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Abstract: The wind energy industry is expanding in order to be able to meet the current and
future energy demand, and is supported by governments in that renewable energy investment
has been made. Optimal decision making (DM) in wind turbine manufacturing is required to
guarantee the competitiveness of the business. This paper considers decision making for wind turbine
manufacturing using a logical decision tree (LDT) and binary decision diagrams (BDD). A qualitative
analysis of wind turbine manufacturing is carried out using logical decision trees. They are used
for a qualitative study of the case study. Binary decision diagrams are used to obtain the Boolean
function and, therefore, to carry out a quantitative analysis. Finally, an optimization of budgets
is employed based on importance measures. There is no optimal method that can establish the
importance measures. The following heuristic methods have been used to find a solution close to the
optimal: Fussell-Vesely, Birnbaum and Criticality. The computational cost is reduced by ranking the
events. The heuristic methods to establish the best rankings are: Top-Down-Left-Right, Level based
method, AND based method, Breadth-First Search (BFS) and Depth First Search (DFS). A real case
study is considered, in which a static and dynamic analysis is carried out.

Keywords: decision making; logical decision tree; binary decision diagram; importance measures

1. Introduction

Wind energy has been growing in recent years. Forecasting studies confirm that it will continue
to increase until at least 2030. Wind farms require an acceptable level of reliability, availability,
maintainability and safety (RAMS) of wind turbines in order to guarantee power generation levels that
contribute to the energy mix [1,2].

Vachon [3] shows that operations and maintenance (OM) costs can make up 75–90% of the
investment costs, based on a 20-year life cycle for a 100-MW wind farm with 600 turbines of 750 kW
each. The cost per failure is increasing, although larger turbines may reduce the OM cost per unit
power [4]. Therefore, the correct decision making (DM) in design, manufacture and performance
of wind turbines must be set correctly. This will mean that operational and maintenance costs and
downtimes can be minimized or avoided [5,6]. Figure 1 shows the principal components of a wind
turbine [7].
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Figure 1. Components of the WT: 1-Foundation; 2-Tower; 3-Blades; 4-meteorological unit; 5-Nacelle; 40 
6-Pitch system; 7-Rotor hub; 8-Main bearing; 9-High speed shaft; 10-Gearbox; 11-Low speed shaft; 12-41 
Brake system; 13-Generator; 14-Yaw system [7]. 42 

There are several research studies that consider the wind turbine manufacturing process: Han 43 
et al. [8] presented the manufacture of a 100-W helical-blade vertical-axis wind turbine. The 44 
manufacture was optimized by numerical analysis in the design process, and it was tested in a wind 45 
tunnel. Wind turbine manufacturing is optimized to achieve competitiveness in the market. 46 
Therefore, a correct and optimal DM is required in wind turbine manufacturing. Pérez et al. [7] 47 
considered a complete analysis of wind turbine reliability, which depends on the correct manufacture 48 
in terms of the components studied. Márquez et al. [9] took into account the critical components via 49 
fault tree analysis over time, concluding that these components should be considered in detail in the 50 
production phase. A similar research study was carried out for electrical components by García et al. 51 
[10]. Pérez et al. [4] studied the critical components from an economic perspective, in which the 52 
investment costs of the manufacturing process were considered. Dale et al. [11] presented a dynamic 53 
function for energy return on investments, which is mainly due to the manufacturing process. 54 
Coudert and Madre presented presents data structures and algorithms that support the interactive 55 
exact analysis of very large coherent and noncoherent fault trees [12] . None of these studies considers 56 
the DM in the manufacturing process, but it can be found in other fields. The DM problem has been 57 
considered from different perspectives: Cost-benefit-cost study; basic rules [13], e.g., conjunctive and 58 
disjunctive, maximin and maximax, lexicographic, pros and cons analysis; analytic hierarchy process 59 
generalized means, simple multi-attribute rating, outranking; the fuzzy preference relations [14]; 60 
cognitive decision–making models [15]; large group DM methods [16,17]; ELECTRE and 61 
PROMETHEE [13]; etc.  62 

