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Abstract: Due to the fast electric control of the doubly-fed induction generator (DFIG) when
experiencing power grid disturbance or turbulent wind, the flexible drive chain of the wind turbine
(WT) generates long-term torsional vibration, which shortens the service life of the drive chain.
The torsional vibration causes fatigue damage of the gearbox and affects power generation. In
this paper, a two-channel active damping control measure is proposed. The strategy forms a new
WT electromagnetic torque reference value through two channels: one is a proportion integration
differentiation (PID) damping term with frequency difference, which is used to reduce torsional
vibration caused by frequency difference between fan and shafting; the other adopts the torsional
vibration angle (θs) as the feedback signal, and an additional damping term is formed by bandpass
filter (BPF) and trap filter (BRF). The strategy can increase the electromagnetic torque and suppress
the torsional vibration of the drive chain. Finally, modeling and simulation using MATLAB/Simulink
show that the method can effectively suppress the torsional vibration of the drive chain without
affecting power generation.

Keywords: torsional vibration; active control strategy; drive chain; electromagnetic torque; wind
power generation; doubly-fed induction generator; wind turbine

1. Introduction

Wind power generation has been growing rapidly throughout the world in recent years, and
the doubly-fed induction generator (DFIG) has become a mainstream wind turbine (WT) [1]. Due to
the harsh environment of the WT and severe impact load, the failure rate of the WT is higher than
other industrial fields; one of the serious problems is torsional vibration on the WT shaft [2]. Torsional
vibration can cause significant stresses and fatigue loss of gearbox. In addition, torsional vibration of
the mechanical components can be transmitted to electrical power oscillations, leading to potential
resonances between WT and the power system. In severe cases, the WT will be damaged and lead to
grid faults [3]. It can be seen that torsional vibration of the drive chain not only directly affects the
safe operation of the WT, but also the stability of the network system. Therefore, reducing torsional
vibration of the drive chain is particularly important and urgent.

In recent years, some scholars have done some research on control of the WT drive chain. Among
other things, researchers studied the following: control of the DFIG by controlling the active and
reactive power [4,5]; the control strategy under the grid fault of WT [6–8]; suppression of the torsional
vibration by controlling the mechanical torque of the drive chain through pitch angle [9–12]; control of
torsional vibration based on Small-Signal Analysis [13]; electromechanical oscillation damping [14];
and using the variable pitch system and converter as actuators to reduce the dynamic load of the WT to
suppress torsional vibration of drive chain [15]. Although these methods have played a certain role in
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increasing damping and reducing torsional vibration, most of the research was on cases of grid faults
or mechanical torque, and involve little about long-term low-amplitude and low-frequency torsional
vibration of the drive chain during normal operation of the grid.

Based on the work of predecessors, this paper proposes a novel active control strategy to reduce
the torsional vibration of the drive chain during normal operation of power grid. Since the inertia of
the generator is much smaller than that of the WT, the dynamic change of the electromagnetic torque
is more likely to cause severe vibration of the drive chain than the aerodynamic torque. Therefore,
controlling the electromagnetic torque is the key to reducing torsional vibration of the drive chain
and improving the reliability of the WT. In this paper, a two-channel active damping control measure
is proposed, achieving the purpose of suppressing torsional vibration of the drive chain under the
premise of ensuring the output power of the unit is stable.

2. Modeling of Wind Turbine

2.1. Structure of Wind Turbine

The drive chain of the doubly-fed WT studied in this paper is mainly composed of wind wheel,
pitch control system, spindle front bearing, low speed shaft, gearbox, high speed shaft, generator,
etc. (as shown in Figure 1). The mechanical energy absorbed by the wind wheel is transmitted to
the gearbox through the low-speed shaft, and the high-speed shaft connects the high-speed output
terminal of the gearbox with the generator. At the same time, the drive chain transfers the load to the
tower barrel through the chassis and yaw system.
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Figure 1. Diagram of Structure of Wind Turbine.

2.2. Modeling of the Wind Wheel

The mathematical relation for the mechanical power extraction from the wind can be expressed as
follows [16,17]:

Pm =
1
2

Cp(λ, β)ρπR2V3 (1)

Tt =
Pm

ωm
=

1
2

AρV2Cp(λ, β)
R
λ

(2)

where Pm is the mechanical power (W) from the wind, Tt is the mechanical torque (N·m), ρ is the air
density (kg/m3), A is the swept area by the WT rotor (m2), R is the blade radius (m), V is the wind
speed (m/s), and Cp is the power coefficient (or performance coefficient), tip speed ratio is λ (ωm·R/V),
and blade pitch angle is β (deg), ωm is the angular speed of the WT(rad/s). The Cp curves [18] were
calculated for different tip speed ratio (λ) and different blade pitch angle (β). The Cp − λ curves are
shown in Figure 2.
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Figure 2. Cp curves suggested by Slootweg for dynamic analysis.

