. The equation within the parenthesis, obtained from the
optimality, implies the degree of unified inefficiency. We subtract it from unity to decide the level of
efficiency.

4.2. A Possible Occurrence of Undesirable Congestion (UC) or Desirable Congestion (DC)

As depicted in the left hand side of Figure 2, this study incorporates UC under natural disposability.
To examine the occurrence, we use the following model that allocates equality constraints (i.e., no slack)
on B:

Maximize ε(
∑m

i=1 Rx−
i dx−

i +
∑s

r=1 Rg
r dg

r )

s.t.
∑n

j=1 xi jλ j + dx−
i = xik (all i),∑n

j=1 grjλ j − dg
r = grk (all r),∑n

j=1 b f jλ j = b f k (all f ),∑n
j=1 λ j = 1,λ j ≥ 0 (all j),

dx−
i ≥ 0 (all i) and dg

r ≥ 0 (all r).

(7)

Model (7) eliminates slacks related to B. These related constraints are considered as equality.
The other constraints regarding X and G are structured by inequality because they have slacks in the
formulation (7).

A unified efficiency, or UEN(UC)NR∗
v , of the k-th DMU becomes,

UENNR
v = 1− ε(

m∑
i=1

Rx
i dx−∗

i +
s∑

r=1

Rg
r dg∗

r ). (8)

All variables used in Equation (8) are determined on the optimality of the Model (8). The equation
within the parenthesis indicates the unified inefficiency. The efficiency is determined by subtracting it
from unity.

As depicted in the right hand side of Figure 2, this study incorporates DC into managerial
disposability. To examine the DC occurrence, we utilize the following model which allocates equality
constraints (so, no slack) on G:

Maximize ε(
∑m

i=1 Rx
i dx+

i +
∑h

f=1 Rb
f db

f )

s.t.
∑n

j=1 xi jλ j − dx+
i = xik (all i),∑n

j=1 grjλ j = grk (all r),∑n
j=1 b f jλ j + db

f = b f k (all f ),∑n
j=1 λ j = 1,λ j ≥ 0 (all j),

dx+
i ≥ 0 (all i) and db

f ≥ 0 (all f ).

(9)

The model eliminates slacks related to G. These related constraints are considered as equality.
The other groups of constraints on X and B have slacks so that they are inequality constraints.

A unified efficiency, or UEM(DC)NR∗
v , of the k-th DMU becomes,

UEM(DC)NR
v = 1− ε(

m∑
i=1

Rx
i dx+∗

i +
h∑

f=1

Rb
f db∗

f ). (10)
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where all variables are determined on the optimality of Model (9). The equation within the parenthesis
indicates the magnitude of unified inefficiency. The efficiency, along with a possible existence of DC,
is determined by subtracting it from unity.

5. Extension: Formulation for By-Product Assumption

The structure of the final unification (III) incorporates the by-product assumption.
The incorporation is important because B depends upon G. This assumption makes it possible
that the production of G on EFg increases with the X enhancement. Meanwhile, the pollution of B on
EFb increases and then decreases with the input increase due to the assumption. The increasing trend
shifts to decreasing after the installation of new technology for environment protection. The green
innovation may have such an impact on B.

Under the assumption on by-product assumption, Model (9) is reorganized as:

Maximize ε(
∑m

i=1 Rx
i dx+

i +
∑h

f=1 Rb
f db

f )

s.t.
∑n

j=1 xi jλ j − dx+
i = xik (all i),∑n

j=1 grjλ j = grk (all r),∑n
j=1 b f jλ j − db

f = b f k (all f ),∑n
j=1 λ j = 1,λ j ≥ 0 (all j),

dx+
i ≥ 0 (all i) and db

f ≥ 0 (all f ).

(11)

The formulation (11) replaces the sign of +db
f in Model (9) by negative (−db

f ) in Model (11).
The rationale is because both G and B have a similar (convex) structure on X as in the last unification
process. That is, EFg and EFb become convex as depicted in Figure 1. Furthermore, Model (11) is
prepared under managerial disposability and a possible existence of DC.

An efficiency score of the k-th DMU becomes UEM(DC)NR
v = 1 − ε(

∑m
i=1 Rx

i dx+∗
i +

∑h
f=1 Rb

f db∗
f )

where all variables are determined on the optimality of Model (11). The equation within the parenthesis
denotes a degree of unified inefficiency.