New researches have been conducted in DM processes under risk contexts, e.g., References [18–63 
20]. These methods solve the problem usually from a quantitative perspective, and sometimes from 64 
a qualitative one, but they do not consider both together. 65 

This paper considers an approach to DM problem analysis from qualitative and quantitative 66 
perspectives, i.e., graphically and mathematically, where they are linked. The paper discusses the 67 
logical decision tree (LDT) to support these decisions for optimal, or close to optimal, wind turbine 68 
manufacturing. The LDT leads a DM qualitative analysis. The LDT is converted to binary decision 69 
diagrams (BDD). The Boolean function is obtained using the BDD, and it is employed to study the 70 
DM problem qualitatively. DM can be understood as the process of identifying and choosing 71 
alternatives based on the decision-maker weighs/values and preferences [18]. Both methods are 72 
limited since it is possible to build an LDT that demonstrates the problem with high accuracy.  73 

The flexibility of the approach proposed allows any number of constraints to be considered and 74 
more accurate outcomes to be found. For example, Reference [19] establishes a quantitative measure 75 
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Figure 1. Components of the WT: 1-Foundation; 2-Tower; 3-Blades; 4-meteorological unit; 5-Nacelle;
6-Pitch system; 7-Rotor hub; 8-Main bearing; 9-High speed shaft; 10-Gearbox; 11-Low speed shaft;
12-Brake system; 13-Generator; 14-Yaw system [7].

There are several research studies that consider the wind turbine manufacturing process:
Han et al. [8] presented the manufacture of a 100-W helical-blade vertical-axis wind turbine.
The manufacture was optimized by numerical analysis in the design process, and it was tested
in a wind tunnel. Wind turbine manufacturing is optimized to achieve competitiveness in the market.
Therefore, a correct and optimal DM is required in wind turbine manufacturing. Pérez et al. [7]
considered a complete analysis of wind turbine reliability, which depends on the correct manufacture
in terms of the components studied. Márquez et al. [9] took into account the critical components
via fault tree analysis over time, concluding that these components should be considered in detail
in the production phase. A similar research study was carried out for electrical components by
García et al. [10]. Pérez et al. [4] studied the critical components from an economic perspective,
in which the investment costs of the manufacturing process were considered. Dale et al. [11] presented
a dynamic function for energy return on investments, which is mainly due to the manufacturing
process. Coudert and Madre presented presents data structures and algorithms that support the
interactive exact analysis of very large coherent and noncoherent fault trees [12]. None of these
studies considers the DM in the manufacturing process, but it can be found in other fields. The DM
problem has been considered from different perspectives: Cost-benefit-cost study; basic rules [13], e.g.,
conjunctive and disjunctive, maximin and maximax, lexicographic, pros and cons analysis; analytic
hierarchy process generalized means, simple multi-attribute rating, outranking; the fuzzy preference
relations [14]; cognitive decision–making models [15]; large group DM methods [16,17]; ELECTRE and
PROMETHEE [13]; etc.

New researches have been conducted in DM processes under risk contexts, e.g., References [18–20].
These methods solve the problem usually from a quantitative perspective, and sometimes from a
qualitative one, but they do not consider both together.

This paper considers an approach to DM problem analysis from qualitative and quantitative
perspectives, i.e., graphically and mathematically, where they are linked. The paper discusses the
logical decision tree (LDT) to support these decisions for optimal, or close to optimal, wind turbine
manufacturing. The LDT leads a DM qualitative analysis. The LDT is converted to binary decision
diagrams (BDD). The Boolean function is obtained using the BDD, and it is employed to study the DM
problem qualitatively. DM can be understood as the process of identifying and choosing alternatives



Energies 2019, 12, 1753 3 of 17

based on the decision-maker weighs/values and preferences [18]. Both methods are limited since it is
possible to build an LDT that demonstrates the problem with high accuracy.

The flexibility of the approach proposed allows any number of constraints to be considered and
more accurate outcomes to be found. For example, Reference [19] establishes a quantitative measure for
prioritisation of items based on penalties incurred, due to their non-availability. The prioritisation can
be performed based on several constraints using the optimization approach. In general, the methods
proposed are adaptable to any problem that can be logically defined, and several options can
be considered.

