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Abstract: The uncertainty of demand response (DR) will affect the economics of power grid dispatch
due to the randomness of participating users’ intentions. According to the different working
mechanisms of price-based demand response (PBDR) and incentive-based demand response (IBDR),
the uncertainty models of two types of DR were established, respectively. Firstly, the fuzzy variable
was used to describe the load change in PBDR, and the robust optimization theory was used to
establish the uncertain set of the actual interruption of the interruptible load (IL). Secondly, according
to the different acting speed of the two types of DR, they were deployed in the two-stage scheduling
model with other output resources; then based on the fuzzy chance constrained programming theory
and multi-stage robust optimization theory, the dispatch problem was transformed and solved by the
bat algorithm (BA) and the entropy weighting method. Consequently, intraday running costs decrease
with increasing confidence of day-ahead, but increase with day-in reliability, and the economics of
the model were verified in the improved IEEE33 node system.

Keywords: demand response; multi-time scale; uncertainty; fuzzy chance constrained programming;
robust optimization

1. Introduction

In 2010, the six ministries and commissions, including the National Development and Reform
Commission and the Electricity Regulatory Commission, jointly issued The Measures for Power Demand
Side Management [1]. Based on the user electricity information collected and analyzed by grid
companies [2], many provinces gradually implemented time-of-use pricing. In addition, thanks to the
update and development of self-control technology and real-time information collection technology,
power equipment control devices can realize self-manipulation to adjust the demand. The vigorous
development of the demand side management of China’s power market is conducive to suppressing
the fluctuation of output caused by the large amount of renewable energy connected to the power
grid [3].

Although the grid-related institutions analyze and classify the user’s electricity habits in advance,
the time-of-use pricing is fundamentally based on users’ voluntary participation and changing their
own electricity usage behavior [4], which results in unpredictable demand response (DR). There are
four types of incentive-based demand response (IBDR) [5]: direct load control (DLC), interruptible load
(IL), demand side bid (DSB) and emergency demand response (EDR), but in the gradually opening
electricity market in China, the latter two are relatively rare. The IL is different from the DLC. The way
it works is that the user has to turn off the power after receiving the notification. Due to the randomness
of the user’s wishes, it is possible that some users will not strictly obey the agreement. This is the root
cause of the uncertainty of the IL [6].
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At present, there are many studies on optimal scheduling considering uncertainty [7–12].
The multi-scene method has been welcomed by many scholars because of its simplicity and
convenience [7–9]. Monte Carlo method is often used to simulate the various possibilities of uncertainty [8].
In [9], Monte Carlo method is used to simulate the charging and discharging behavior of EV. In [10],
demand response and electric vehicles are aggregated into virtual power plants to participate in market
scheduling, and multi-scenario method is used to simulate the uncertainty of market electricity prices.
The multi-scene method expresses various possibilities of uncertainty with a huge amount of scenes,
which can be simplified by Latin Hypercube Sampling (LHS) for solving [11]. Reference [12] has
established scenarios for wind, photovoltaic and load prediction errors, using LHS to reduce the scene.

Although the multi-scene method is simple, this method requires a lot of data and has strict
requirements for the solving ability. Therefore, many scholars hope to deal with the uncertainty in
the power system by stochastic optimization [13–15]. In [13], considering the effects of uncertainty
such as outdoor temperature, basic power load, occupancy rate and unbalanced price, a two-stage
stochastic programming method is adopted. Reference [14] obtains the probability function of the
virtual plant deviation based on IBDR and price-based demand response (PBDR) from historical data.
In [15], the probability function is used to describe price-based demand response, and the power flow
is solved by the point estimation method.

The stochastic method reduces the solution pressure while maintaining the uncertainty complexity,
but the probability distribution of uncertainty is difficult to obtain [16]. Robust optimization takes
the worst case into account in the solution process and derives decision results based on this, thus
there is no need to consider the probability function [17]. In [16], the scheduling is divided into
pre-scheduling phase and re-scheduling phase. In each phase, the worst case of uncertainty is considered.
The combination of column-and-constraint generation (C&CG) and Benders decomposition is used to
solve the optimization problem. In other studies [18,19], the robust interval variable is used to describe
the uncertain part of the IL, and it is transformed into a deterministic problem by using the robust
peer-to-peer conversion method. In [20], wind turbine output and price—elastic demand curve work
jointly, and total social welfare is maximized in the worst case considering wind turbine output and
demand response.

There are two common limitations in the above literatures: (1) the uncertainty of DR is modeled
by one single method, but there is not only one kind of DR. The accuracy of one single model is
insufficient and (2) when considering the scheduling with DR, the scheduling plan only involves single
time scale, and the speed advantage of different types of DR cannot be fully applied.

The main contributions of this paper are as follows:

• According to the different mechanisms of price-based demand response and incentive-based
demand response, the fuzzy function and robust interval variable are used to describe the
uncertainty of time-of-use model and the IL.

• Considering the response speed of different types of resources, and coordinating with the output
resources such as wind turbine and gas turbine, the day-ahead and day-in interactive output
decision model is established.

• The fuzzy stochastic optimization method and the multi-stage robust optimization method are used
to deal with the uncertainty of different demand responses respectively, and the interactive decision
model is transformed into a deterministic model that can be processed by traditional algorithms.

The rest of the paper is organized as follows: in Section 2, mathematical models of different types
of demand response uncertainty are established; in Section 3, a two-stage mathematical model that
considers demand response, micro gas turbine, wind turbine and other output resources is established.
In Section 4, the model is transformed into a deterministic model by using fuzzy chance constrained
programming theory and two-stage robust optimization theory. Section 5 presents the simulation
results of the example. Section 6 draws several conclusions.
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2. Uncertainty Models of Two Types of DR

Demand response can be divided into price-based demand response and incentive-based demand
response. This paper mainly considers the time-of-use model of PBDR. The common types of
incentive-based demand response include direct load control (DLC) and the IL. Considering the
difference in mechanism of action, this paper analyzes and models the uncertainty of the above
demand response.

2.1. Uncertain Model of Price-Based Demand Response

The demand side management with the adjustment of electricity price as the main means,
according to the principle of demand elasticity in economics, changes the electricity price to affect the
user’s consumption behavior, that is, the electricity usage. The electricity price elasticity coefficient is
generally used to predict the user’s response at a certain price level, but this method is interfered by
many factors, resulting in the uncertainty of the time-of-use model.

The uncertainty of the price-based demand response depends on two factors mainly, the uncertainty
of the baseline load and the uncertainty of the electricity price elasticity coefficient.

Baseline load forecasts often take into account many factors, including but not limited to population,
industrial development status, and policy factors. These factors are often difficult to quantify and have
unpredictable effects, so the prediction of the load is inevitably deviated from the actual load.

The core of time-of-use is to use the user’s sensitivity to price to change the power consumption
behavior. The essence is that users voluntarily participate and adjust their own electricity usage.
But the behavior of users is difficult to predict and quantify, which is the root cause of the uncertainty
of demand response.

The introduction of the electricity price elasticity matrix quantifies the impact of the baseline load
and the electricity price elasticity coefficient on the demand change after PBDR. Compared with other
PBDR models, it can predict demand changes more accurately. In general, the demand after PBDR is
as follows:

ETOU = E0 +


E0. f 0 0

0 E0.p 0
0 0 E0.g

M


∆c f /c f
∆cp/cp

∆cg/cg

 (1)

where ETOU = dETOU.f, ETOU.p, ETOU.ge
T represents the column vector of demand after PBDR; ETOU.f,

ETOU.p, and ETOU.g represent the demand of the peak, flat and valley periods after PBDR; E0 = dE0.f,
E0.p, E0.ge

T is the column vector of the demand in each period before PBDR; E0.f, E0.p and E0.g represent
the initial demand of the peak, flat and valley periods; cf and ∆cf represent the original electricity price
and electricity price change at the flat period; cp and ∆cp, cg and ∆cg are similar. M is the electricity
price elasticity matrix, and its expression is as follows:

M =
(
mxy

)
3×3

, mxy =
∆Ex

E0.x

(
∆cy

cy

)−1

(2)

where x,y = p,f,g, mxy is the electricity price elasticity coefficient. It shows the ratio of the rate of change
of electricity price in y period to the rate of change of demand in x period. ∆Ep, ∆Ef, ∆Eg represent the
change of demand at the peak, flat and valley periods; when considering baseline demand uncertainty
and user response uncertainty, the following relationship exists:

E0.x = Ẽ0.x

M = M̃
M̃ = (m̃xy)3x3

(3)

where, Ẽ0.x and m̃xy represent the baseline demand and elastic coefficient considering uncertainty.
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The membership function is an important means to deal with fuzzy parameters. In various
membership functions, the trapezoidal membership function is better than the triangular membership
function [21], which is closer to the actual situation. Therefore, this paper uses the trapezoidal
membership function to deal with the uncertainty of price-based demand response. The membership
function of the baseline demand and elastic coefficient are as follows:

µE0.x =


0, E0.x < Ex1 or Ex4 < E0.x
E0.x−Ex3
Ex4−Ex3

, Ex3 < E0.x < Ex4
E0.x−Ex1
Ex2−Ex1

, Ex1 < E0.x < Ex2

1, Ex2 < E0.x < Ex3

(4)

µmxy =


0, mxy < mxy1ormxy4 < mxy
mxy−mxy2
mxy4−mxy3

, mxy3 < mxy < mxy4
mxy−mxy1
mxy2−mxy1

, mxy1 < mxy < mxy2

1, mxy2 < mxy < mxy3

(5)

where mxy1, mxy2, mxy3, mxy4, Ex1, Ex2, Ex3, Ex4, are membership function parameters. Its function
graph is shown in Appendix B. When mxy varies in [mxy2, mxy3], the function value is 1, and when
mxy deviates from the expected interval, its function value decreases as the deviation increases. It can
be seen that the function value indicates the extent to which the evaluated target deviates from the
expected range.

The price elasticity coefficient reflects the users’ sensitivity to changes of electricity prices. When the
price change is small, the users are not sensitive to price changes, with low participating motivation,
so the response is highly uncertain. When the electricity price is different from the usual electricity
price greatly, the electricity price has a greater impact on the user’s electricity consumption behavior.
The participating motivation is greatly increased, so the response uncertainty is small.

Therefore, kx and ky are introduced to indicate the relationship between the price change and the
membership function parameters. Compared to constant parameters, membership function parameters
that vary with electricity price change can represent different uncertainties. The membership parameters
have the following relationship with the electricity price: mxy2 −mxy1 = mxy4 −mxy3

mxy2 −mxy1 = kx
cx
|∆cx |

+ ky
cy

|∆cy|

(6)

where, kx and ky represent the growth rate of uncertainty. When the electricity price changes greatly,
mxy1 tends to mxy2, the uncertainty is small, the electricity price changes little, mxy1 is far away from
mxy2, and the uncertainty becomes bigger.

2.2. Uncertain Model of Incentive-Based Demand Response

Most of the current research considers the incentive-based demand response as a special output
unit. As the output unit, the incentive-based demand response has no limitation on the climbing rate,
no starting cost, and the response is fast. It is an ideal resource for dispatching.

The incentive-based demand response is divided into the IL and DLC. Generally, the interrupt
capacity, interruption time, compensation price and maximum response capacity and duration in the
whole scheduling period are specified in the form of contracts. DLC is controlled by the power grid
company. It can be directly interrupted by the dispatching center in a very short time when it is called.
The uncertainty is mainly caused by communication lag and equipment failure. It is not discussed in
this paper.

Although the IL has a contractual agreement, the essence is that the users spontaneously participate
in the response after receiving the notification from the dispatching center. Therefore, there is a response
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uncertainty caused by the randomness of the user’s willingness to participate. This problem is the
scope of this paper.

After the IL users receive the response notice, due to the high cost of breaking the contract, even if
the users have the willingness to break the contract, the users will generally comply with the agreement
of the interruption duration and partially default on the interrupted capacity. The actual interruptible
power that user j can respond to at period t is expressed as follows:

P̂t
IL. j = P

t
IL. j + Pt

IL. j, j ∈ [1, M] (7)

Pt
IL. j = τ jpt

IL. j, τ j ∈ [−1, 1] (8)

where, P̂t
IL. j indicates the actual interruptible power of the user j at time t, P

t
IL. j indicates the planned

interrupted power of the user at that time, and Pt
IL. j indicates the indeterminate portion of the

interrupted power of the user. pt
IL. j is the upper limit of the absolute value of the deviation between

actual interrupt amount and planned interrupt amount in the historical data. τj is the uncertainty
coefficient, indicating the degree of uncertainty of the response of user j.

In addition, in the case that residential consumers are not eligible to directly participate in DR
market [22], load aggregators (LA) can aggregate small and medium-sized loads such as residential load
and commercial load, and participate in market bidding competition on their behalf [23]. The power
grid dispatch center signs contracts with LA, which can be equivalent to users with large IL resources,
from the perspective of the grid.

In order to analyze the influence of the uncertainty of the IL on the scheduling in a system,
we define Γ as the robustness factor of the system. The interrupted power of the system P̂t

IL. j can be
expressed as:

P̂t
IL =

M∑
j=1

et
j

(
P

t
IL. j + τ jpt

IL. j

)
,

M∑
j=1

∣∣∣τ j
∣∣∣ ≤ Γ (9)

where, M represents the number of users participating in IL; et
j represents the state of user j during

period t which is 1 when the user is called. Changing the robustness factor Γ can change the uncertainty
of the IL in the system. The robustness factor determines the uncertainty of IL, which can be set by the
dispatch centre and reflects the dispatch centre’s tendency toward risk. When the robustness factor is
0, each user strictly abides by the contract; when the robustness factor increases, the actual interrupted
amount may seriously deviate from the planned value.

3. Two-stage Interactive Decision Model Considering Uncertainty of Demand Response

In the model of this paper, the operating cost is considered as the objective function in the
day-ahead and day-in stage. In addition, in order to avoid the situation that the electricity price is
too high or too low, the user transfer coefficient is also taken as one of the objective functions of the
day-ahead stage. The constraint part includes the upper and lower limits and the climbing constraints
of the conventional unit.

3.1. Day-Ahead Scheduling

3.1.1. Objective Function

Operating Cost in Day-Ahead

The cost in day-ahead stage include the operating costs of wind turbine and photovoltaic unit,
the operating costs of gas turbines, the cost of purchasing electricity from the main network, and the
negative value of revenue from the sales to the microgrid. The expression is as follows:
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Cday =
T∑

t=1

(ct
WTPt

WT + ct
pvPt

pv + ct
mtP

t
mt + ct

buyPt
buy − ct

priP
t
MG)∆T (10)

where, T represents the number of operating cycles; ct
WT and ct

pv represent the unit cost of wind turbines
and photovoltaic units in the period of t; Pt

WT and Pt
pv represent the output of wind turbine generation

and photovoltaic units in the period. ct
mt represents the unit cost of the gas turbine in the period, and

Pt
mt represents the output of the gas turbine in the period. ct

buy indicates the unit price of electricity

purchased from the main network in the period, and Pt
buy indicates the power purchased from the

main network in the period. ct
pri represents the unit price of selling electricity to the microgrid in the

period, and Pt
MG represents the power purchased by the microgrid in the period, ∆T is the duration of

the scheduling period.

User transfer coefficient

The main purpose of the time-of-use mechanism is to reduce peak-to-valley difference of load
curve, alleviating the pressure of units. However, excessively high or too low electricity prices in some
periods will bring inconvenience to the normal life of ordinary users, and reduce the enthusiasm of
users to participate in DR. Therefore, the user transfer factor is included in the objective functions in
the day-ahead stage:

S =

∑T
t=1

∣∣∣Ploadt
− Ploadt

0

∣∣∣∑T
t=1 Ploadt

0

(11)

where, S is the user transfer coefficient, Ploadt
0 is the load in the period of t before the implementation

of the time-of-use price, Plaodt is the load in the period after the implementation of the time-of-use.

3.1.2. Restrictions

In the period of t, there is the following relationship:

P̃t
L + Pt

MG = Pt
WT + Pt

pv + Pt
buy + Pt

mt (12)

where, P̃t
L is the fuzzy parameter of the load after the implementation of the time-of-use pricing.