The power coefficient (Cp) indicates how efficiently the conversion of wind power to rotational
mechanical power is performed by the WT. The Betz limit is the maximum theoretic value reached by
the power coefficient which is 0.59 for three blades horizontal axis WT (a more complete discussion
can be find in [18]). The Cp curves are obtained experimentally by the manufactures following
international rules.

In more generic analysis, the Equations (3) and (4) can be used to model the dynamics of the Cp.
The values of C1–C9 presented in Table 1 were suggested by Slootweg to represent the aerodynamics of
a modern WT [19].

Cp(λ, β)= C1·

(
C2

λi
−C3·β−C4·β

C5−C6

)
·e−

C7
λi (3)

λi =
1

1
λ+C8·β

−
C9
β3+1

(4)

Table 1. Optimized values of the Cp curve equations presented in [19].

C1 C2 C3 C4 C5 C6 C7 C8 C9

0.73 151 0.58 0.002 2.14 13.2 18.4 −0.02 −0.003

2.3. Drive Train Modeling

The impeller and generator rotor of a doubly fed WT are usually connected by a gearbox. Due
to the existence of the gearbox, the flexibility of the entire shafting system is increased. In this paper,
a two-mass model is used to simulate the flexible drive train system of a WT, which can accurately
reflect torsional vibration of the drive chain. The two mass block shafting model equates impeller and
hub as one mass block, and generator and gearbox as one mass block; the basic principle diagram is
shown in Figure 3.
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The WT low-speed shaft is converted to the high-speed side of the generator rotor by the gearbox,
and the variables and parameters are still expressed by the symbols before the conversion. The
mathematical model of the two-mass drive chain motion equation is as follows [20]:

Jt
dωt
dt = Tt−(k sθs+Ds

(
ωt−ωg

))
Jg

dωg
dt =

(
ksθs+Ds

(
ωt−ωg

))
−Te

dθs
dt = ωt−ωg

(5)

where Jt, Jg are the inertia of the impeller and the generator rotor (including the gearbox); ωt and ωg are
angular velocity of impeller and generator rotor; Tt and Te are mechanical torque and electromagnetic
torque of WT; θs is the torsion angle of the drive chain; Ds and Ks are damping coefficient and stiffness
coefficient of drive chain, respectively.

Simplified (5) can obtain (6):

Jt Jg

Jt+Jg

d2θs

dt2 +Ds
dθs

dt
+Ksθs =

JgTt+JtTe

Jt+Jg
(6)

Equation (6) is the differential equation of motion of the drive chain system, which can establish
the state space equation of the drive chain based on the lumped mass method [20]: d2θs

dt2
dθs
dt

 =
 −(Jt+Jg)Ds

Jt Jg

−(Jt+Jg)Ks
Jt Jg

1 0

·[ dθs
dt
θs

]
+

 1
Jg

1
Jt

0 0

·[ Te

Tt

]
(7)

dωg

dt
=

[
Ds

Jg

Ks

Jg

]
·

[ dθs
dt
θs

]
−

Te

Jg
(8)

In the Equations (7) and (8), the Te is used as the control input, the Tt of the wind wheel is regarded
as the disturbance input.

2.4. Dynamic Model of the DFIG

The generator stator of the doubly-fed WT is directly connected to the grid, and the generator
rotor is connected to the grid through the back-to-back converter [21] (as shown in Figure 4). The
mathematical model of doubly-fed generator in two-phase rotation coordinate system (d-q frame) is
studied and oriented the stator flux [22] (φsd = φs φsd = φs; φsq = 0 φsq = 0).

The classical electrical equations of the DFIG in the Park frame are addressed in [23], Lennart [23]
and Tapia [24] given as follows: 

dϕsd
dt = Vsd−Rsisd+ϕsqωs

dϕsq
dt = Vsq−Rsisq−ϕsdωs

dϕrd
dt = Vrd−Rrird+ϕrqωr

dϕrq
dt = Vrq−Rsisq−ϕrdωr

(9)

where the stator and rotor angular velocities are linked by the following relation:

ωr= ωs−ω (10)

Vsd − Vsq and Vrd − Vrq are the stator and rotor d-q axes voltages, respectively; Rs and Rr are the
stator and rotor phase resistances, respectively.
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The stator and rotor flux can be expressed as follows:
ϕsd= Lsisd+Mird
ϕsq= Lsisq+Mirq