These methods can support decision makers in finding an optimal, or near optimal, DM.
The solutions found to the ranking of the events or to the importance measures are validated by
different methods. It suggests that scientists should develop or apply new methods that could find
better solutions. The approach can be applied to robust and large problems. It can also be applied to
other case studies. This paper mainly consists of the following:

• A real case study is considered based on the research project OptiWindSeaPower.
• The DM in wind turbine manufacturing by a qualitative analysis that uses an LDT.
• A qualitative analysis of wind turbine manufacturing is proposed using logical decision trees.
• A quantitative analysis is carried out by using the BDD and analyzing the Boolean function.
• The optimization of the investments subject to the budget is employed based on

importance measures.
• The problem is optimised over time.
• The computational cost is reduced by employing the ranking of the events methods of:

Top-Down-Left-Right, Level, AND, Breadth-First Search (BFS) and Depth First Search (DFS) [20].
• Fussell-Vesely, Birnbaum, Criticality methods are employed to calculate the importance measures.

Section 2 discusses the LDT, BDD, the transformation from LDT to BDD and the importance
measures [21]. A real case study based on the OptiWindSeaPower research project is described
in Section 3. The results are shown and discussed in Section 4. Finally, Section 5 provides the
main conclusions.

2. Logical Decision Tree and Binary Decision Diagrams

2.1. Logical Decision Trees

LDT analysis is given in Reference [22] considering the interrelation between every single basic
cause (BC), i.e., events that cannot be broken down into other causes, and including the logical operators
‘AND’ and ‘OR’, that define the interrelations between causes [23,24]. The non-basic cause (NBC) is
an event that can be broken down into other causes. An LDT considers a root cause, known as main
problem (MP) or top event, and the relation between the MP and its causes [25].

Repeated BCs can be found because there are BCs that can be responsible for the MP in different
business areas. BDDs are employed to analyze the LDT, shown in Figure 2.
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Figure 2. Example of Conversion from LDT to binary decision diagrams (BDD).
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2.2. Binary Decision Diagrams

BDD are employed to obtain the analytical expression of the MP occurrence probability, QMP.
BDD is obtained from the LDT, enabling the Boolean function of QMP to be obtained. BDD is a directed
graph, i.e., with no cycles, in which different events are interconnected by nodes that collect all the
possible states. Each node or vertex is followed by two branches that determine the occurrence or
non-occurrence of the corresponding event.

A data structure that represents the Boolean functions is the BDD [26]. They were extended by
Akers [27] and Bryant [28,29] by the BDD canonical bases. BDD provides a new alternative to the
traditional cut-set (CS) based approach for LDT that leads to the determination of the output value of
the function through the examination of the values of the inputs [30].

A BDD is defined as a directed acyclic graph (V, N), V being the vertexes and N the indexes.
There are two vertex types: A terminal vertex with value(v) of 0 or 1, where 1 corresponds to system
failure, and 0 to system success. The CSs are given by the paths that have 1 state; the non-terminal
vertex v has an index(v) ∈ N [0,1, . . . ,n] and two descendants, high(v) and low(v) ∈ V, connected
by a branch. The NBC is given by 0 branch, and the occurrence by 1. For any non-terminal vertex
v, if high(v) is non-terminal, then index(v) < index(high(v)), else if low(v) is also non-terminal, then
index(v) < index(low(v)). In other words, CSs are the paths “from the top to the ones” and each one of
them provides a different scenario where the MP would occur.

When v is a non-terminal vertex with index(v) = 1, fv given by Equation (1):

fv(x1, . . . ,xn) = xi·low(v)(x1, . . . ,xn) + xi·high(v)(x1, . . . ,xn). (1)

If v is a terminal vertex with value(v) = 1, then fv = 1, else if value(v) = 0 then fv = 0.
The conversion from LDT to BDD is given by References [31] employing the following rules:

changed-order; expansion; get-rid-of, and; absorption. Let V be a vertex set as V = V(v1, . . . , vn), if v1,
. . . , vm are the v descendant vertices, then: index(V(v1, . . . , vn)) = min(index(Gi)), where 1≤ i ≤ n.