To describe an analytical rationale regarding why Model (11) measures the degree of efficiency in
the last unification process, this research documents the following dual formulation that is originated
from Model (11):

Minimize −
∑m

i=1 vixik +
∑s

r=1 urgrk −
∑h

f=1 w f b f k + σ

s.t. −
∑m

i=1 vixi j +
∑s

r=1 urgrj −
∑h

f=1 w f b f j + σ ≥ 0 (all j),

vi ≥ εRx
i (all i), ur : URS (all r),

w f ≥ εRb
f (all f ) and σ : URS.

(12)

To describe the analytical implication of the dual formulation (12), we need to consider the
complementary slackness conditions between (11) and (12). That is, they have the following conditions:

(−
m∑

i=1

vixi j +
s∑

r=1

urgrj −

h∑
f=1

w f b f j + σ)λ j = 0 for all j. (13)

Here, RSk indicates a reference set for the k-th DMU that consists of efficient DMUs with λ j > 0
for j ∈ RSk in Model (11). The supporting hyperplane is determined by,

−

m∑
i=1

vixi j +
s∑

r=1

urgrj −

h∑
f=1

w f b f j + σ = 0 for j ∈ RSk (14)
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The slopes of the supporting hyperplane are determined by the marginal rate of transformation
(MRT) of b f to gr. Sueyoshi and Yuan [24] provide a mathematical definition on MRT. The measure

becomes MRT f
r = ∂b f /∂gr = u∗r/w∗f for all r and all f. Since w∗f > 0, the sign of u∗r determines the

direction concerning MRT. After solving Model (12), assuming a unique optimal solution, the MRT
indicates a possible existence of DC by the following guideline:

(a) u∗r = 0 for some (at least one) r indicates an occurrence of “weak DC”,
(b) u∗r < 0 for some (at least one) r indicates an occurrence of “strong DC” and
(c) µ∗r > 0 for all r indicates “no” occurrence of DC.

(15)

Figure 4 depicts the whole computational flow that is utilized in this research.
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UEM
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UEM(DC)

End

Model (9) to find an 
existence of DC

Type of DC

Figure 4. A computational flow for proposed assessment. (a) First, model (3) computes the degree of
UEN as depicted in the process I(A). Second, model (5) calculates the degree of UEM as depicted in
the process I(B). Third, the second process (II) is used to prepare the last process (III), Fourth, model
(7) incorporates UC while model (9) incorporates DC. Fifth, the primal model (11) and its dual model
(12) incorporate the by-product assumption and compute the degree of UEM(DC) as depicted in the
process (III). Lastly, the classification rule (15) identifies the type of DC. (b) This research uses the third
and fourth steps for the model development for the fifth step. Both the third and fourth steps do not
maintain the by-product assumption. The fifth step includes the assumption to unify them under
managerial disposability. The first and second steps compute UEN and UEM measures. The fifth and
sixth steps compute UEM(DC) along with the DC classification.

6. Japanese Manufacturing Industries

To discuss the current situation in Japanese manufacturing industries, this study incorporates
corporate resource and energy factors in the proposed assessment and compares their performance
measures. Then, this study examines the following three research concerns:
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First, Japanese firms look for their operational achievements to attain high sustainability [7].
Economic success is the first priority for them because it allows them to operate under natural
disposability. They need capital accumulation to invest in green technology innovation.

Second, Japanese firms need to prevent their industrial pollutions. The assessment for
environmental protection belongs to managerial disposability [6]. Large firms have capital accumulation
at the level that becomes large enough to invest in green technology. In addition to the governmental
regulation on environment, they need to pay attention to consumers’ consciousness on various pollution
issues [7].

Finally, we are interested in the influence of regulation. Japanese industrial policy regulates
and controls all industries. Previously, it was believed that all manufacturing firms worked like a
single entity, often referred to as “Japan Inc.” However, recent fierce competition changes the business
environment. The commutation is brought about by information technology incorporated into an
advanced world-wide supply chain system. Corporate behaviors are driven by their survival strategies
in a global market [6]. Consequently, a conventional relationship between government and business
may not exist anymore in Japan. This study examines the current Japanese situation.

6.1. Data

This application examines the performance of Japanese manufacturing industries that include 13
industrial sectors with 110 companies during 2013 to 2015. The industrial sectors are food items (10),
textile products (5), pulp and paper (3), chemicals (25), pharmaceutical products (9), gum products
(3), glass, soil and stone products (2), iron and steel (3), non-ferrous metal and metal products (4),
machinery (9), electrical equipment (23), transportation equipment and precision instrument (11),
and other products (3), where the number in parentheses is that of companies per industrial sector.
The total number of observations is 330 (the total number of companies = 110 firms × 3 years).

