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Abstract: Large-capacity superconducting power cables are in the spotlight to replace existing
underground transmission power cables for energy power transmission. Among them, the three-phase
coaxial superconducting power cable has the economic advantage of reducing the superconducting
shielding layer by enabling magnetic shielding when the three phases are homogeneous without
an independent superconducting shielding layer for magnetic shielding. In order to develop the
three-phase coaxial superconducting power cable, the electrical and structural design should be carried
out to construct the superconducting layer. However, the thermal design and analysis for the cooling
of the three-phase coaxial superconducting power cable must be done first, so that the electrical design
can be made using the temperature transferred to the superconducting layer. The three-phase coaxial
superconducting cable requires a cooling system to circulate the cryogenic refrigerant for cooling
below a certain temperature, and the structure of the cable through which the cryogenic refrigerant
travels must also be analyzed. In this paper, the authors conducted a longitudinal temperature
analysis according to the structure of the refrigerant circulation system of the cable and proposed
a refrigerant circulation system suitable for this development. The temperature profile according
to this analysis was then used as a function of temperature for the electrical (superconducting and
insulating layers) design of the three-phase coaxial superconducting power cable. It is also expected
to be used to analyze the cooling structure of the three-phase coaxial superconducting power cable
installed in the real grid system.

Keywords: high temperature superconducting (HTS) cable; three-phase coaxial HTS cable; cryogenic
cooling method

1. Introduction

In response to increasing global energy demand, interest in energy transmission as well as energy
supply is increasing. Underground transmission power cables, one of the existing power transmission
means, have already reached the saturation level due to insufficient space in downtown areas where
power demand is concentrated. Superconducting power cables have been attracting attention in
recent years to replace conventional power cables, which are power transmission means in such a
saturated state. For superconducting power cables, the electric resistance becomes zero below a certain
temperature. This characteristic makes it possible to transmit five to six times more power than the
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same-sized power cable [1–3]. Despite these advantages of superconducting power cables, the price of
superconducting wire, which can realize superconducting characteristics, is expensive. In particular,
the shielding layer, as well as the conductor layer, is formed using superconducting wire to shield the
magnetic field flowing to the outside, making the production cost high. However, the three-phase coaxial
superconducting power cable can prevent the leakage of the magnetic field to the outside, unlike the
conventional superconducting power cable, because the three-phase superconducting conductor layer
is formed in the radial direction with respect to the same axis. Also, the absence of a superconducting
shield layer means that the amount of superconducting wire entering the superconducting power
cable at the same capacity can be reduced to an ideal half, which means that the manufacturing cost
of the superconducting power cable can be halved. A domestic project is underway to develop a
three-phase coaxial superconducting power cable capable of transmitting a large amount of electric
power and applying it to an actual system. In order to develop a three-phase coaxial superconducting
power cable, the electrical and structural design of the cable must proceed. However, it is necessary
to study the cooling circulation structure of cryogenic refrigerant through the cooling system to
understand the characteristics of the superconducting power cable. Cryogenic liquid nitrogen is
mainly used as a refrigerant for cooling a superconducting power cable. The superconducting power
cable cooling system primarily uses the circulation structure of the cryogenic coolant. The three-phase
coaxial superconducting power cable with such a circulation structure can be configured in various
circulation forms according to the structure of the cable. Therefore, it is necessary to analyze the
temperature profile of the cable according to the cooling structure of the refrigerant circulation system
and according to various structures. In this paper, the authors conducted an analysis of the cable
temperature distribution according to the refrigerant circulation method of the three-phase coaxial
superconducting power cable with various structures as well as the optimum structure according to the
cable application length. In the calculation of the temperature distribution of a typical superconducting
cable, it is possible to apply a simple theoretical formula such as a calorific value calculation formula.
However, in the analysis of the structure having a hollow pipe, it is necessary to consider the heat
transfer between the superconducting layer and the PPLP insulating layer, so that the FEM simulation
capable of heat transfer analysis is required. Therefore, in this paper, we present an optimal circulation
system by analyzing liquid nitrogen circulation system in various cases using numerical method
using FEM. The analytical results of this paper will serve as useful information for the analysis and
determination of the cooling and circulating structure system of the commercial-grade three-phase
coaxial superconducting power cable [4–18].