An example of the conversion from BDD to LDT is shown in Figure 2.
CSs are given by the paths that start from the first BC and finish in terminal vertices with 1 value

from the BDD. The following CSs are given in Figure 2:

CS1 = BC1·BC3,

CS2 = BC1·BC3·BC4,

CS3 = BC1·BC2·BC3,

CS3 = BC1·BC2·BC3·BC4.

P(BCi) is the occurrence probability of the i BC. Then, the MP occurrence probability, QMP, can be
expressed as the sum the probabilities of all the CSs, since these CSs are mutually exclusive events.
Therefore, QMP is given by Equation (2):

QMP =
N∑

i=1

P(CSi), (2)

where N is the total number of CSs, P(CSi) is the probability of occurrence of the i CS. This expression
will represent the utility function in the DM process. QMP is for the example:

QMP = P(BC1)·P(BC3) + P(BC1)·(1− P(BC3))·P(BC4) + (1− P(BC1))·P(BC2)·P(BC3)

+(1− P(BC1))·P(BC2)·(1− P(BC3))·P(BC4).
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The BDD size depends on the ordination of the BC [32]. The methods employed to obtain an
index to BCs for ranking them close to the optimal are: Top-Down-Left-Right (TDLR) [33], the LDT
is read from top to bottom and from left to right. The ranking is generated according to the order in
which the BCs are found; the Malik et al. method [32] is based on the levels (Level). It is not a simple
and direct method. It differentiates between the BCs depending on where they are located, i.e., it is
directly related to the number of gates that are above them. The multiple occurring events are listed
first when there are BCs in the same level; Xie et al. method [34], based on the AND gates (AND),
establishes the importance of each BCi by counting the number of AND gates on the path from the BCi
to the top event; Breadth-First Search (BFS) [35], the LDT is read from left to right and the BCs are
ranked according to the order in which they are found; Depth First Search (DFS) [10], the LDT is read
from top to bottom and in each level the left LDTs are read first. More details about the methods can be
found in Reference [36].

A similar approach to analyze quantitatively the LDT via BDD was considered by Coudert and
Madre [12] using MetaPrime. They demonstrate the BDD efficiency for small and large fault tree
analysis from the computational cost point of view. In this paper, a set of smaller LDTs, similar to the
size of the case study studied, have been employed to analyse the ranking methods. Table 1 shows the
number of basic events, intermediate events, OR and AND gates and levels for each LDT.

Table 1. Logical decision trees (LDTs) characteristics.

LDT i Basic Events Intermediate Events OR Gates AND Gates Levels

LDT 1 5 5 3 3 3

LDT 2 15 13 10 4 8

LDT 3 11 9 5 5 6

LDT 4 25 21 16 6 12

LDT 5 20 15 10 6 5

LDT 6 12 7 5 3 4

LDT 7 10 7 7 1 5

LDT 8 20 17 12 6 11

LDT 9 31 25 16 10 11

The number of CSs are given in Table 2.

Table 2. Cut-sets (CSs) obtained by the ranking events.

LDT i TDLR DFS BFS Level AND

LDT 1 2 2 2 2 2

LDT 2 30 30 155 30 30

LDT 3 12 24 36 12 12

LDT 4 64 142 176 64 22

LDT 5 99 207 257 99 55

LDT 6 9 7 7 9 9

LDT 7 9 12 21 9 9

LDT 8 44 76 192 44 44

LDT 9 1012 1292 3456 1012 1012

BFS provides poor results in most of the cases, especially when the LDT has a large number of
events, levels and “OR” and “AND” gates. The Level and AND methods generate the ranking of
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the events with a minimal CSs. The conclusions regarding Level, DFS and TDLR methods should be
studied for each LDT.

There is not a specific heuristic method for any LDT, i.e., the best method should be chosen
for each LTD. The heuristic methods employed in this paper are static. There are also dynamic
heuristic methods, however, they are not suitable for large or complex LDTs because they present some
drawbacks, e.g., they need to store in memory the BDD or a part of it [37].