For the assessment, this study uses five input resources, two desirable outputs, and three
undesirable outputs. We have collected economic data and environmental data from Toyo Keizai Inc.
The database is well-known and often used for sustainability studies in Japan. All companies are
listed in the first section of the Tokyo Stock Exchange. This study follows a guideline provided by the
database in selecting the industrial groups and the three production factors.

Five inputs are the following items: (a) total assets: this item represents a total amount of each
company’s assets used for plant operation, office property, and equipment for production. Those are
listed in a balance sheet; (b) total operating expenses: this is a total amount of company’s incurred
expenses used for day-to-day operation and production. Depreciation and amortization of assets are
included but financial expenses are excluded from the item; (c) environmental protection cost: this is a
company’s cost used for environmental protection and investment; (d) total energy input: this is an
amount of energy used for operation; and (e) total water resource input: this is the total amount of
water resource inputs used per operation. Table 1 lists the data set used in this article.

The inputs and desirable outputs are obtained from “Toyo Keizai Financial Data Digest,” where
Toyo Keizai is one of the well-known Japanese publishers. Undesirable outputs are from “Toyo Keizai
CSR (Corporate Social Responsibility Souran: a comprehensive handbook in Japanese) that is the
famous CSR database on Japanese firms.

6.2. Unified Efficiencies

Tables 2 and 3 represent unified efficiencies of pharmaceutical products and machinery industries
which are obtained from Models (3), (5), and (11). The two industries are selected for illustration
purposes. The dual variables for two desirable outputs and the type of DC are determined by
Model (12).
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Table 1. Descriptive statistics.

Statistics Total
Assets

Total
Operating
Expenses

Environment
Protection

Cost

Total
Energy
Input

Total Water
Resource

Input
Revenues Market

Capitalization

Greenhouse
Gas

Emissions

Total
Waste

Discharges

Total Waste
Water

Discharges

Unit MioJPY MioJPY MioJPY 1000 GJ 1000 m3 MioJPY MioJPY Ton-CO2 ton 1000 m3

Food item
Avg. 205,021 233,342 1359 3498 5579 237,625 154,392 199,638 42,185 3495
Max. 470,664 786,036 4328 9978 19,309 791,426 564,672 592,150 235,320 17,487
Min. 36,904 9176 46 411 360 13,603 19,017 19,469 3716 7

Textile product
Avg. 490,145 214,797 4146 15,716 76,315 226,570 405,796 2,394,267 40,691 74,013
Max. 1,247,209 541,061 8475 31,000 184,000 566,259 1,642,901 21,900,000 135,000 180,000
Min. 139,819 76,921 754 2455 4434 85,838 31,186 131,198 3086 164

Pulp and paper
Avg. 810,760 221,605 16,944 92,812 503,800 233,191 242,133 4,207,292 258,115 430,892
Max. 1,265,110 633,641 29,807 150,000 933,000 653,979 523,675 6,680,000 762,000 881,000
Min. 18,179 17,640 126 169 41 20,570 3454 8180 332 40

Chemical
Avg. 512,382 233,267 9596 22711 90,941 249,435 464,877 1,759,738 55,321 75,040
Max. 2,015,977 887,848 41,861 127,842 1,430,000 900,723 3,392,037 9,144,000 422,200 1,036,000
Min. 27,600 3526 97 121 107 18,625 16,652 6123 1026 6

Pharmaceutical
product

Avg. 741,641 260,881 1464 2112 8161 307,950 1,527,972 112,259 8575 7321
Max. 2,728,528 682,766 4931 4874 47,072 796,512 4,738,751 266,490 24,506 47,050
Min. 114,803 68,833 245 236 240 76,288 137,482 12,839 367 97

Gum product
Avg. 778,401 333,622 5083 6983 7800 412,491 1,219,445 423,810 20,747 5909
Max. 2,011,618 801,291 13,887 17,673 21,722 1,006,602 3,414,216 1,001,939 40,163 18,627
Min. 72,414 37,278 247 581 888 39,623 41,585 32,998 2961 598

Glass, soil and stone
product

Avg. 419,618 277,026 2133 4306 2003 295,670 664,165 326,124 39,005 1651
Max. 498,118 378,922 2995 7838 3182 398,595 840,191 707,687 57,400 2234
Min. 336,726 158,345 1527 2366 1356 166,999 506,520 116,376 15,004 863

Iron and steel
Avg. 428,218 295,331 8155 15,933 13,836 307,727 314,304 837,498 342,558 10,024
Max. 739,112 474,274 16,283 23,844 23,020 500,203 791,328 107,1000 886,000 22,490
Min. 207,352 156,259 3342 12 4467 160,304 80,739 607,000 17,000 430

Non–ferrous metal
and metal product

Avg. 865,761 511,186 3131 18,786 113,993 519,984 657,411 2,438,153 53,778 90,400
Max. 1,252,174 930,390 5386 41,800 421,611 928,976 1,250,456 8,190,000 159,556 415,889
Min. 415,388 2206 2080 4532 5862 8777 143,453 218,000 10,795 138
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Table 1. Cont.