According to the fuzzy chance constrained programming theory, the decision made should satisfy
the constraint at a pre-set confidence level.

In order to avoid the system’s power shortage, Equation (12) can be converted into the
following formula:

Cr
{
P̃t

L + Pt
MG = Pt

WT + Pt
pv + Pt

buy + Pt
mt

}
> α (13)

where, α indicates the confidence level that the constraint needs to meet.
The upper and lower limits of the output of gas turbine and the climbing constraint are as follows:

Pmt.min ≤ Pt
mt ≤ Pmt.max (14)

∆T · γdown < Pt
mt − Pt−1

mt < ∆T · γup (15)

where, Pmt.max and Pmt.min represent the upper and lower limits of the unit’s output, γup and γdown

represent the upper limit of the unit’s output ramp rate, and ∆T should T be italic like before? represents
the duration of a scheduling period.
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3.2. Day-In Scheduling

3.2.1. Objective Function

Taking into account the IL’s advantages of speed, it is included in the intraday scheduling resources.
The objective function is the operating cost during the intraday scheduling, with constraints of the
power balancing, the IL users and so on.

To minimize the running cost during the intraday scheduling period, the objective function is
as follows:

Cday−in =
T∑

t=1

(
ct

ILP
t
IL + ct

de f ∆Pt
buy + ct

RPt
R

)
∆T (16)

where P
t
IL represents the planned power of the IL in the period of t, ct

IL represents the unit price of
compensation for the IL in the period; Pt

R represents the output of peak load regulation (PLR) resources
called in the period, ct

R represents the unit price at which the PLR resources is called, and ∆Pt
buy is the

difference between the actual and the planned power of purchased electricity from main network, and
should be a positive value, ct

def is the unit price of compensation to the main network.

3.2.2. Restrictions

The system’s the power balancing constraints is as follows:

P̃t
L + Pt

MG = Pt
WT + Pt

pv + Pt
buy + ∆Pt

buy + Pt
mt + P̂t

IL + Pt
R (17)

where P̂t
IL represents the actual interrupted power of the system in the period t. Because the load is a

fuzzy parameter, the equation constraint that satisfies the confidence β is:

Cr
{
P̃t

L + Pt
MG = Pt

WT + Pt
pv + Pt

buy + ∆Pt
buy + Pt

mt + Pt
R + P̂t

IL

}
> β (18)

User j who participates in an incentive-based demand response has the following constraints:
Pmin. j < Pt

IL. j < Pmax. j
T∑

t=1
et

j∆T = D j
(19)

where, Pmin.j and Pmax.j respectively represent the lower and upper limits of the response; Dj is the
upper limit of the total response time. The upper and lower limits of the output of the conventional
unit and the climbing constraints are the same as Equations (14) and (15).

4. Model Transformation and Solution

4.1. Transformation of the Model of Uncertainty

4.1.1. Transformation of Uncertainty Model of PBDR

In the day-ahead stage, only the uncertainty of the load after PBDR needs to be considered,
which is composed of the fuzzy variable of baseline load and the fuzzy variable of electricity price
elastic coefficients. In the day-ahead model, the most important thing is the conversion of the
opportunity constraint.

Taking the load of peak period as an example. After obtaining the new price, the membership
function parameters of the elastic coefficients are obtained by Equation (6).
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The following relationship can be obtained from the expanded formula (1):

ẼTOU.p = Ẽ0.p + E0.pm̃pf
∆cf

cf
+ E0.pm̃pp

∆cp

cp
+ E0.pm̃pg

∆cg

cg
(20)

where, ẼTOU.p represents demand at the peak period considering the uncertainty. In this formula,
three fuzzy parameters of the electricity price elasticity coefficients and the initial demand are included,
and the four fuzzy parameters have their respective membership function parameters, which avoids
the approximation process of setting the initial demand as the historical average and ensures the
universality and accuracy of the model. In addition, the four fuzzy parameters are linear with each
other, which contributes to further processing.

After obtaining the demand of peak period ẼTOU.p, the load consumption of each hour is obtained
according to the ratio lt which can be obtained by the following formula:

lt =


Ploadt

0∆T
E0.p

, t ∈ peakperiod
Ploadt

0∆T
E0.f

, t ∈ f latperiod
Ploadt

0∆T
E0.g

, t ∈ valleyperiod

(21)

The opportunity constraint of the fuzzy constraint problem can be transformed into a crisp
equivalence, and then the traditional solution method can be used to solve the transformed problem [24].

For the fuzzy variable δ and decision variable χ, its membership function is µ. If the function
g(χ,δ) makes g(χ,δ) = h(χ)–δ true and when the fuzzy chance constraint is based on the credibility “Cr”
as in Equation (22), it has a relationship as Equation (23) [24].

Cr
{
g(χ, δ) ≤ 0

}
> α (22)

h(χ) =

 sup
{
K
∣∣∣K = µ−1(2α)

}
,α ≤ 1/2

inf
{
K
∣∣∣K = µ−1(2− 2α)

}
,α > 1/2

(23)

When α ≥ 1/2, the equality constraint (12) can be transformed into the crisp equivalence as follow:

(2− 2α)r1 + (2α− 1)r2 = Pt
WT + Pt

pv + Pt
buy + Pt

mt − Pt
MG (24)

where, r1 and r2 are the membership parameters of the fuzzy parameter P̃L. However, P̃t
L contains four

fuzzy variables with a linear relationship. Therefore (24) can be converted into the following form:

lt

∆T

 (2− 2α)
[
Ep1 + E0.p

(
mpf1

∆cf
cf

+ mpp1
∆cp

cp
+ mpg1

∆cg

cg

)]
+(2α− 1)

[
Ep2 + E0.p

(
mpf2

∆cf
cf

+ mpp2
∆cp

cp
+ mpg2

∆cg

cg

)]  = Pt
pv + Pt

WT + Pt
buy + Pt

mt − Pt
MG (25)

where,Ep1, Ep2, mxy1, mxy2 (x = p, y = f,p,g) are membership function parameters. The process
of transforming the original constraint into a crisp equivalence form deals with the uncertainty in
the equality constraint, which greatly reduces the difficulty of the solution. So far, the day-ahead
scheduling optimization model with the chance constraint has been transformed and can be solved by
the traditional optimization method.
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4.1.2. Transformation of Uncertainty Model of IBDR

In intraday optimization, robust interval variables are the focus of processing. Similar to fuzzy
stochastic optimization, the general form of robust optimization is as follows:{

min f (χ, ξ̂)
s.t.g(χ, ξ̂) ≤ 0

(26)

where, f (χ, ξ̂) is a objective function, g(χ, ξ̂) ≤ 0 is a constraint, and ξ̂ is a robust interval variable.
Robust optimization methods can be roughly divided into static robust optimization methods

and multi-stage robust optimization methods. Compared with the multi-stage optimization method,
the results of the static robust optimization method tend to be conservative. Therefore, multi-stage
optimization method is mainstream.

The robust interval variable ξ̂ can be expressed as follows:

ξ̂ = ξ+ ξ (27)

where, ξ represents the deterministic part of ξ̂ and ξ represents the indeterminate part of ξ̂. Since
the essence of robust optimization is to solve the optimal solution under the worst possibility,
if g(χ, ξ̂) = h(χ) + ξ̂, then the Equation (27) is brought into Equation (26), which can be transformed
into the following form [18]: {

min f (χ, ξ̂)
s.t.h(χ) + ξ+ max(ξ) ≤ 0

(28)

For the same reason, the same processing can be performed on the intraday optimization problem
with robust variable P̂t

IL. In order to show the process more clearly, the fuzzy variable P̃t
L will not be

converted to a crisp equivalent. The intraday constraint is as follows:

P̃t
L = Pt

WT + Pt
pv + Pt

buy + ∆Pt
buy + Pt

mt + P̂t
IL + Pt

R − Pt
MG (29)

In order to minimize the risk of power shortage in the system, the following formula should be
satisfied:

P̃t
L + Pt

MG − P̂t
IL ≤ Pt

WT + Pt
pv + Pt

buy + ∆Pt
buy + Pt

R + Pt
mt (30)

Converting (29) to (30) is an expression of the robust idea that constraints should be still satisfied
under harsh conditions. Equation (29) is equivalent to the following formula:

P̃t
L + Pt

MG − P̂t
IL − Pt

WT − Pt
pv − Pt

buy − ∆Pt
buy − Pt

mt − Pt
R ≤ 0 (31)

Bringing (9) into the above formula:

P̃t
L −

M∑
j=1

et
j

(
P

t
IL. j + τ jpt

IL. j

)
+ Pt

MG − Pt
WT − Pt

pv − Pt
buy − ∆Pt

buy − Pt
mt − Pt

R ≤ 0 (32)

F̂ is defined and should satisfy the following relationship:

F̂ = −
M∑

j=1

et
jτ jpt

IL. j (33)

then (32) is converted into (34):

P̃t
L −

M∑
j=1

et
jP

t
IL. j + max(F̂) + Pt

MG − Pt
WT − Pt

pv − Pt
buy − ∆Pt

buy − Pt
mt − Pt

R ≤ 0 (34)



Energies 2019, 12, 1711 10 of 26

Gt is defined and satisfies the following relationship:

Gt = Pt
MG −

M∑
j=1

et
jP

t
IL. j − Pt

WT − Pt
pv − Pt

buy − ∆Pt
buy − Pt

mt − Pt
R (35)

and (28) can be converted into the following form:
minCday−in

s.t.max(F̂) + P̃t
L + Gt

≤ 0
Equations(14) and (15), Equation(19)

(36)

It can be seen that Equation (36) should be a min-max optimization that minimizes the pessimistic
value of the objective function. Since there are different decision variables in different optimizations of
the min-max problem involved in this paper, it can be simplified to a two-stage optimization: after
setting the robustness factor, the maximum value of the robust variables is obtained first, then, the
solution to minimization problem of the intraday scheduling can be obtained, with the constraints
being satisfied even in the worst case. A pseudo-code of PBDR and a simplified diagram of the IBDR
are attached in Appendix C.

4.2. Model Solving

After the crisp equivalent conversion and transformation of robust optimization, the uncertainty
optimization problem can be solved by deterministic optimization.

For the global optimization problem in the day-ahead stage, commonly used algorithms include
particle swarm optimization (PSO), genetic algorithms (GA), etc. The bat algorithm (BA) is a heuristic
intelligent optimization algorithm, which essentially uses the tuning technique to control the dynamic
behavior of the bat group, and adjusts the relevant parameters to obtain the optimality [25]. Compared
with other intelligent optimization algorithms, BA not only has the characteristics of less parameters and
simple model, but also has advantages in solving [26]. It is often used for power system optimization
scheduling [27–29].

The iterative formula and update formula of the algorithm are as follows [30]:
fi = fmin + ( fmax − fmin)ρ
st

i = st−1
i + (x∗ − xt

i) fi
xt

i = xt−1
i + st

i

(37)

where, fi is the pulse frequency of bat i, fmin and fmax are the upper and lower limits of the pulse
frequency; st

i is the speed of bat i at t;xt
i is the position of bat i at t;ρ is a uniformly distributed random

variable on [0, 1]; x∗ is the current optimal bat position.
In order to process multi-objective functions in the day-ahead stage, entropy weights are introduced

to transform multi-objective optimization into single-objective optimization [31]. The entropy of n
evaluation indicators of m evaluation objects is as follows:

Ck = −
m∑

X=1

BkXlnBkX/lnm, BkX = vkX/
∑

m
X=1vkX (38)

where, vkX is the value of the indicator X(1,2, . . . ,m) of the object k(1,2, . . . ,n).
The entropy weight matrix of the evaluation index W and the weight wk are calculated as follows:

W = (wk)1xn, wk = (1−Ck)/
(
n−

∑
n
k=1Ck

)
,
∑

n
k=1wk = 1 (39)
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There is no doubt, a weighted sum does not guarantee obtaining unsupported non-dominated
solutions. However, although the Pareto optimal set can provide effective support for decision-making,
the final decision still depends to a large extent on the designer’s subjective judgment [32]. The weighted
sum method combined with the entropy weight method is not only simple and efficient, but also has
higher objectivity than the Pareto method [33,34]. The intraday phase is modeled by YALMIP and the
CPLEX solution is called.

5. Case Study and Discussion

5.1. Study Data

In order to verify the effectiveness of the proposed model and algorithm, this paper simulates
the example on the improved IEEE33 node system [35]. Among them, the B25–B32 node constitutes
the microgrid part. The node B0 is the contact node of the distribution network and the superior
distribution network. The load and grid structure parameters are shown in Tables A1–A6 in Appendix A;
the installation cost, operation and maintenance cost, and output upper and lower limits of wind
turbines, gas turbines, etc. are shown in Table A7 in Appendix B; the bat algorithm parameters are
shown in Table A8 in Appendix B. The elasticity coefficient of electricity price in each period is shown
in Table A9 in Appendix B; the membership function parameters of the baseline demand and the
price elastic coefficient are shown in Table A10 in Appendix B; most of these data come from the
literature [35]. As shown in Figure 1, the B3 node, the B7 node, the B12 node, the B14 node, and the
B22 node each have their own LA, aggregating the load of each node to participate in the DR market.
The maximum interrupt capacity is 15% of the load of each node and the interruption time of each
node is less than one hour per day. The negotiated price of electricity purchased from the superior
distribution network is 0.52 yuan/kWh; the unit price of IL compensation is 1 yuan/kWh; the unit price
of the PLR is 1.2 yuan/kWh. This example is solved on the MATLAB (2015b, The MathWorks, Natick,
MA, America) platform.
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Figure 1. IEEE33 node power distribution system.

In the day-ahead scheduling, one day is divided into 24 periods on average; in the day-in
scheduling stage, one day is divided into 96 periods on average, that is, the load and renewable energy
output of the next period are predicted every 15 min and based on this, the operation is optimized.
Table 1 shows the division of peak, flat and valley periods in Hebei Province, China. The load, wind
turbine, photovoltaic output and purchased power by microgrid are shown as Figure 2.
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Table 1. Time-of-use price period price.

Period Time Price (yuan/(kW·h))

Peak 8:00–12:00, 16:00–20:00 0.55
Flat 6:00–8:00, 12:00–16:00, 20:00–22:00 0.52

Valley 22:00–24:00, 0:00–6:00 0.3Energies 2019, 12, x 12 of 30 
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5.2. Influence of Uncertainty Model on Optimization Results

In order to verify the validity of the uncertainty model of PBDR and IBDR in the two-stage
interactive decision model, this paper sets four scenarios to compare the operating cost in two stages:

(1) Uncertainty is not considered in the day-ahead and intraday scheduling
(2) Only consider the uncertainty of intraday scheduling
(3) Only consider the uncertainty of the day-ahead scheduling
(4) Uncertainty is considered in both day-ahead and intraday scheduling

Since the time margin of intraday scheduling is small, the day-in reliability level should be
higher [36]; on the contrary, the deviation of the day-ahead scheduling can be adjusted by the intraday
scheduling, so that a smaller confidence can be taken in day-ahead stage. In addition, since the
maximum robustness factor set in this paper is 5 and the minimum is 0, the robustness factor takes the
intermediate value. Set the day-ahead reliability α = 0.6, the day-in reliability β = 0.9 [36], and the
robustness coefficient Γ = 3; the operating costs of two stages in the four scenarios are shown in the
following Table 2.

Table 2. Operating costs for each scenario.

Scenario Day-ahead
Cost (yuan)

The Cost of IL
(yuan)

Extra Purchase
Cost (yuan)

Peak Load
Regulation (yuan)

Total Cost
(yuan)

1 28,692 953.47 876.21 1844.6 32,264.28
2 28,955 1104.38 659.79 1305.93 32,025.1
3 30,845 894.33 326.85 1178.47 33,244.65
4 29,681 917.4 235.42 904.81 31,738.63

It can be seen that in the scenarios where uncertainty is considered in the previous stage,
the scheduling cost is higher than other scenarios. This is because the uncertainty of price-based
demand response is considered, and the estimation of the load change tends to be conservative, leading
to the predicted load curve with poor effect of reducing the peak-to-valley difference. So the running
cost is high.
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However, considering uncertainty in the intraday scheduling phase reduces the operating costs of
the intraday phase. This is because the uncertainty of the intraday phase is mainly due to the uncertainty
of the IL, which can be considered as the uncertainty of outputs. And because the interrupted power
will not be greater than the scheduling plan, so the dispatch center will increase the planned amount of
the IL. Although this has caused the increase of IL compensation cost, the output gap caused by the
uncertainty of IL is reduced, leading to the reduction of called PLR. Therefore the total operating cost
of the day-in stage is reduced.