ϕrd= Lrird+Misd
ϕrq= Lrirq+Misq

(11)

where Ls= L f s+Lm, Lr= L f r+M2Lm.
Where isd − isq and ird − irq are the stator and rotor d-q axes currents, respectively; ϕsd − ϕsq

and ϕrd − ϕrq are the stator and rotor d-q axes fluxes, respectively; Ls, Lm, and Lr are the stator,
magnetizing, and rotor inductances, respectively; The stator and rotor active and reactive powers are
given, respectively, by Equations (12) and (13): Ps =

3
2

(
Vsdisd+Vsqisq

)
Qs =

3
2

(
Vsqisd−Vsdisq

) (12)

 Pr =
3
2 (V rdird+Vrqirq

)
Qr =

3
2 (V rqird−Vrqirq

) (13)

In the rotating field reference frame, the d-q orientation has to be synchronized with the stator
flux [25] (see in Figure 5):

The electromagnetic torque is given by [26,27]:

Te =
3
2

p
M
Ls

(i rdϕsq−irqϕsd) (14)

where Te is electromagnetic torque; and p is number of poles. Basic equation of motion control systems
is expressed as [28].

J
dωm

dt
+Dωm+Kθm= Te−Tm (15)

with
dθm

dt
= ωm

where J is the mechanical moment of inertia (kg·m2 kg·m2);ωm and θm are the mechanical angular speed
of rotor (rad/s) and mechanical angle of rotor (rad), respectively; Te and Tm are the electromagnetic
torque (N·m) and load torque (N·m), respectively; D and K are the resistance torque damping coefficient
and torsional elastic torque coefficient, respectively.



Energies 2019, 12, 1744 6 of 16

Energies 2019, 12, x FOR PEER REVIEW 5 of 16 

 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧dφsd

dt  = Vsd - Rsisd  +  φsqωs 

dφsq

dt  =  Vsq - Rsisq - φsdωs

dφrd
dt  =  Vrd - Rrird +  φrqωr

dφrq

dt  = Vrq - Rsisq - φrdωr

 (9) 

where the stator and rotor angular velocities are linked by the following relation: 

ωr = ωs - ω (10) 

Vsd − Vsq and Vrd − Vrq are the stator and rotor d-q axes voltages, respectively; Rs and Rr are the 
stator and rotor phase resistances, respectively. 

The stator and rotor flux can be expressed as follows: 

⎩⎪⎨
⎪⎧φsd = Lsisd + Mird 

φsq = Lsisq + Mirq

φrd = Lrird + Misd

φrq = Lrirq + Misq

  (11) 

where Ls = Lfs + Lm , Lr = Lfr + M2Lm. 
Where isd − isq and ird − irq are the stator and rotor d-q axes currents, respectively; φsd − φsq and φrd 

− φrq are the stator and rotor d-q axes fluxes, respectively; Ls, Lm, and Lr are the stator, magnetizing, 
and rotor inductances, respectively; The stator and rotor active and reactive powers are given, 
respectively, by Equations (12) and (13): 

Ps = 3
2 Vsdisd + Vsqisq

Qs = 3
2 Vsqisd - Vsdisq

 (12) 

Pr = 3
2 (Vrdird + Vrqirq)

Qr = 3
2 (Vrqird - Vrqirq)

 (13) 

In the rotating field reference frame, the d-q orientation has to be synchronized with the stator 
flux [25] (see in Figure 5): 

 

Figure 5. Orientation of the d-q frame. 

The electromagnetic torque is given by [26,27]: 

Figure 5. Orientation of the d-q frame.

Compared with other items, the damping torque and torsional elastic torque have less influence
on the system. If the damping torque and torsional elastic torque are neglected, the basic equations of
the motion control system can be simplified as follows:

J
dωm

dt
= Te−Tm (16)

with:
dθm

dt
= ωm

The objective of the control system is speed and angle of the motor. From Equations (15) and (16)
can be seen, the only way to control the angle and speed is to control the electromagnetic torque of the
motor. The control strategy proposed achieves the purpose of suppressing the torsional vibration of
the drive chain by controlling the electromagnetic torque.

3. Active Control Approach

This paper proposed a new control strategy of torsional vibration during normal operation of the
power grid. Based on proportion integration differentiation (PID) [29] control, the torsion angle (θs) is
used as the feedback signal to increase the electromagnetic torque through the torsional load controller,
and achieve the purpose of suppressing the torsional vibration under the premise of ensuring the
output power of the unit is stable.