2.3. Importance Measures

Importance measures (IMs) are employed in this research in order to establish the most important
BCs in a given time that affects the main cause that is being studied, i.e., they are employed for the
LDT sensitivity analysis regarding the BCs [38]. The study will establish the BCs where it is necessary
to focus on the investment of tasks. IM provides a weight index of the BC over the LDT [39,40].

The IMs can be classified into two main categories from the probabilistic perspective.

• Deterministic. They determine the importance of a BC without considering its occurrence probability.
• Probabilistic. They provide more details about the system than the deterministic IMs.

The importance of the BC depends on its occurrence probability and its allocation into the LDT.

There are different methods to determine the IM, but they are not exact. This paper considers
three methods in order to validate the results:

Fussell-Vesely Importance Measure IFV [41]. IFV is defined as the quotient between the CSs that
contain a BC itself and QMP, given by Equation (3),

IFV
k =

P
(
CS1 ∪CS2 ∪ . . .∪CS j

)
QMP

, (3)

where IFV
k is the IFV of the k BC, and P

(
CS1 ∪CS2 ∪ . . .∪CS j

)
is the probability of the union of the CSs

that contains the k BC.
Birnbaum Importance Measure IBirn [42]. IBirn provides the value associated with the direct

relation between QMP and the corresponding BC. It is defined by Equation (4),

IBirn
k =

∂QMP

∂wk
, (4)

where IBirn
k is the IBirn of the k BC, and wk is the probability assigned to the k BC.

Criticality Importance Measure ICrit [43]. ICrit, unlike IBirn, considers the probability of occurrence
of the BC itself. It is given by Equation (5):

ICrit
k =

wk
QMP

·
∂QMP

wk
=

wk
QMP

·IBirn
k , (5)

where ICrit
k is ICrit of the k BC.

A detailed analysis of the methods employed is shown in Reference [18].

3. Real Case Study

A real case study based on the research project called OptiWindSeaPower is employed [44].
The case study considers a production delay given by the LDT, shown in Figure 3. 32 BCs and
23 intermediate causes are considered for wind turbine production delay, with 12 OR and 11 AND
gates, shown in Figures 3–8. The case study is simple, the main objective is to discuss the key features
of the approach. It is discussed in more detail in Section 5.



Energies 2019, 12, 1753 7 of 17

Energies 2019, 12, x 6 of 16 

 

 Deterministic. They determine the importance of a BC without considering its occurrence 179 
probability.  180 

 Probabilistic. They provide more details about the system than the deterministic IMs. The 181 
importance of the BC depends on its occurrence probability and its allocation into the LDT. 182 

There are different methods to determine the IM, but they are not exact. This paper considers 183 
three methods in order to validate the results:  184 

Fussell-Vesely Importance Measure 𝐼𝐹𝑉 [41]. 𝐼𝐹𝑉 is defined as the quotient between the CSs 185 
that contain a BC itself and QMP, given by Equation (3), 186 

𝐼𝑘
𝐹𝑉 =

𝑃(𝐶𝑆1 ∪ 𝐶𝑆2 ∪ … ∪ 𝐶𝑆𝑗)

𝑄𝑀𝑃
, (3) 

where 𝐼𝑘
𝐹𝑉  is the 𝐼𝐹𝑉 of the k BC, and 𝑃(𝐶𝑆1 ∪ 𝐶𝑆2 ∪ … ∪ 𝐶𝑆𝑗) is the probability of the union of 187 

the CSs that contains the k BC. 188 
Birnbaum Importance Measure 𝐼𝐵𝑖𝑟𝑛 [42]. 𝐼𝐵𝑖𝑟𝑛 provides the value associated with the direct 189 

relation between QMP and the corresponding BC. It is defined by Equation (4),  190 

𝐼𝑘
𝐵𝑖𝑟𝑛 =

𝜕𝑄𝑀𝑃

𝜕𝑤𝑘
, (4) 

where 𝐼𝑘
𝐵𝑖𝑟𝑛 is the 𝐼𝐵𝑖𝑟𝑛 of the k BC, and 𝑤𝑘 is the probability assigned to the k BC 191 

Criticality Importance Measure 𝐼𝐶𝑟𝑖𝑡  [43].  𝐼𝐶𝑟𝑖𝑡 , unlike 𝐼𝐵𝑖𝑟𝑛 , considers the probability of 192 
occurrence of the BC itself. It is given by Equation (5): 193 