In order to analyze the intraday cost in different scenarios, the outputs of IL, PLR and additional
electricity purchased in the four scenarios during 11:00–17:00 are shown in Figure 3: as the Figure 3,
during 11:00–12:00, the IL resources in the scenarios almost reached the maximum interrupt amount.
This result from the uncertainty increases caused by the increasing demand in the peak period.
Similarly, the additional electricity purchased is also larger in this period of the four scenarios.
However, the occurrence of the peaks of the called amount of PLR are not specific to the peak period.
This is due to the fact that PLR is called on account of the uncertainty of load and the IL.
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5.3. Influence of Uncertainty Parameters

In the uncertainty optimization model, the change of confidence has a great influence on the
optimization result, and generally the operating cost increases with the increase of confidence [21].
Because the increase of confidence means the reliability is improved. Important ways to improve
reliability include measures to improve the reliability of the element or increase the redundancy of the
system, so the economic cost will inevitably increase. In the two-stage joint scheduling model, not only
the confidence, but also the robustness factor control uncertainty. How the two parameters affect
the scheduling results jointly requires further exploration. After changing the robustness factor and
the confidence level of intraday stage, the two-stage optimal scheduling is performed. The planned
interrupted amount of the IL and the PLR output at every hour are obtained as in Figure 4.
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As shown in the Figure 4, when the intraday confidence is changed with determined robustness
factor, the running cost increases as the day-in reliability increases. At the same time, in the case
of day-in confidence being determined, increasing the robustness factor also leads to an increase
in operating costs. This is because the essence of increasing the robustness factor is to increase the
uncertainty, and the estimated power that cannot be interrupted by contract is increased, leading to an
increase in PLR resources which affect the operating costs. In addition, by comparing Figure 4a–c, it can
be seen that compared with the robustness factor, the change of confidence has a greater impact on the
result. This is mainly because the change of the robustness factor only affects the actual interruption of
the IL. The selection of reliability will change the value of the load in the crisp equivalence constraint,
thus the allocation of resources has to be changed.

When considering the day-ahead scheduling stage, the robustness factor and the confidence level
of the day-ahead scheduling are changed, and the influence of the two parameters on the result is
explored. When different robustness factors are adopted in the intraday scheduling phase, the day-in
reliability α is 0.9, and the confidence of the day-ahead scheduling is changed respectively. The output
of the PLR and the IL at every hour in the intra-day scheduling are as follows (see Figure 5):

As can be seen from Figure 5, with the increase of confidence in the day-ahead stage, the output
of IL and PLR are reduced significantly. This is because the estimation of load change after PBDR will
be more conservative with the increase of confidence in day-ahead stage, which reduce the pressure on
the output of the day-in stage. With the increase of the intra-day robustness factor, the output of the IL
and PLR also increase slightly, which fully demonstrates the effectiveness of the two-stage interactive
decision model.
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5.4. Influence of Weight of Objective Functions in Day-Ahead Phase

The day-ahead scheduling plan has a large impact on the operating costs. In this paper, in order
to avoid damage to the user’s interests caused by the extreme price, the objective functions of the
day-ahead stage include user transfer coefficient in addition to the operating cost. The entropy
weight method is used to determine the weight of the objective functions as [0.30, 0.70], and they
are transformed into a single objective function. Changing the weight is equivalent to changing the
objective function of the day-ahead scheduling phase. In order to explore the influence of the weight
change on the optimization result, five different sets of objective function weights are taken to optimize.

It can be seen from Figure 6 that as the weight of the user transfer coefficient increases, the difference
of price between the peak and flat period gradually decreases. And there is almost no difference when
it comes to 0.9. This is because the pursuit of lower user transfer coefficient makes the optimal solution
tend to the original price scheme, in which the difference between the flat price and the peak price is
small. However, the load curve under this scheme has great peak-to-valley difference, which leads to
an increase in operating costs.
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It can be seen from Figure 7 that as the weight of the operating cost increases and the weight of
the transfer coefficient decreases, the operating cost decreases and the transfer coefficient increases.
However, after the [0.5, 0.5], the running cost reduction rate slowed down, and the transfer coefficient
increased rapidly. Excessive operating cost weights or transfer coefficient weights can cause another
objective function to approach a worse situation. Among the weights of each group, [0.3, 0.7] can
avoid the rapid increase of the transfer coefficient due to the weight change, and also ensure the lower
operating cost. The result indicates the validity of the entropy weight method.Energies 2019, 12, x 16 of 30 
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5.5. Comparison of Algorithms in Day-Ahead Phase

In order to verify the performance of BA, this paper compares the BA with the particle swarm
optimization (PSO). The parameters of the BA are the same as Table A8 in Appendix A; the acceleration
factor of the PSO is set to c1 = c2 = 2, and the inertia weight w is set to 0.5. At the same time, the two
entropy weights are the same as Table 3. Since the values of the two algorithms in the previous
stage are quite different, they are normalized, and the formula is as follows. Fk.max and Fk.min are the
maximum and minimum values in the initial solution. Keep the initial solution the same, running
10 times each. Table 4 is a comparison of the algorithms, and the convergence curves for one time are
shown in Figure 8.

Nk =
Fk.max − Fk

Fk.max − Fk.min
, Fk.min < Fk < Fk.max (40)

Table 3. Entropy weight of objective functions.

Entropy Weights Data

w1 0.3145
w2 0.6855

Table 4. Comparison of two algorithms.

Algorithm PSO BA

Optimal solution 0.9344 0.9632
Standard deviation 0.0279 0.0001

Average time consuming (s) 18.47 24.58
Operating costs (yuan) 28022 27715
User transfer coefficient 0.0763 0.0759
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As shown in Table 4 and Figure 8, among the two algorithms, BA has a stronger ability to solve,
its optimal solution is better than the result of another method, and the standard deviation of the results
of ten independent runs is lower; the time-consuming of PSO is shorter, but the standard deviation of
the ten runs is large and that means lack of stability. Although the time spent by BA in optimization
is higher, the stage in which BA is used does not have strict calculation speed requirements, so the
application of BA with higher solution accuracy is reasonable.

6. Conclusions

This paper establishes a model of uncertainty for different types of DR, and establishes a two-stage
interactive decision model considering the uncertainty of DR and other output resources based on
different speeds of response. The fuzzy chance constrained programming theory and multi-stage
robust optimization are used to transform the uncertainty problem, and the BA and CPLEX are utilized
to solve the problem. Finally, the following conclusions are verified in the IEEE33 node system:

(1) Joint scheduling with different DR uncertainties at different time scales can effectively reduce
the operating cost. But when the uncertainty of day-ahead stage is considered exclusively,
the operating cost increases.

(2) Considering the uncertainty of DR in the day-ahead stage will increase the cost of day-ahead,
but reduce the cost of intraday scheduling, and the reduction will increase with the increase of
the confidence of the day-ahead.

(3) In the intraday phase, the operating cost increases with the increase of the robustness factor and the
day-in reliability level. Among them, the day-in reliability has a greater impact on operating costs.

(4) In the day-ahead stage, the excessive weight coefficient gap will affect the search for the optimal
solution of the multi-objective solution. The entropy weight method can provide a more reasonable
weight to avoid the deviation of an objective function from the ideal solution.