3.1. Characteristic Analysis of Torsional Vibration

According to the two-mass block model of the drive chain shown in Equation (5), the motion
equation of the impeller relative to the angular displacement θs of the generator rotor can be obtained
in [30]:

d2θs

dt2 +Ds

(
1
Jt
+

1
Jg

)
dθs

dt
+Ks

(
1
Jt
+

1
Jg

)
θs =

Tt

Jt
+

Te

Jg
(17)

The above formula shows that θs moves in the form of second-order oscillation. The poles of the
equation of motion are as follows:

λ1,2= −ξωn± jωξ

where,ωn =

√
Ks

(
1
Jt
+ 1

Jg

)
is the natural oscillation frequency of drive chain, ξ= Ds

2
√

Ks

√(
1
Jt
+ 1

Jg

)
is the

damping ratio of the drive chain, ωξ= ωn
√

1− ξ2 is the actual oscillation frequency after considering
the system damping. It can be seen that the actual torsional vibration frequency of the drive chain is
closely related to the parameters Ds, Ks, Jt, Jg of the system.
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Through Formula (17), the transfer function with Tt and Te as input variables can be further
derived, as shown in Formula (18) and (19).

θs(s)
Tt(s)

=
1
Jt
·

1
s2+2ξωns +ω2

n
(18)

θs(s)
Te(s)

=
1
Jg
·

1
s2+2ξωns +ω2

n
(19)

Based on the transfer functions shown in Equations (18) and (19), the frequency domain
characteristics of the drive chain from Tt and Te to θs can be obtained (as shown in Figure 6).
It can be seen that whether the input quantity is electromagnetic torque disturbance or mechanical
torque disturbance, the amplitude gain of the drive chain near the resonance frequency is very high,
that is, both inputs can excite the drive chain torsional vibration. Meanwhile, it also can be seen the
magnitude of the drive chain system with electromagnetic torque as input at the resonance frequency
is larger than the mechanical torque, so the disturbance of electromagnetic torque will cause more
serious torsional vibration.
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3.2. Control Principle of Drive Chain

On the basis of PID control, adding a torque feedback loop connected by a bandpass filter (BPF)
and a trap filter (BRF) achieves two-channel active damping control, additional torques Tdamp1 and
Tdamp2 are added near the natural vibration frequency of the drive chain. The main function of BPF is
to produce ripple torque. The BRF is mainly to avoid the multi-section traversing frequency of wind
wheel speed, such as 3P, 6P, and other frequencies. After the PID control, the deviation of the system
is quickly and accurately eliminated, and the set value is restored, which makes the oscillation and
deviation of the system smaller.

In the torsional vibration control of WT drive chain, the change of generator’s torque will have a
great influence on its speed and output power. If the change of generator’s torque is too large, it may
cause the instability of the system. So the Tdamp1 and Tdamp2 should be limited to a certain range, and
then superimposed on the original torque reference value. Based on this principle, combined with the
state space equation given in (7), the drive chain damping control strategy is shown in Figure 7.
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It can be seen that the torque reference Te
* contains three parts, as shown in the following equation:

T∗e= T∗gen+Tdamp1
+Tdamp2

(20)

T∗gen is the given value of the torque control, Tdamp1 and Tdamp2 are the compensation electromagnetic
torque. The Tdamp1 is obtained by series connection of a BPF and a BRF. The Tdamp2 is obtained by PID.
The transfer functions between a BPF and a BRF are as follows:

GBPF(s) =
K2ζ fωs(1 + τs)

s2 + 2ζ fωs +ω2 (21)

GBRF(s) =
K(s2 +ω2)

s2 + 2ζωs +ω2 (22)

In the formula, K is the control gain, ζf is the filter damping ratio, and ω is the center frequency.
Sometimes, in order to compensate for the time lag in the design of the control system, a differential
calculus (1 + τs) is added to the BPF, but the time constant τ is usually close to 0.

K =
(
ζtot

ζ
− 1

)√ 1
Jt
+

1
Jg

(23)

where

ζ =
Ds

2
√

Ks

√
1
Jt
+

1
Jg

In the formula, ζ (0.25 in paper) and ζtot are the inherent damping ratio of the drive chain system
and the damping ratio after increasing the damping control, respectively.

4. Simulation Results

In order to verify the active control strategy proposed in this paper, modeling and simulation for
the drive chain of 1.5 MW doubly-fed WT in MATLAB/Simulink. The parameters of WT are shown
in Table 2.

According to the two mass modeling given in chapter 2, the drive chain model is built. The drive
chain specific parameters are shown in Table 3.
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Table 2. Wind turbine parameters of 1.5 MW doubly-fed.