Statistics Total
Assets

Total
Operating
Expenses

Environment
Protection

Cost

Total
Energy
Input

Total Water
Resource

Input
Revenues Market

Capitalization

Greenhouse
Gas

Emissions

Total
Waste

Discharges

Total Waste
Water

Discharges

Machinery
Avg. 848,830 459,703 6448 4252 2414 491,945 775,660 210,223 50,113 1592
Max. 3,476,067 1,917,326 26,635 15,451 9783 2,039,361 2,296,273 967,765 193,894 8250
Min. 158,965 67,041 166 227 102 72,314 87,960 11,974 2098 67

Electrical equipment
Avg. 1,168,621 919,934 9179 16,302 7229 938,519 1,054,424 585,699 59,236 5116
Max. 4,935,233 4,014,278 50,969 480,000 45,130 4,084,606 5,122,318 3,240,000 458,715 32,317
Min. 16,867 26,900 43 62 38 27,204 3846 3217 88 23

Transportation
equipment and

precision instrument

Avg. 2,289,824 1,780,898 66,319 7925 3397 1,935,532 3,440,212 340,846 76,310 2815
Max. 16,100,209 10,183,696 390,100 35,644 12,248 11,585,822 28,653,072 1,570,000 299,000 12,946
Min. 50,905 5550 179 766 265 12,911 15,103 40,176 411 5

Other products
Avg. 551,684 348,077 3347 7390 5174 349,020 298,981 346,844 32,340 2830
Max. 1,429,806 1,002,568 9838 21,275 15,300 1,001,026 818,161 999,000 51,300 11,800
Min. 58,852 12,622 116 606 227 14,140 29,158 32,639 17,472 8

All
Avg. 870,005 569,704 12,758 15,035 46,014 603,631 983,674 963,046 63,571 38,398
Max. 16,100,209 10,183,696 390,100 480,000 1,430,000 11,585,822 28,653,072 21,900,000 886,000 1,036,000
Min. 16,867 2206 43 12 38 8777 3454 3217 88 5

(a) MioJPY stands for Million Japanese Yen.
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Table 2. Unified efficiency measures on pharmaceutical product industry.

Pharmaceutical Product

Year Company Name UEN UEM UEM(DC)
Dual Variables

DC
Revenues Market

Capitalization

2013 Kyowa Kirin 0.985 0.967 0.756 0.133 −0.080 Strong
2014 Kyowa Kirin 0.981 0.965 0.759 0.133 −0.080 Strong
2015 Kyowa Kirin 0.984 0.964 0.792 0.138 −0.084 Strong
2013 Takeda 1.000 1.000 0.933 0.751 −0.081 Strong
2014 Takeda 1.000 1.000 1.000 0.751 −0.081 Strong
2015 Takeda 1.000 1.000 0.973 1.567 −0.129 Strong
2013 Astellas 1.000 0.989 0.847 0.268 −0.088 Strong
2014 Astellas 1.000 0.988 1.000 0.268 −0.088 Strong
2015 Astellas 0.997 0.985 0.955 1.933 −0.131 Strong
2013 Shionogi & Co., LTD. 0.994 0.981 0.735 0.133 −0.080 Strong
2014 Shionogi & Co., LTD. 0.997 0.985 0.798 0.138 −0.084 Strong
2015 Shionogi & Co., LTD. 1.000 0.990 0.830 0.150 −0.092 Strong
2013 Mitsubishi Tanabe Pharma 1.000 1.000 0.721 0.133 −0.080 Strong
2014 Mitsubishi Tanabe Pharma 0.995 0.988 0.749 0.133 −0.080 Strong
2015 Mitsubishi Tanabe Pharma 1.000 0.991 0.741 0.133 −0.080 Strong
2013 Nippon Shinyaku Co., LTD. 0.999 0.996 0.910 0.276 0.460 No
2014 Nippon Shinyaku Co., LTD. 1.000 1.000 0.844 2.901 0.313 No
2015 Nippon Shinyaku Co., LTD. 0.999 0.998 0.843 2.901 0.313 No
2013 Ono Pharmaceutical Co., LTD. 1.000 1.000 0.790 0.268 −0.088 Strong
2014 Ono Pharmaceutical Co., LTD. 0.997 1.000 0.877 2.178 −0.133 Strong
2015 Ono Pharmaceutical Co., LTD. 1.000 1.000 1.000 2.178 −0.133 Strong
2013 Santen 0.999 0.988 0.775 0.276 0.460 No
2014 Santen 1.000 0.991 0.760 0.133 −0.080 Strong
2015 Santen 0.999 0.991 0.755 0.133 −0.080 Strong
2013 Tsumura & Co. 0.996 0.978 0.882 0.276 0.460 No
2014 Tsumura & Co. 0.994 0.962 0.866 0.276 0.460 No
2015 Tsumura & Co. 0.994 0.962 0.874 0.276 0.460 No