There are still many limitations in this article. Firstly, the uncertainty of renewable energy is not
considered; secondly, the time scale of scheduling does not extend to the real-time stage. The next
phase of work will be focused on an interactive model that considers the uncertainty on both sides of
the source and the load.
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Nomenclature

Indexes
t The index of time
j The index of IL user
k The index of object
x The index of the period of demand in mxy

y The index of the period of price in mxy

X The index of indicator
i The index of bat
Parameters
T The number of operating cycles
mxy The electricity price elasticity coefficient
E0.p, E0.f, E0.g The initial demand of the peak, flat and valley periods
cp, cf, cg The original electricity price at the peak, flat and valley periods
mxy1, mxy2, mxy3, mxy4 Membership function parameters of elastic coefficient
Ex1, Ex2, Ex3, Ex4 Membership function parameters of baseline load
kx, ky The growth rate of uncertainty
M The number of IL users
Pmt.max/Pmt.min The upper/lower limits of the unit’s output
γup/γdown The upper/lower limit of the unit’s output ramp rate
Pmin.j/Pmax.j The lower and upper limits of the response
Dj The upper limit of the total response time
∆T The duration of a period
f min/f max The upper/lower limits of the pulse frequency
m The number of indicators
n The number of objects
Fk.max/Fk.min Maximum/minimum of the object k in the initial solution
Set
ETOU The electricity consumption column vector after ToU
E0 The column vector of the electricity consumption before PBDR
M The electricity price elasticity matrix
W The entropy weight matrix of the evaluation
Variables
∆cp, ∆cf, ∆cg Electricity price change at the peak, flat and valley periods
∆Ep, ∆Ef, ∆Eg Demand change at the peak, flat and valley periods
Ẽ0.x The baseline demand considering uncertainty
m̃xy The elastic coefficient considering uncertainty
ETOU.p, ETOU.f, ETOU.g The demand of the peak, flat and valley periods after PBDR
µE0.x Membership function of baseline load
µmxy Membership function of elastic coefficient
P̂t

IL. j The actual power of interruption of the j user at time t

P
t
IL. j The planned interrupted power of the j user at time t

Pt
IL. j The indeterminate portion of the interrupt capacity of the user at time t

pt
IL. j Upper limit of the absolute value of the response uncertainty of the user j at time t
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τ j The uncertainty coefficient of the j
P̂t

IL The actual interrupted power of the system at time t
et

j The state of user j during t period
Γ Robustness factor
Cday The cost in day-ahead stage
ct

WT The unit cost of wind turbine generation at t
Pt

WT The output of wind turbine generation at t
ct

pv The unit cost of photovoltaic units at t
Pt

pv The output of photovoltaic units at t
ct

mt The unit cost of the gas turbine at t
Pt

mt The output of the gas turbine at t
ct

buy The unit purchasing price of electricity at t
Pt

buy The purchasing power at t
ct

pri The unit price of electricity sold to microgrid at t
Pt

MG The power purchased by the microgrid at t
S The user transfer coefficient
Pload0

t The load of the time t before ToU
Ploadt The load of the time t after ToU
P̃t

L The fuzzy parameter of the load after ToU
α The confidence level in day-ahead stage
Cday-in The operating cost during the intraday
β The confidence level in day-in stage
ct

IL The unit price of the IL at t
ct

R The unit price of PLR
ct

def The unit price of compensation to the main network
Pt

R The output of PLR at t
∆Pt

buy The difference from the actual and the planned amount of purchased power

P
t
IL The planned power of the IL at time t

ẼTOU.p The demand at the peak period considering the uncertainty
lt Ratio of hourly demand to demand of per period
χ Generalization of decision variable
δ Generalization of fuzzy variable
µ Membership function of δ
ξ̂ Generalization of robust interval variables
ξ The deterministic part of ξ̂
ξ The indeterminate part of ξ̂
fi The pulse frequency of bat i
st

i The speed of bat i at t
xt

i The position bat i at t
ρ Uniformly distributed random variable on [0, 1]
x* The current optimal bat position.
Ck The entropy of object k
vkX The magnitude of the indicator X of the object k.
wk Entropy weight of object k
c1, c2 The acceleration factor of the PSO
w The inertia weight of the PSO
Fk Function value that should be normalized
Nk Normalized Fk
Abbreviations
DR Demand response
PBDR Price-based demand response
IBDR Incentive-based demand response
IL Interruptible load
BA Bat algorithm
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DLC Direct load control
DSB Demand side bid
EDR Emergency demand response
WT Wind turbine
MT Micro turbine
PLR Peak load regulation
TOU Time of Use
C&CG Column-and-constraint generation
LA Load aggregator

Appendix A

Table A1. The bus load at different time of nodes 3–9.

Time
B3 B4 B6 B7 B8 B9

P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar

1 98.25 45.23 52.32 25.69 74.39 36.53 101.34 53.69 78.69 40.47 28.59 14.23
2 90.55 41.68 48.22 23.68 71.16 34.94 96.94 51.36 75.27 38.71 27.35 13.61
3 86.67 39.9 46.15 22.66 70.42 34.58 95.93 50.82 74.49 38.31 27.06 13.47
4 82.87 38.14 44.13 21.66 69.61 34.18 94.83 50.24 73.63 37.87 26.75 13.32
5 87.69 40.05 46.69 22.75 68.55 33.66 93.38 49.47 72.51 37.29 26.34 13.11
6 108.97 49.77 58.03 28.27 74.86 36.76 101.98 54.03 79.19 40.73 28.77 14.32
7 126.93 57.97 67.59 32.93 95.88 47.08 130.61 69.2 101.42 52.16 36.85 18.34
8 147.64 67.44 78.62 38.3 107.69 52.89 146.71 77.73 113.92 58.59 41.39 20.6
9 162.44 74.19 86.5 42.14 119.11 58.49 162.26 85.97 125.99 64.8 45.78 22.78

10 170.01 77.65 90.53 44.1 128.71 63.2 175.34 92.9 136.15 70.02 49.47 24.62
11 181.47 82.89 96.63 47.08 136.59 67.07 186.07 98.58 144.48 74.31 52.49 26.13
12 168.93 77.17 89.96 43.83 160.23 78.68 218.28 115.64 169.49 87.17 61.58 30.65
13 168.92 77.17 89.95 43.83 152.34 74.81 207.54 109.96 161.15 82.88 58.55 29.14
14 165.14 75.44 87.94 42.85 128.71 63.2 175.33 92.9 136.15 70.02 49.46 24.62
15 174.39 79.67 92.87 45.25 130.08 63.88 177.21 93.89 137.6 70.77 49.99 24.88
16 175.48 80.16 93.45 45.53 135.27 66.43 184.28 97.63 143.09 73.59 51.99 25.88
17 176.55 80.67 94.02 45.82 131.33 64.49 178.91 94.79 138.92 71.45 50.47 25.12
18 172.16 78.66 91.68 44.68 144.46 70.94 196.8 104.27 152.81 78.6 55.52 27.64
19 176.57 80.67 94.03 45.82 152.34 74.81 207.53 109.96 161.14 82.88 58.55 29.14
20 210.45 96.16 112.07 54.62 145.77 71.59 198.58 105.22 154.2 79.31 56.02 27.89
21 211.58 96.67 112.67 54.91 136.58 67.07 186.06 98.58 144.47 74.31 52.49 26.13
22 172.19 78.67 91.69 44.69 133.95 65.78 182.48 96.69 141.69 72.88 51.48 25.63
23 126.35 57.73 67.28 32.79 122.13 59.98 166.38 88.16 129.19 66.45 46.94 23.36
24 103.92 47.48 55.34 26.97 94.55 46.44 128.81 68.25 100.02 51.44 36.34 18.09

Table A2. The bus load at different time of nodes 10–15.