2. Total System and Configuration of Three-Phase Coaxial Superconducting Power Cable

Figure 1 shows the overall system configuration of a three-phase coaxial superconducting power
cable. When installed between each substation, the superconducting terminal establishes an electrical
connection to transmit power. An additional cooling system is constructed to circulate and cool the
superconducting cable system. Such a cooling system requires analysis of the temperature change
according to the structure of the cable. For the basic structure, the temperature distribution can be
predicted through heat transfer equations like Equation (1). However, in the case of structures such as
the liquid nitrogen internal circulation of the cable, the temperature distribution should be evaluated
by the analytical method. The temperature distribution analysis results can then be applied to the
electrical design values in the whole system.

Q =
.

mCp∆t (1)

where Q is the calorific value [W/m],
.

m is mass flow of LN2 [kg/s], Cp is the specific heat of LN2 [J/kg·K].
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transfer equation. This is due to mutual heat transfer between the superconducting wire linking the 
hollow tube and the primary cryostat, and the insulating paper such as PPLP. Also, it is necessary to 
predict the temperature at the time of the load by considering the amount of heat generated by 
current conduction through the superconducting wire. Therefore, the temperature gradient of the 
cable should be analyzed with the same method as the FEM analysis. Case III has a disadvantage in 
that additional cooling circulation piping is required, but it is easy to predict the temperature of each 
cable length according to the circulation direction. In the case of installing a cable of more than two 
lines, separate circulation piping is not used, and cryogenic refrigerant can be circulated through the 
cable. 

Figure 1. One-circuit configuration of the HTS cable system (about 1 km).

3. Cooling Circulation Structure of Three-Phase Coaxial Superconducting Power Cable

Figure 2 and Table 1 show a comparison of three-phase coaxial superconducting power cables
according to the cooling cycle. In Cases I and II, additional refrigerant circulation piping is not
necessary and can be circulated inside the cable. In the case of the cooling circulation method, it is
difficult to predict the temperature gradient according to the length of the cable by the simple heat
transfer equation. This is due to mutual heat transfer between the superconducting wire linking the
hollow tube and the primary cryostat, and the insulating paper such as PPLP. Also, it is necessary
to predict the temperature at the time of the load by considering the amount of heat generated by
current conduction through the superconducting wire. Therefore, the temperature gradient of the cable
should be analyzed with the same method as the FEM analysis. Case III has a disadvantage in that
additional cooling circulation piping is required, but it is easy to predict the temperature of each cable
length according to the circulation direction. In the case of installing a cable of more than two lines,
separate circulation piping is not used, and cryogenic refrigerant can be circulated through the cable.

Table 1. Comparison of cooling circulation methods of three-phase coaxial superconducting power cable.

Cases LN2 Path Types Remark

Case I 1st cryostat inlet
Center pipe outlet

No need for a circulation pipe
(one circuit)

Case II Center pipe inlet
1st cryostat outlet

Increase the diameter of the HTS cable
(high pressure drop)

Uncertain temperature

Case III 1st cryostat inlet
Another return pipe outlet

Estimation of max. temperature
Need for an extra pipe for the circulation of LN2

(two circuits)
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through the inner hollow tube and the superconducting layer/insulation layer is analyzed, and 
temperature prediction according to the length of the superconducting cable becomes possible [11]. 

Figure 2. Cases of LN2 circulation structure.