Statistics

Avg. 0.997 0.987 0.843
S.D. 0.005 0.013 0.089
Max. 1.000 1.000 1.000
Min. 0.981 0.962 0.721

(a) DC stands for desirable congestion. Model (3) calculates a degree of UEN depicted in Stage I (A). Model (5)
computes the magnitude of UEM depicted in Stage I (B). After incorporating the by-product assumption, Model (11)
computes the degree of UEM(DC) as depicted in Stage III and Model (12) identifies the type of DC by applying
Equation (15).

Two desirable outputs are (a) revenues: total amount of sales gained from operation and (b)
market capitalization: this represents a current aggregate value of a firm. It is calculated from a sum of
current share price multiplied by the number of outstanding shares.

Three undesirable outputs are: (a) greenhouse gas emissions: a total amount of GHG emissions
from an operation; (b) total waste discharges: this is an amount of waste discharged from an operation;
and (c) total waste water discharges: this is an amount of waste water discharged from an operation.

For illustration, in the two tables, all three efficiency measures on average include UEN = 0.997 for
the pharmaceutical product and UEN = 0.989 for the machinery, UEM = 0.987 for the pharmaceutical
product and UEM = 0.933 for the machinery, and UEM(DC) = 0.843 for the pharmaceutical product
and UEM(DC) = 0.804 for the machinery. The pharmaceutical product industry is higher than the
machinery industry on average in the three unified efficiencies. The lower averages of the machinery
industry are partly because of these large standard deviations, compared to the pharmaceutical industry.
For example, these standard deviations of UEN are 0.005 for the pharmaceutical product and 0.010 for
the machinery.
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Table 3. Unified efficiencies on machinery industry.

Machinery

Year Company Name UEN UEM UEM(DC)
Dual Variables

DC
Revenues Market

Capitalization

2013 Komatsu 0.988 0.947 0.768 0.133 −0.080 Strong
2014 Komatsu 0.987 0.943 0.778 0.202 −0.085 Strong
2015 Komatsu 0.986 0.949 0.766 0.268 −0.088 Strong
2013 Sumitomo Heavy Industries, Ltd. 0.989 0.973 0.865 2.901 0.313 No
2014 Sumitomo Heavy Industries, Ltd. 0.991 0.977 0.761 2.519 0.114 No
2015 Sumitomo Heavy Industries, Ltd. 0.989 0.974 0.826 2.901 0.313 No
2013 Komori 1.000 0.993 0.933 0.276 0.460 No
2014 Komori 0.998 0.995 0.927 0.276 0.460 No
2015 Komori 0.998 0.992 0.934 0.276 0.460 No
2013 Daifuku 0.998 0.994 0.881 2.385 0.336 No
2014 Daifuku 0.998 0.993 0.866 2.385 0.336 No
2015 Daifuku 0.998 0.995 0.823 0.276 0.460 No
2013 NSK 0.977 0.849 0.708 0.268 −0.088 Strong
2014 NSK 0.978 0.851 0.743 0.905 −0.094 Strong
2015 NSK 0.961 0.719 0.745 1.853 −0.045 Strong
2013 NTN 0.984 0.909 0.793 0.276 0.460 No
2014 NTN 0.984 0.912 0.733 2.901 0.313 No
2015 NTN 0.983 0.897 0.798 2.901 0.313 No
2013 JTEKT 0.990 0.924 0.655 0.268 −0.088 Strong
2014 JTEKT 0.989 0.916 0.666 0.546 −0.091 Strong
2015 JTEKT 0.989 0.916 0.657 0.905 −0.094 Strong
2013 Makita 1.000 0.999 0.767 0.202 −0.085 Strong
2014 Makita 1.000 0.999 0.769 0.202 −0.085 Strong
2015 Makita 1.000 1.000 0.782 0.931 −0.093 Strong
2013 Mitsubishi Heavy Industries 1.000 0.868 0.795 0.196 0.072 No
2014 Mitsubishi Heavy Industries 0.972 0.834 0.965 0.277 0.054 No
2015 Mitsubishi Heavy Industries 0.977 0.877 1.000 0.277 0.054 No

Statistics

Avg. 0.989 0.933 0.804
S.D. 0.010 0.068 0.092
Max. 1.000 1.000 1.000
Min. 0.961 0.719 0.655

(a) See notes of Table 2.