𝐼𝑘
𝐶𝑟𝑖𝑡 =

𝑤𝑘

𝑄𝑀𝑃
·

𝜕𝑄𝑀𝑃

𝑤𝑘
=

𝑤𝑘

𝑄𝑀𝑃
· 𝐼𝑘

𝐵𝑖𝑟𝑛, (5) 

where 𝐼𝑘
𝐶𝑟𝑖𝑡 is 𝐼𝐶𝑟𝑖𝑡 of the k BC. 194 

A detailed analysis of the methods employed is shown in Reference [18]. 195 

3. Real Case Study 196 

A real case study based on the research project called OptiWindSeaPower is employed [44]. The 197 
case study considers a production delay given by the LDT, shown in Figure 3. 32 BCs and 23 198 
intermediate causes are considered for wind turbine production delay, with 12 OR and 11 AND gates, 199 
shown in Figures 3–8. The case study is simple, the main objective is to discuss the key features of the 200 
approach. It is discussed in more detail in Section 5. 201 

Production 
Delay

Wrong Projects 
Interaction

Human 
Resources

Lack of 
notification Wrong needs in 

Organization
Delay in Orders

202 
Figure 3. Wind turbine production delay LDT. 203 

Figure 4 shows the Wrong Projects Interaction LDT from Figure 3. It consists of 7 BCs and 5. 204 

Figure 3. Wind turbine production delay LDT.

Figure 4 shows the Wrong Projects Interaction LDT from Figure 3. It consists of 7 BCs and 5.Energies 2019, 12, x 7 of 16 

 

Wrong Projects 
Interaction

Mixture of 
information 

between 
transactions

BC02

Wrong Stock 
Project 

Lack of 
global 

planning
BC02

Poor production 
management 

Forecast 
Mistakes 

Lack of 
Employee 
Training 

Out-dated 
analysis 

techniques
BC03

Sampling 
mistakes

BC06

Parameters 
selection 
mistakes

BC07

Shortage of 
statistic 

resources Employees with 
inadequate 

qualifications
BC04

Lack of 
internal 
training 
courses

BC05

 203 
Figure 4. Wrong projects interaction LDT. 204 

Figure 5 shows the Human Resources LDT, where the BC employees with inadequate 205 
qualifications and lack of internal training courses are the same BC, as shown in Figure 4. There are 206 
also 12 NBC and 8 BC, 4 OR and 3 AND gates. 207 

Figure 4. Wrong projects interaction LDT.



Energies 2019, 12, 1753 8 of 17

Figure 5 shows the Human Resources LDT, where the BC employees with inadequate qualifications
and lack of internal training courses are the same BC, as shown in Figure 4. There are also 12 NBC and
8 BC, 4 OR and 3 AND gates.Energies 2019, 12, x 8 of 16 
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Lack of Notification LDT is shown in Figure 6, with 7 BCs, where Out-dated analysis techniques;
Sampling mistakes, parameters selection mistakes are also indicated in the LTD, as shown in Figure 5.
It also considers 10 NBCs, the Forecast mistakes and Shortage of statistic resources as in Figure 4,
with 3 OR and 3 AND gates.
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Wrong needs in organization LTD, shown in Figure 7, is the simplest LTD. It shows 3 BCs and 1
NBC, with and 1 OR and 1 AND gates. It does not indicate any repeated BCs.
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Finally, Figure 8 shows the Delay Orders LTD, with 7 BCs 4 NBC, and 2 AND and 2 OR gates.
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Figure 9 shows the BCs probabilities of occurrence in time. The probabilities were set by experts in
the research project [44]. They could change to other projects or over time. The objective is to calculate
QMP is given by Equation (2), i.e., the occurrence probability of the Production Delay and then analyze
the main causes for this scenario.
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4. Results

The best method to reduce the size of the BDD, i.e., to minimize the number of CS, and, therefore,
the computational cost, has been the AND-based criterion.
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The order of the variables is:

BC08 > BC20 > BC21 > BC26 > BC27 > BC04 > BC05 > BC01 > BC09

> BC10 > BC11 > BC24 > BC25 > BC12 > BC13 > BC14

> BC17 > BC18 > b19 > BC > BC23 > BC15 > BC16 > BC03

> BC06 > BC07 > BC02

The CSs were 889, and the QMP = 83.04%.
The Fussell-Vesely, Birnbaum and Criticality IMs are presented in Figure 10 for the first month.