4. Temperature Analysis of Three-Phase Coaxial Superconducting Power Cable Using FEM Modeling

Figure 3 shows the conceptual modeling of temperature analysis for three-phase coaxial
superconducting power cables according to cryogenic circulation. According to the circulation direction
of liquid nitrogen, the heat transfer with mutual influences of the external primary cryostat through
the inner hollow tube and the superconducting layer/insulation layer is analyzed, and temperature
prediction according to the length of the superconducting cable becomes possible [11].Energies 2019, 12, x FOR PEER REVIEW 5 of 11 
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and the thermal conditions of the heat invasion and liquid nitrogen from the outside are set around 2 
to 3 km. Temperature and flow rate are calculated. The thermal conditions of liquid nitrogen have 
been referred to in some references. 

 

Figure 3. Modeling of the thermal analysis of a three-phase coaxial HTS power cable.

Figure 4 shows a 2D model of a three-phase coaxial superconducting power cable for thermal
analysis using finite element method (FEM) tool. As shown in Figure 3, the structure of the hollow tube,
the superconducting layer/insulation layer, and the primary cryostat allow the mutual heat transfer
analysis. The horizontal axis of the figure shows the cable length, and the vertical axis shows the cable
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radius. The thermal conductivity of the superconducting layer and the PPLP is determined by the
equivalent thermal conductivity through the equivalent thermal resistance [4].
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Figure 4. 2D modeling of the thermal analysis of a three-phase coaxial HTS power cable.

As shown in Table 2, the thermal load conditions of the superconducting layer and the insulating
layer when the transmission current of 23 kV 60 MVA is energized are taken into account, and the
thermal conditions of the heat invasion and liquid nitrogen from the outside are set around 2 to 3 km.
Temperature and flow rate are calculated. The thermal conditions of liquid nitrogen have been referred
to in some references.

Table 2. Parameter for thermal analysis.

Part Parameter Value Unit

Condition of thermal
load

Heat from HTS wire (AC loss) 1 W/m
Heat from the exterior 1 W/m

Condition of liquid
nitrogen

LN2 temperature of inlet 68 K
Mass flow 0.5 Kg/s

Dynamic viscosity 1.64 × 10−4 Pa·s
Heat capacity 2 kJ/kg·K

Figure 5 and Table 3 show the cable structure and circulation pipe specifications for thermal
analysis according to the cooling circulation method of the three-phase coaxial superconducting
power cable. The inner diameter of the hollow tube, return pipe, and primary cryostat was designed
to maintain the pressure along the cable length. The thickness of the superconducting layer and
the insulation layer was determined by the transmission capacity and the dielectric strength of the
three-phase coaxial superconducting power cable of 23 kV 60 MVA class, respectively.

Table 3. Cable circulation pipe specification for thermal analysis.

Parameter
Value

Remark
Case I&II Case III

Center Pipe Inner diameter 40 mm - Corrugated tube
HTS & Insulation layer Thickness About 10 mm About 12 mm

1st cryostat Inner diameter 100 mm 80 mm Corrugated tube
Return Pipe Inner diameter - 60 mm
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5. Simulation Results

Figure 6 shows the results of the temperature analysis in the longitudinal direction and the cross
direction of Case II. The temperatures at the inlet and outlet sides do not reach the minimum and
maximum values due to the heat transfer between the superconducting layer and the insulating layer
between the go-path section and the return-path section.Energies 2019, 12, x FOR PEER REVIEW 7 of 11 
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Figure 6. Temperature analysis results of length direction and the cross section of Case II (1 km).

Figure 7 shows the analysis result of the circulation-type Case III applying the return pipe. It can
be seen that the entrance-side temperature and the exit-side temperature of the cable cooling system
are minimized because the inlet pipe and the outlet pipe are insulated thermally from each other by
applying the circulation pipe separately to the return pipe.