Another finding is that UEM(DC) is generally lower than the other two efficiency measures. This is
because Model (11) needs to assess not only unified efficiency but also a potential of green technology
enhancement. Along with the high averages in the three efficiency measures, the pharmaceutical
companies exhibit a high percentage of strong DC, compared to the machinery industry. This indicates
that machinery companies have a high potential to handle pollution problems by enhancing their
production amounts.

Table 4 is the extension of Tables 2 and 3 that summarize industry averages of the three
efficiency measures. Table 4 indicates two implications concerning the first and second research
concerns. One of them is that most industrial sectors have their high UEN measures. Those industries
include the food item (UEN = 0.996), the pharmaceutical product (UEN = 0.997), the gum product
(UEN = 0.997), the glass, soil and stone product (UEN = 0.990), the electrical equipment (UEN = 0.993),
the transportation equipment and precision instrument (UEN = 0.994), and the other products
(UEN = 0.991) on average. The standard deviations of those industrial sectors are relatively small.
In contrast, the average UEM measures are generally lower than those of UEN. An exception is the
pulp and paper industry, whose average UEN is 0.847, while average UEM is 0.923. The pulp and
paper industry used to be an environmentally lagged industry. Their recent corporate efforts have
changed the status of environmental protection.
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Table 4. Unified efficiency averages of Japanese industrial sectors.

Industries Statist. UEN UEM UEM(DC) Industries Statist. UEN UEM UEM(DC)

Food item
Avg. 0.996 0.935 0.880

Iron and steel
Avg. 0.950 0.714 0.875

S.D. 0.005 0.080 0.091 S.D. 0.047 0.200 0.112

Textile product Avg. 0.963 0.928 0.906 Non–ferrous metal and
metal product

Avg. 0.966 0.921 0.818
S.D. 0.039 0.089 0.074 S.D. 0.050 0.096 0.103

Pulp and paper Avg. 0.847 0.923 0.999 Machinery Avg. 0.989 0.933 0.804
S.D. 0.125 0.108 0.002 S.D. 0.010 0.068 0.092

Chemical
Avg. 0.966 0.935 0.886 Electrical equipment Avg. 0.993 0.939 0.866
S.D. 0.054 0.097 0.099 S.D. 0.013 0.098 0.115

Pharmaceutical
product

Avg. 0.997 0.987 0.843 Transportation equipment
and precision instrument

Avg. 0.994 0.968 0.836
S.D. 0.005 0.013 0.089 S.D. 0.012 0.057 0.137

Gum product Avg. 0.997 0.958 0.866 Other products Avg. 0.991 0.968 0.877
S.D. 0.003 0.018 0.081 S.D. 0.010 0.024 0.153

Glass, soil and
stone product

Avg. 0.990 0.934 0.741
All

Avg. 0.980 0.938 0.864
S.D. 0.006 0.031 0.031 S.D. 0.045 0.095 0.109

(a) Statist. stands for Statistics. Ave. indicates average and S.D. stands for standard deviation. DC stands for
desirable congestion.

The other finding is that among the industrial sectors with high UEN, only the pharmaceutical
product industry has exhibited higher UEM with 0.987 on average. It is followed by the transportation
equipment and precision instrument as well as the other products with 0.968 in UEM. These measures
indicate that companies with high UEN cannot always produce high UEM. The UEM(DC) also exhibits
high average (0.999) in the pulp and paper as well as that (0.906) in the textile product, although the two
industrial sectors do not exhibit high attainment in both UEN and UEM. This indicates, particularly
for the pulp and paper sector, that companies of the sector put more weight on their environmental
efficiencies than operational ones. The industry of glass, soil and stone products exhibits low average
with 0.741 in UEM(DC). The industry has a large space for efficiency improvement by introducing
green technology. The iron and steel sector exhibits low UEM(DC) = 0.714, revealing a high potential to
improve its pollution prevention by investing in green technology. Currently, this industry produces
high CO2 emissions among the manufacturing sectors.