They will be used to select the BCi that will reduce their P(CSi), and, therefore, P(CSi) where they
appear and the QMP according to Equation (2).
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Figure 10. Fussell-Vesely, birnbaum and criticality importance measures (IMs).

Fussell-Vesely IM gives more importance to BC8, Mismanagement of Human Resources
Department and BC4, employees with inadequate qualifications, and BC 5, Lack of Internal Training
Courses. The results obtained by Birnbaum IM provide more balance between BCs, and they are
similar to the Fussell-Vesely IM, but Birnbaum IM now gives more importance to BC16 and BC22
than BC14, and more importance to the BC26 and 27. Finally, Criticality IM provides similar results
to Fussell-Vesely IM. Therefore, the results provided by the IM methods are similar for this month,
where the results can then be validated.

The BCi cost is shown in Figure 11. They were estimated in the research project [44] by the experts.
This information, together with the previous results and those obtained by the IM, will provide the
optimal DM for each BCi.
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Figure 11. Cost of BCi.

The reduction of QMP, Q∗MP, will be done by a reduction of the occurrence probability of BCi,
I(BCi). The objective function is given by Equation (6),

minimize f
(
Q∗MP(I(BCi))

)
, (6)

subject to
n∑

i=1

Ci·BCi ≤ Budget

0 ≤ I(BCi) ≤ PBCi ,

where the objective function f
(
Q∗MP(I(BCi))

)
is a Non-Linear Programming Problem (NLPP), due to

the Boolean function is given by Equation (2). The first constraint is defined by total investment is
done in the BCs,

∑n
i=1 Ci·BCi, where the investment in each BCi, Ci·BCi, is given by the BCi cost, Ci,

given in Figure 11, subject to the budget per month, in this case 400 €/month. When an investment
is done to a BCi, the probability of the BCi will be I(BCi), and, if there is no investment in the BCi,
then I(BCi) = wBCi and BCi = 0, being PBCi the probability assigned to each BCi, given in Figure 9.

Figure 12 shows the investment distribution over time. The investments are done in the BCi that
have a major IM in each month subject to the budget.
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I(BCi) over time, given in Figure 13, indicates that QMP will be updated as Q∗MP(I(BCi)) over time,
shown in Figure 14. The reduction could be greater if the budget is larger. This is a case in which the
firm could have a budget for 10 months, but the decision maker could consider a threshold for the
reduction of the QMP and, therefore, does not do any more investment when the threshold is reached,
or the total budget is fixed, etc.



Energies 2019, 12, 1753 14 of 17

Energies 2019, 12, x 13 of 16 

 

 265 

Figure 13. Occurrence probability reduction of each BCi over time. 266 

I(BCi) over time, given in Figure 13, indicates that 𝑄ெ௉ will be updated as 𝑄ெ௉∗ (𝐼(𝐵𝐶௜)) over 267 
time, shown in Figure 14. The reduction could be greater if the budget is larger. This is a case in which 268 
the firm could have a budget for 10 months, but the decision maker could consider a threshold for 269 
the reduction of the 𝑄ெ௉ and, therefore, does not do any more investment when the threshold is 270 
reached, or the total budget is fixed, etc. 271 

 272 

Figure 14. 𝑄ெ௉ over time. 273 

5. Discussion  274 
A real case study of wind turbine manufacturing has been presented and analyzed. The problem 275 

is qualitatively studied using LDTs, that are set according to the research project [44]. The quantitative 276 
study is done considering the Boolean expression to set the QMP, that is obtained by the conversion of 277 
the LDT to the BDD. QMP, given by Equation (2), is the sum of the CSs probabilities, that depends on 278 
the P(BCi). The CSs in this case study were 889, and the 𝑄ெ௉ = 83.04 % according to the P(BCi) given 279 
in Figure 9. The objective is to reduce 𝑄ெ௉ by the investments in the BCi that have more importance 280 
in time. The Fussell-Vesely, Birnbaum and Criticality methods are employed in this paper to calculate 281 
the IMs in order to validate their results. They are used to select the BCi that will be reduced their 282 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%
1st Month

2ndMonth

3rd Month

4th Month

5th Month

6th Month

7th Month

8th Month

9th Month

10th Month

BC08 BC20 BC04 BC21

BC26 BC27 BC9

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Figure 14. QMP over time.