Time
B10 B11 B12 B13 B14 B15

P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar

1 53.67 26.74 32.14 15.42 52.97 27.12 150.75 70.75 50.25 20.32 124.25 55.35
2 51.34 25.58 30.74 14.75 50.67 25.94 140.75 67.42 45.25 19.36 113.28 52.75
3 50.8 25.31 30.42 14.6 50.14 25.67 128.75 64.05 43.25 18.4 105.73 50.11
4 50.22 25.02 30.07 14.43 49.57 25.38 115.45 59.63 39.24 17.13 102.78 46.65
5 49.46 24.64 29.62 14.21 48.81 24.99 112.89 56.29 37.26 16.17 99.56 44.04
6 54.01 26.91 32.34 15.52 53.31 27.29 107.89 54.21 34.26 15.57 95.56 42.41
7 69.17 34.46 41.42 19.87 68.27 34.95 106.3 53.34 33.26 15.32 94.66 41.73
8 77.7 38.71 46.53 22.32 76.68 39.26 118.25 61.35 41.54 17.62 105.38 47.99
9 85.93 42.81 51.46 24.69 84.81 43.42 140.95 74.47 60.88 21.39 121.47 58.26

10 92.86 46.27 55.61 26.68 91.65 46.92 150.85 81.03 68.95 23.27 132.33 63.39
11 98.54 49.1 59.01 28.31 97.26 49.8 156.81 84.27 71.76 24.2 137.69 65.93
12 115.6 57.6 69.23 33.21 114.09 58.41 149.75 82.03 69.85 22.27 130.53 63.59
13 109.91 54.76 65.82 31.58 108.48 55.54 153.04 84.49 71.39 22.94 133.4 65.5
14 92.86 46.27 55.61 26.68 91.65 46.92 163.14 90.05 76.1 24.45 142.21 69.81
15 93.85 46.76 56.2 26.97 92.63 47.43 161.02 88.93 75.11 24.15 140.36 68.94
16 97.59 48.63 58.44 28.04 96.32 49.32 149.14 82.26 69.1 22.34 129.13 63.77
17 94.75 47.21 56.74 27.22 93.52 47.88 148.25 81.82 68.69 22.21 128.75 63.43
18 104.23 51.93 62.42 29.95 102.87 52.67 134.82 74.35 62.42 20.19 117.65 57.64
19 109.91 54.76 65.82 31.58 108.47 55.54 135.61 74.8 63.79 20.31 117.34 57.99
20 105.17 52.4 62.98 30.22 103.8 53.15 148.23 81.81 69.68 22.21 128.34 63.42
21 98.54 49.1 59.01 28.31 97.25 49.8 164.22 90.65 76.63 24.61 142.77 70.27
22 96.64 48.15 57.87 27.77 95.38 48.84 154.97 85.39 72.82 23.18 134.21 66.2
23 88.11 43.91 52.77 25.32 86.96 44.53 145.73 80.16 68.51 21.77 126.15 62.15
24 68.22 33.99 40.85 19.6 67.33 34.47 138.05 75.92 64.93 20.61 119.47 58.85
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Table A3. The bus load at different time of nodes 16–21.

Time
B16 B17 B18 B19 B20 B21

P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar

1 90.75 40.23 74.25 30.78 124.75 50.25 60 25.68 45.28 21.59 92.1 44.83
2 88.77 38.34 72.67 29.33 123.75 47.89 59.65 24.47 41.73 19.9 84.88 41.32
3 87.25 36.42 70.58 27.87 121.74 45.49 55.93 23.25 39.94 19.04 81.24 39.54
4 85.86 33.91 65.58 25.94 108.43 42.35 51.78 21.65 38.19 18.21 77.68 37.8
5 81.54 32.01 60.6 24.49 105.48 39.98 45.32 20.43 40.41 19.12 82.2 39.7
6 79.54 30.83 57.6 23.58 100.85 38.5 44.9 19.68 50.22 23.76 102.15 49.33
7 77.64 30.33 56.3 23.21 99.3 37.89 44.3 19.36 58.5 27.67 118.98 57.46
8 87.94 34.88 67.65 26.69 111.2 43.57 54.8 22.27 68.04 32.19 138.4 66.84
9 105.75 42.35 86.85 32.4 129.23 52.89 69.57 27.03 74.86 35.42 152.27 73.54
10 115.35 46.07 95.75 35.25 138.83 57.55 78.82 29.41 78.35 37.07 159.37 76.96
11 119.96 47.92 99.58 36.66 144.38 59.85 81.97 30.59 83.63 39.57 170.11 82.16
12 117.45 46.37 92.65 35.75 140.63 58.55 79.95 29.61 77.85 36.84 158.35 76.49
13 121.03 47.77 94.69 36.82 143.72 60.31 81.71 30.5 77.85 36.83 158.35 76.48
14 127.96 50.91 101.94 39.25 153.21 64.27 87.1 32.51 76.11 36.01 154.8 74.77
15 126.29 50.28 99.63 38.76 151.22 63.48 85.97 32.1 80.37 38.03 163.47 78.97
16 117.19 46.51 92.66 35.85 139.12 58.72 80.09 29.69 80.87 38.26 164.5 79.45
17 116.49 46.25 91.81 35.66 138.49 58.4 79.62 29.53 81.37 38.5 165.5 79.95
18 104.96 42.04 83.8 32.41 125.67 53.07 72.45 26.84 79.34 37.55 161.38 77.96
19 106.58 42.29 83.29 32.6 127.42 53.39 71.87 27 81.37 38.51 165.52 79.96
20 115.48 46.25 92.09 35.66 138.57 58.4 79.61 29.53 96.99 45.9 197.28 95.31
21 129.82 51.25 100.99 39.51 154.28 64.7 87.14 32.72 97.51 46.15 198.34 95.82
22 121.76 48.28 96.26 37.22 145.59 60.95 82.2 30.82 79.36 37.55 161.41 77.98
23 114.51 45.32 89.54 34.94 136.92 57.22 77.27 28.94 58.23 27.56 118.44 57.22
24 108.5 42.92 84.8 33.09 129.71 54.19 74.17 27.4 47.89 22.66 97.41 47.06

Table A4. The bus load at different time of nodes 22–27.

Time
B22 B23 B24 B25 B26 B27

P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar

1 92.5 42.49 20.3 9.46 40.94 21.77 101.35 52.36 41.69 23.58 76.58 39.87
2 85.25 39.16 18.71 8.72 37.73 20.06 97.05 50.14 39.92 22.58 73.33 38.18
3 81.6 37.48 17.91 8.34 36.11 19.2 88.03 45.48 36.21 20.48 66.52 34.63
4 78.02 35.83 17.12 7.98 34.53 18.36 85.46 44.15 35.15 19.88 64.57 33.62
5 82.55 37.62 18.12 8.38 36.54 19.28 82.02 42.37 33.74 19.08 61.97 32.27
6 102.59 46.76 22.51 10.41 45.41 23.96 84.13 43.46 34.61 19.57 63.57 33.1
7 119.5 54.46 26.22 12.13 52.89 27.9 90.94 46.98 37.41 21.16 68.72 35.78
8 139 63.35 30.5 14.1 61.52 32.46 103.32 53.38 42.5 24.04 78.07 40.65
9 152.93 69.7 33.56 15.52 67.69 35.71 126.48 65.34 52.03 29.43 95.56 49.75
10 160.06 72.95 35.13 16.24 70.84 37.38 140.98 72.83 57.99 32.8 106.52 55.46
11 170.85 77.87 37.49 17.34 75.62 39.9 158.14 81.7 65.05 36.79 119.49 62.21
12 159.04 72.49 34.9 16.14 70.39 37.14 156.84 81.03 64.52 36.49 118.51 61.7
13 159.03 72.49 34.9 16.14 70.39 37.14 127.31 65.77 52.37 29.62 96.2 50.08
14 155.48 70.87 34.12 15.78 68.81 36.31 134.58 69.53 55.36 31.31 101.69 52.94
15 164.18 74.85 36.03 16.66 72.67 38.35 133.33 68.88 54.84 31.02 100.74 52.45
16 165.21 75.3 36.26 16.77 73.12 38.58 142.32 73.53 58.54 33.11 107.54 55.99
17 166.22 75.78 36.48 16.87 73.57 38.83 143.16 73.96 58.89 33.31 108.17 56.32
18 162.08 73.89 35.57 16.45 71.74 37.86 142.74 73.74 58.72 33.21 107.86 56.15
19 166.24 75.79 36.48 16.87 73.57 38.83 133.72 69.09 55.01 31.11 101.04 52.61
20 198.14 90.33 43.48 20.11 87.69 46.28 147.45 76.18 60.65 34.31 111.41 58.01
21 199.2 90.82 43.72 20.22 88.17 46.53 165.06 85.27 67.9 38.4 124.72 64.93
22 162.11 73.91 35.58 16.45 71.75 37.87 142.73 73.74 58.71 33.21 107.85 56.15
23 118.95 54.23 26.11 12.07 52.65 27.79 123.51 63.81 50.81 28.74 93.33 48.59
24 97.83 44.6 21.47 9.93 43.3 22.85 113.18 58.47 46.56 26.33 85.52 44.53
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Table A5. The bus load at different time of nodes28–32.