The UEN outperforms the UEM in these degrees. This implies the implication that firms have first
attempted to improve the sustainability by attaining their economic successes. To mitigate industrial
pollution, they accumulate capital from their profits and invest it in green technology so that they can
satisfy the minimum standard required by the government. It is indeed important that firms need to
satisfy the environmental standard. However, it is difficult for them to follow the regulation guideline
without economic sufficiency. The relatively low degree of UEM(DC) implies the current potential
level for green technology innovation in Japanese manufacturing firms.

6.3. Statistical Test

Table 5 summarizes the rank sum test [25] on the three models i.e., UEN, UEM, UEM(DC). The null
hypotheses are related to the third research concern and summarized as follows:

(a) Ho: There is no difference among Japanese industrial sectors in their UEN measures;
(b) Ho: There is no difference among them in their UEM measures; and
(c) Ho: There is no difference among them in their UEM(DC) measures.
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Table 5. Kruskal–Wallis rank sum test.

Hypothesis 1 Hypothesis 2 Hypothesis 3

chi-squared with ties 72.31*** 43.51*** 42.522***

p-value 0.0001 0.0001 0.0001

(a) First Ho: there is no difference among Japanese industrial sectors in their UEN measures. Model (3) is used
to compute UEN to examine the hypothesis. Second Ho: there is no difference among them in UEM. Model (5)
measures UEM to examine the hypothesis. Third Ho: there is no difference among them in UEM(DC). Model (11)
calculates UEM(DC) to examine the hypothesis. (b) Holland and Wolfe [25] described the Kruskal–Wallis rank sum
test. Sueyoshi and Aoki [26] described how to conduct the rank sum test for DEA.

The first and second hypotheses originate from [7]. The last examines the influence of DC and the
by-product assumption. As indicated by Table 5, the rank sum test rejects the three hypotheses at the 1%
significance by the chi-squared distribution. This indicates that there is a significant difference among
Japanese industrial sectors in their unified efficiencies. Historically, the nation was often referred to as
“Japan Inc.” because the government carefully regulated and coordinated corporate operations. Such a
government and business relationship has been admired and respected by the other industrial nations.
However, Table 5 indicates that the strong relationship may not exist among different industrial sectors
because firms are now facing fierce competition in a global market.

6.4. Desirable Congestion (DC)

Table 6 documents the percentage on a possible occurrence of DC, measured by Model (12) and the
rule (15). The table indicates that 41% of firms have a potential of efficiency improvement by employing
green technology for pollution prevention and the others (59%) do not have such a capability. Among
them, a high percentage of strong DC is observed in the industrial sectors such as pharmaceutical
products (74%), glass, soil and stone products (100%), and non-ferrous metal and metal products (67%).
These sectors exhibit relatively low UEM (DC) in such a manner that these measures are 0.843, 0.741,
and 0.818, respectively. Thus, investment in green technology in these industries becomes effective in
reducing B.

Table 6. Type of desirable congestion.

Industries
Occurrence of Desirable Congestion

Strong Weak No

Food item 6 (20%) 0 (0%) 24 (80%)
Textile product 3 (20%) 0 (0%) 12 (80%)
Pulp and paper 2 (22%) 0 (0%) 7 (78%)

Chemical 25 (33%) 0 (0%) 50 (67%)
Pharmaceutical product 20 (74%) 0 (0%) 7 (26%)

Gum product 3 (33%) 0 (0%) 6 (67%)
Glass, soil and stone product 6 (100%) 0 (0%) 0 (0%)

Iron and steel 3 (33%) 0 (0%) 6 (67%)
Non–ferrous metal and metal product 8 (67%) 0 (0%) 4 (33%)

Machinery 12 (44%) 0 (0%) 15 (56%)
Electrical equipment 36 (52%) 0 (0%) 33 (48%)

Transportation equipment and precision instrument 12 (36%) 0 (0%) 21 (64%)
Other products 0 (0%) 0 (0%) 9 (100%)

All 136 (41%) 0 (0%) 194 (59%)

(a) Desirable congestion implies an occurrence of green technology innovation. Using Model (12), we classify the
type of congestion by Equation (15).

7. Concluding Comments

This study discussed how to enhance the sustainability of Japanese manufacturing firms by
investing in green technology and other pollution prevention efforts (e.g., waste reduction) in their



Energies 2019, 12, 1785 19 of 22

operations. The concept of sustainability is not clearly defined and, therefore, not analytically explored
by previous studies. We have challenged the research task by DEA.