Figure 8 shows the result of the temperature analysis of Case I according to cable length. When the
hollow tube is cooled by the refrigerant circulation pipe, the point at which the maximum temperature
of the system rises as the cable length increases becomes the middle point of the outlet of the
cable. The system temperature is difficult to predict. For short distances such as 10, 50, and 100m,
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the cryogenic circulation system consisting of a hollow pipe like Case I & II is useful because the
cable outlet temperature has the highest temperature. However, when a long-distance transmission of
more than 500 m is required, it is not appropriate to apply it to an actual system because the outlet
temperature of the cable is not the highest.
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Figure 9 shows the temperature distribution of Cases I and II in a 500-m cable cooling circulation
system. Compared with Case I, the maximum temperature of Case II is located further in the
middle of the cable, so the temperature of the actual system is difficult to measure. Case II and I are
superconducting cable systems of the same structure with a hollow pipe. However, the liquid nitrogen
circulation direction is opposite and the temperature profile of the cable shows different results. It is
more advantageous to predict the temperature in an actual system because the temperature at the exit
side is highest than that of the case II.

As can be seen in Figure 10, if the cable length is more than 1 km, the cooling cycle of the rest of
the system except Case III will be at the midpoint of the cable where the maximum temperature of the
system is reached. This will become even more serious as cable length increases. In case of the actual
superconducting cable system, in most structures connecting substations, the cable length is at least
1 km or more. In this case, it is impossible to measure the temperature at the midpoint of the cable.
Therefore, in this paper, we propose the application of the structure with return pipe as Case III for liquid
nitrogen circulation system of superconducting cable system with length of more than 1km. Temperature
is difficult to predict. For the three-phase coaxial superconducting power cable to be applied in Korea,
we plan to apply the Case III circulation method because we are planning a site of 2 km or more.
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6. Simulation Results Verification

In order to verify the simulation results, the operational data of the Ampacity project with the
same LN2 circulation structure as in case II of this paper was used. Reflecting the liquid nitrogen flow
rate and heat loss operation data in Figure 11, simulation parameters were determined in Table 4 and
the cable specifications were predicted. The total length of this cable system is about 1 km [19].
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Table 4. Circulation pipe specification of real installation cable for comparison with simulation.

Parameter Value (Case II) Remark

Center Pipe Inner dia. 32 mm Corrugated tube
HTS & Insulation layer Thickness About 10 mm

1st cryostat Inner dia. 85 mm Corrugated tube

Heat from HTS wire & exterior
Mass flow of LN2

1.75 W/m
0.46 kg/s

Figure 12 shows the actual operating temperature data of the “A” project and the simulation
results of this paper. The inlet and outlet temperatures of the simulation show very similar results to
the actual operating data. The comparison of the actual data with the simulation results implies that
the simulation results of this paper are applicable to the design of the domestic superconducting cable
project using Case III.
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7. Conclusions

In this paper, we analyzed the temperature distribution of the cable according to the cooling
circulation method of the three-phase coaxial superconducting power cable for domestic system
application. As a result of the analysis, the refrigerant circulation system using the return pipe
is easier to measure and to predict the actual system temperature than the refrigerant circulation
method of the hollow tube in order to install by the structure of the long-distance cable. Failure of
temperature measurement and prediction in a real system can lead to serious failure of the system
because it cannot accurately grasp the state of the cable in a transient state such as a system failure
or an abnormality. The simulation results show that case I and II have a maximum temperature of
73.6 K at the middle of the cable and case III has the maximum temperature of 70.9 K at the exit of
the cable. Therefore, we propose to apply liquid nitrogen circulation system with return pipe as in
case III in 3-phase coaxial superconducting cable system that requires more than 1km of long-distance
transmission. Of course, when using a return pipe, additional cable space is required. However, if a
cable system of more than two lines is used, the first cryostat of the remaining cable can be utilized
as a return pipe. The analytical results of this paper will be applied to the actual structure of the
three-phase coaxial superconducting power cable for the real grid system, and the circulation method
can be designed and determined by using the same analysis method.
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