Time
B28 B29 B30 B31 B32

P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar P/kW Q/kVar

1 44.69 23.59 105.24 50.37 73.68 53.69 42.49 20.47 95.66 49.28
2 42.79 22.59 100.78 48.23 70.56 51.41 40.69 19.6 91.6 47.19
3 38.82 20.49 91.41 43.75 64 46.64 36.91 17.78 83.09 42.81
4 37.68 19.89 88.74 42.47 62.13 45.27 35.83 17.26 80.66 41.55
5 36.17 19.09 85.17 40.76 59.63 43.45 34.39 16.57 77.41 39.88
6 37.1 19.58 87.36 41.81 61.16 44.57 35.27 16.99 79.4 40.91
7 40.1 21.17 94.43 45.2 66.11 48.18 38.13 18.37 85.84 44.22
8 45.56 24.05 107.29 51.35 75.11 54.73 43.32 20.87 97.52 50.24
9 55.77 29.44 131.33 62.86 91.95 67 53.02 25.54 119.37 61.5

10 62.16 32.81 146.39 70.07 102.49 74.68 59.1 28.47 133.06 68.55
11 69.73 36.81 164.21 78.6 114.97 83.78 66.3 31.94 149.26 76.9
12 69.16 36.51 162.86 77.95 114.02 83.09 65.75 31.68 148.04 76.26
13 56.14 29.63 132.2 63.27 92.55 67.44 53.37 25.71 120.16 61.9
14 59.34 31.32 139.74 66.89 97.84 71.29 56.42 27.18 127.02 65.44
15 58.79 31.03 138.45 66.26 96.93 70.63 55.9 26.93 125.84 64.83
16 62.76 33.13 147.79 70.73 103.47 75.4 59.67 28.75 134.33 69.2
17 63.13 33.32 148.66 71.15 104.08 75.84 60.02 28.91 135.12 69.61
18 62.94 33.22 148.22 70.94 103.77 75.62 59.84 28.83 134.73 69.41
19 58.96 31.13 138.86 66.46 97.22 70.84 56.06 27.01 126.22 65.02
20 65.02 34.32 153.11 73.28 107.19 78.11 61.82 29.78 139.17 71.7
21 72.78 38.42 171.39 82.03 119.99 87.44 69.2 33.34 155.79 80.26
22 62.94 33.22 148.21 70.94 103.76 75.61 59.84 28.83 134.72 69.4
23 54.46 28.75 128.25 61.38 89.79 65.43 51.78 24.95 116.58 60.06
24 49.91 26.34 117.53 56.25 82.28 59.96 47.45 22.86 106.83 55.03

Table A6. The resistance parameters of the IEEE 33 network.

Branch
Number

Starting
Node

End
Node

Resistance Reactance Branch
Number

Starting
Node

End
Node

Resistance Reactance
/Ω /Ω /Ω /Ω

1 B0 B1 0.0922 0.047 17 B23 B24 0.786 0.564
2 B1 B13 0.493 0.2511 18 B5 B6 1.059 0.9337
3 B13 B14 0.164 0.1565 19 B6 B7 1.03 0.74
4 B14 B15 0.4512 0.3083 20 B7 B8 0.8042 0.7006
5 B15 B16 0.366 0.1864 21 B8 B9 1.044 0.74
6 B16 B17 1.504 1.3554 22 B9 B10 0.5075 0.2585
7 B17 B18 0.3811 0.1941 23 B10 B11 0.1966 0.065
8 B18 B19 0.4095 0.4784 24 B11 B12 0.9744 0.963
9 B1 B2 0.896 0.7011 25 B5 B25 0.3744 0.1238

10 B2 B3 0.819 0.707 26 B25 B26 0.3105 0.3619
11 B3 B4 0.7089 0.9373 27 B26 B27 1.468 1.115
12 B4 B5 0.203 0.1034 28 B25 B28 0.341 0.5302
13 B2 B20 0.1872 0.6188 29 B28 B29 0.5412 0.7129
14 B20 B21 0.2842 0.1447 30 B28 B30 0.591 0.526
15 B21 B22 0.7114 0.2351 31 B30 B31 0.7463 0.545
16 B22 B23 0.732 0.574 32 B31 B32 1.289 1.721

Appendix B

Table A7. Unit parameters.

Unit Type
Power Output Years of

Use
Installation Cost

(Wanyuan)
Operation & Maintenance

(yuan/kW·h)Lower Limit Upper Limit

WT 0 700 10 2.375 0.0296
PT 0 500 20 6.65 0.0096
MT 0 350 15 1.667 0.03

Table A8. Parameters of Bat algorithm.

Parameters Population
Size Number of Iterations Parameters Frequency Pulse Frequency

Increase Factor

data 100 100 data [0,2] 0.9

Parameters Pulse
Loudness

Loudness Attenuation
Coefficient Parameters Mutation

Probability Random Coefficient

data [1,2] 0.9 data 0.9 0.5
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The above is the membership function of the elastic coefficient of the x and y periods, and the membership
function of the baseline load is the same.

Table A9. Electricity price elasticity coefficient.

Time Peak Flat Valley

Peak −0.0173 0.0383 0.052
Flat 0.0192 −0.0426 0.0577

Valley 0.0202 0.0448 −0.0607

Table A10. The membership function parameters of the baseline load and the price elastic coefficient.

Parameters mxy2 mxy3 kx ky Ex1 Ex2 Ex3 Ex4

Data 95%mxy 105%mxy 1%mxy 1%mxy 92%mxy 95%mxy 105%mxy 108%mxy

Appendix C

Appendix C.1. Algorithm of PBDR:

Input: original load, original electricity price, price elastic coefficient matrix, electricity price difference
generated in this iteration of BA, baseline load and elasticity coefficient membership parameter, uncertainty
growth rate

Output: hourly load after response
Procedure:
Step 1. Obtain the membership function parameters of the electricity price elastic coefficient according to

formula (6):  mxy2 −mxy1 = mxy4 −mxy3

mxy2 −mxy1 = kx
cx
|∆cx |

+ ky
cy

|∆cy|

Step 2. Initialize the load of each period

E0.f = 0; E0.p = 0; E0.g = 0;

Step 3. Obtain the total load of peak time, valley time and flat time:
for t = 1 to T

if t = (8 to 12) or (16 to 20), E0.p= E0.p + Ploadt
0∆T;

else if t = (22 to 24) or (1 to 6), E0.g= E0.g + Ploadt
0∆T;

else E0.f= E0.f + Ploadt
0∆T;

end if
end for

Step 4. Calculate the baseline load for each period when the confidence is according to Equation (23):

Ẽ0.f = (2− 2α)Ef1 + (2α− 1)Ef2

Ẽ0.g = (2− 2α)Eg1 + (2α− 1)Eg2

Ẽ0.p = (2− 2α)Ep1 + (2α− 1)Ep2
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Step 5. Obtain the elastic coefficient when the confidence is α according to Equation (23):
for x = 1 to 3

for y = 1 to 3
m̃xy = (2− 2α)mxy1 + (2α− 1)mxy2

end for
end for

Step 6. Obtain the load of periods using outcome of step 4 and 5 according to Equation (1):

ẼTOU.f = Ẽ0.f + E0.fm̃ff
∆cf
cf

+ E0.fm̃fp
∆cp

cp
+ E0.fm̃fg

∆cg

cg

ẼTOU.p = Ẽ0.p + E0.pm̃pf
∆cf
cf

+ E0.pm̃pp
∆cp

cp
+ E0.pm̃pg

∆cg

cg

ẼTOU.g = Ẽ0.g + E0.gm̃gf
∆cf
cf

+ E0.gm̃gp
∆cp

cp
+ E0.gm̃gg

∆cg

cg

Step 7. Restore the load for each time period to each hour when the confidence is α
for t = 1 to T

if t = (8 to 12) or (16 to 20)

P̃t
L = ẼTOU.p

Ploadt
0

E0.p

else if t = (22 to 24) or (1 to 6)

P̃t
L = ẼTOU.f

Ploadt
0

E0.f

else

P̃t
L = ẼTOU.g

Ploadt
0

E0.g

end if
end for

Appendix C.2. Sketch Map of IBDR:
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