Category Value

Type of Wind Turbines Doubly-fed wind turbine
Rated power 1.5 MW

Number of blades 3.0
Rated speed 18.0 r/min

Wind wheel diameter 70.0 m
Power regulation Variable pitch angle and speed

Cutting into the wind 3.5 m/s
Cutting out the wind 25.0 m/s

Rated wind speed 16.0 m/s

Table 3. Drive chain parameters of 1.5 MW double-fed WT.

Category Value

Wind wheel moment of inertia (Jt) 4.45 × 106 kg·m2

Generator moment of inertia (Jg) 8.45 × 105 kg·m2

Damping of drive chain (Ds) 1.72 × 105 N·m/rad
Stiffness of drive chain (Ks) 3.03 × 108 N·m/rad

According to the active control strategy introduced in chapter 3, the transfer functions of BPF and
BRF are designed as follows:

GBPF =
6.16 s

s2+6.16 s + 236.97
(24)

GBRF =
s2 + 29.89

s2+2.19 s + 29.89
(25)

According to (24) and (25), the corresponding Bode diagrams are obtained, as shown in Figure 8.
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4.1. Simulation and Analysis under Constant Wind Speed (16 m/s)

Unless otherwise specified, all the simulations in this paper are carried out under the Per-unit
value. At a constant wind speed (16 m/s), the simulation time is set to 6 s, the results are as follows
in Figure 9.
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Under constant wind speed (16 m/s), the simulation results Figure 9a–c show that the effect of
suppressing the torsional vibration of the drive chain is not obvious only with the PID, the strategy of
combined control of PID and torsional load proposed in this paper has a good effect on suppressing
the torsional vibration of the drive chain. Simulation results Figure 9d–f show that the simulation
curves of T∗gen and active power are basically coincident with only PID regulation, and PID regulation
and torsional load control are combined; it shows that the control strategy proposed in this paper can
effectively suppress the torsional vibration of the drive chain without affecting the power output.

4.2. Simulation and Analysis under Turbulent Wind

In the turbulent wind condition, the same simulation time is set to 6 s, and the simulation results
are shown in Figure 10.

Under turbulent wind conditions, it can be seen from Figure 10a–c that the torsional vibration of
the drive chain is also effectively suppressed and has similar control effects with constant wind speed,
indicating the control strategy proposed in this paper also has good control effect under complex wind
conditions and has universal applicability. It can be seen from Figure 10d–f that the simulation curves
of electromagnetic torque and active power are basically coincident with only PID regulation, and
PID regulation and torsional load control are combined. It shows that the control strategy proposed
in this paper can effectively suppress the torsional vibration of the drive chain without affecting the
power output.
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4.3. Under Constant Wind Speed (16 m/s) and Turbulent Wind

Under different wind speeds, in order to verify the control effect of the PID regulation and
torsional load combined control strategy proposed in this paper, this section puts the simulation figure
of constant wind speed (16 m/s) and turbulent wind in the same coordinate system, and simulation
time is set to 6 s, as shown in Figure 11.

Figure 11a shows that the Tshaft of the drive chain will be different under different wind conditions,
but under the PID regulation and torsional load combined control strategy, the turbulent wind condition
Tshaft fluctuates near the constant wind condition. Figure 11b shows that the torsional vibration will be
more serious in turbulent wind due to the uncertainty of the wind condition. However, under the PID
regulation and torsional load combined control strategy, the turbulent wind condition θs fluctuates
near the constant wind condition. Figure 11c shows that Te

* will be different due to different wind
conditions, through the control strategy, the turbulent wind condition Te

* fluctuates near the constant
wind condition. The constant wind condition only verifies the control performance of ideal conditions,
and cannot be closer to reality, in order to be closer to the actual wind conditions under turbulence,
the control strategy is verified. From the above results can be seen that the active control strategy
proposed in this paper can effectively reduce the torsional vibration of drive chain under different
wind conditions.
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5. Conclusions

Aiming at a drive chain of a doubly fed WT with small damping and that is susceptible to torsional
vibration load, a two-mass model of the drive chain is established. Through frequency domain analysis
of the torsional vibration characteristics of the drive chain, it is found that the electromagnetic torque
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disturbance can cause more serious torsional vibration of the drive chain than the mechanical torque.
In order to reduce torsional vibration of the drive chain during the normal operation of the power grid,
a torsional load controller based on BPF and BRF is designed with the θs as feedback signal; combining
PID and torsional load controller, a two-channel active damping control measure is proposed to
suppress the torsional vibration of drive chain. The simulation results show that the control strategy
proposed in this paper has better restraint effect on the torsional vibration of drive chain than with
only PID, and the strategy has better adaptability when the input wind speed is uncertain, at the same
time, it has no effect on the power output.
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