As the first step in our methodological development, this research separated outputs into two
categories: desirable and undesirable. Second, we discussed how to unify them to compute their
UEN and UEM scores. Finally, this research extended them for the development of a new measure,
or UEM(DC), under both the existence of DC and the by-product assumption. The assumption
provided us with a new formulation for DEA-based environmental assessment.

To describe the applicability, we investigated the performance of Japanese 13 industrial sectors.
The application obtained the following five implications: First, their UEM(DC) measures were generally
lower than their magnitudes of UEN and UEM because the former needed to consider a potential for
green technology innovation, recycling activities and other efforts for pollution prevention. Japanese
companies with low UEM(DC) need to enhance green technology and other activities for environmental
protection. Second, several sectors maintained their high UEN measures. Meanwhile, their standard
deviations were relatively smaller than the magnitude of UEM and that of UEM(DC). In other words,
most industries now face different environmental surroundings. An exception was the pulp and
paper industry. The industry used to be lagging in environmental protection, but its recent effort
changed the current status on environmental protection. Third, among the industrial sectors with high
UEN measures, only the pharmaceutical product sector exhibited high UEM with 0.987 on average.
Transportation equipment and precision instrument were the second with 0.968 in UEM. The companies
with high UEN may not necessarily lead to high UEM. This reveals a difficulty in balancing between
operational and environmental efficiencies. Fourth, UEM(DC) exhibited high averages in the pulp
and paper as well as the textile products, although they did not exhibit high achievement in both
UEN and UEM. On the other hand, glass, soil and stone products presented low average with 0.741 in
UEM(DC). The industrial sector has a large space for sustainability improvement by implementing
green technology investment. Finally, a high percentage of strong DC was observed in pharmaceutical
products (74%), glass, soil and stone products (100%), and ferrous and non-ferrous metal products
(67%). These industries exhibited relatively low in UEM (DC) in the manner that they were 0.843, 0.741,
and 0.818, respectively. Investment in green technology and/or pollution prevention in these industries
becomes effective in reducing B. The results on UEM(DC) indicate that firms in different sectors produce
different results in green management even if they are strictly regulated by the Japanese government.

This research has four drawbacks, all of which need to explored in future. First, we have discussed
how to compute a degree of sustainability under DC. However, this study does not discuss corporate
implications derived from scale benefits such as RTS and DTS. These scale measures provide us with a
strategic direction (e.g., increasing, decreasing and constant) by a scale change on inputs [27]. Second,
we need to consider an efficiency change due to a time shift by a “Malmquist” index. The index
examines a frontier shift among multiple periods. The shift indicates technology advancement
and/or managerial improvement during the observed periods [28]. Third, the proposed approach is
useful in measuring the performance of other types of manufacturing and service industries. Finally,
this research needs a methodological comparison. That is, different methodology may produce
empirical results which cannot be found in this research. This type of empirical issue is referred to as
“a methodological bias” [29]. See also [30], which discussed the methodological problems that exist in
many empirical studies.

In conclusion, it is hoped that this article may contribute to DEA environmental assessment
applied to Japanese industrial sectors.
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Nomenclature

Abbreviations
CO2 The index of time Carbon Dioxide
DC Desirable Congestion
DEA Data Envelopment Analysis
DMU Decision Making Unit
DTS Damages to Scale
EF Efficiency Frontier
GHG Greenhouse Gas
M Managerial
MRT Marginal Rate of Transformation
N Natural
NR Non-Radial
RAM Range Adjusted Measure
ROA Return on Assets
ROE Return on Equity
PoPS Pollution Possibility Set
PrPS Production Possibility Set
Pr&PoPS Production and Pollution Possibility Set
RS Reference Set
RTS Returns to Scale
UC Undesirable Congestion
UEN Unified Efficiency under Natural Disposability
UEM Unified Efficiency under Managerial Disposability
UEM(DC) Unfired Efficiency under Managerial Disposability and Desirable Congestion
URS Unrestricted
CSR Corporate Social Responsibility
Variables
dx

i an unknown slack variable of the i-th input
db

f an unknown slack variable of the f -th undesirable output
λ an unknown column vector of intensity (or structural) variables
Rx

i a data range related to the i-th input
Rg

r a data range related to the r-th desirable output
Rb

f a data range related to the f -th undesirable output
vi a dual variable of the i-th input
ur a dual variable of the r-th desirable output
w f a dual variable of the f -th undesirable output,

σ
a dual variable to indicate the intercept of a supporting hyperplane on a production and
pollution possibility set

ε
a prescribed small number to control the magnitude of unified efficiency (e.g., ε = 0.1, 1
and 2). We use ε = 1 for this study. The number is not a non-Archimedean small number.
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