5. Discussion

A real case study of wind turbine manufacturing has been presented and analyzed. The problem
is qualitatively studied using LDTs, that are set according to the research project [44]. The quantitative
study is done considering the Boolean expression to set the QMP, that is obtained by the conversion of
the LDT to the BDD. QMP, given by Equation (2), is the sum of the CSs probabilities, that depends on
the P(BCi). The CSs in this case study were 889, and the QMP = 83.04% according to the P(BCi) given
in Figure 9. The objective is to reduce QMP by the investments in the BCi that have more importance in
time. The Fussell-Vesely, Birnbaum and Criticality methods are employed in this paper to calculate the
IMs in order to validate their results. They are used to select the BCi that will be reduced their P(BCi),
and, therefore, the QMP is reduced. The new probability of the BCi, I(BCi), requires an investment,
Ci·BCi, due to the cost of the tasks, resources, etc. employed in this BCi, given by Ci. All the investments
done in time are subject to a budget, being 400 €/month in this case study.

The approach shows the investment optimization done in order to reduce the QMP over time.
The problem is an NP-hard problem. The complexity of the problem depends on the number of
variables and the structure of the programming problem (objective function and constraints).

The QMP is reduced over time, see Figure 14. For example, if there is a total budget, the decision
maker can set the month and the QMP to reach, etc.

Figure 10 shows the IMs in the first month. The IM methods show the same results, and it is the
same over time. It has been employed to validate the results.

It is suggested that future research studies:

• Consider new larger and more complex case studies
• Employ new ranking methods that could improve the methods considered in this paper.
• Use new IM algorithms that can get better rankings of the BCs.
• Develop and apply new optimization methods to solve this problem, including mathematical

optimization algorithms, e.g., Newton’s method and Gradient Descent, and direct search methods,
e.g., Simplex method and the Nelder-Mead method, but the complexity of the problem may
require the use of unconventional optimization algorithms, such as heuristics, e.g., Simulated
Annealing, Deterministic Annealing, Tabu Search, Genetic Algorithms, Ant Systems, Neural
Networks, etc.

• Consider new variables, e.g., exogenous variables, availability of resources, dynamic
constraints, etc.

• Take into account the risk-based approach considering the probabilities and consequences.
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6. Conclusions

The main problem in decision making for wind turbine manufacturing involves multiple cause
occurrences. They can be broken down into basic causes where their interrelationships can be
plotted using logical decision trees. Logical decision trees are employed to analyze the main problem
qualitatively. They are converted to binary decision diagrams to get the Boolean equation to analyze
the decision-making problem from a quantitative perspective. The computational cost to solve the
problem depends on the binary diagram decision size, given by the ranking of the basic causes.
The size is reduced by employing several heuristic methods for validating the ranking of the events:
Top-Down-Left-Right, Level based method, AND based method, Breadth-First Search and Depth First
Search. The AND based method generally provide better results in this case study.

Fussell-Vesely, Birnbaum and Criticality methods are employed to calculate the importance
measures. The importance measures are employed to select the basic causes that require any task in
order to reduce the main problem probability occurrence. The methods provide the same results in
each iteration and, therefore, the results are validated. The occurrence probability of the basic event
with more importance is reduced by carrying out investment in terms of the cost of the tasks, resources,
etc. required, and all the investments done in time are subject to a budget. A static and dynamic study
is presented in this paper to show the main results.

The basic causes occurrence probability of the logical decision tree studied in this paper are known.
The new scenarios are calculated monthly, where the occurrence probability of the main problem is
reduced over time considering the objective function, subject to the restrictions discussed.
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