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Abstract: In this paper, a novel finite-time nonlinear extended state observer (NLESO) is proposed
and employed in active disturbance rejection control (ADRC) to stabilize a nonlinear system against
system’s uncertainties and discontinuous disturbances using output feedback based control. The first
task was to aggregate the uncertainties, disturbances, and any other undesired nonlinearities in
the system into a single term called the “generalized disturbance”. Consequently, the NLESO
estimates the generalized disturbance and cancel it from the input channel in an online fashion.
A peaking phenomenon that existed in linear ESO (LESO) has been reduced significantly by adopting
a saturation-like nonlinear function in the proposed nonlinear ESO (NLESO). Stability analysis of
the NLEO is studied using finite-time Lyapunov theory, and the comparisons are presented over
simulations on permanent magnet DC (PMDC) motor to confirm the effectiveness of the proposed
observer concerning LESO.

Keywords: extended state observers; observer bandwidth; estimation error; output feedback;
tracking differentiator; finite-time control; permanent magnet DC motor; ADRC

1. Introduction

In most control industries, it is hard to establish accurate mathematical models to describe
the systems precisely. Also, some terms are not explicitly known in mathematical equations and,
on the other hand, some unknown external disturbances exist around the system environment.
The uncertainty, which includes internal uncertainty and external disturbance, is ubiquitous in practical
control systems [1].

1.1. Background

To tackle the shortcomings of passive anti-disturbance control (PADC) strategies in treating
the disturbances, Han in Reference [2] has proposed the alleged active disturbance rejection control
(ADRC) paradigm. Generally speaking, the basic idea behind the ADRC is to straightforwardly
oppose disturbances by feedforward compensation control configuration given disturbance
estimations/cancellation principle [3]. This procedure has discovered a number of practical
applications [4,5]. Extended state observer (ESO) is the central part of the ADRC, which works
by augmenting the mathematical model of the nonlinear dynamical system with an additional virtual
state. It describes all the unwanted dynamics, uncertainties, and exogenous disturbances and is called
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the “generalized disturbance” or “total disturbance”. Then, this total disturbance is estimated by the
ESO and fed back into the control input channel for cancelation [2,6]. It can be applied for varieties of
systems like those studied in References [7–10].

1.2. Related Work

During recent years, the literature has found many types of research for analysis, design,
and implementation of the ESO. Different forms of modern control theory-based observers have
been proposed to meet this need where several surveys of various disturbance observers can be
found in [11–13]. In 1971, Johnson introduced the unknown\input observer (UIO) [14] to estimate the
unknown input of the system. The transfer function-based disturbance observer (DOB) [15], proposed
later on by Japanese researchers, can predict the disturbance as well. The Perturbation observer (POB)
was offered by Kwon and Chung in 2002 [16] in the discrete form to estimate the perturbation acted
on the system. The “unknown input”, the “disturbance”, and the “perturbation” are just different
names for the external disturbance, and the above observers can only deal with it. The aforementioned
DOBC techniques employ some plant information for disturbance observation and control design. The
ESO is the one that uses less information as only the system relative degree should be known (defined
later in this paper). For that reason, the ESO has become very popular in recent years. ADRC can
be understood as a combination of an extended state observer (ESO) and a state feedback controller,
where the ESO is utilized to observe the generalized disturbance taken as an augmented/extended
state. The state feedback controller is used to regulate the tracking error between the real output
and a reference signal for the physical plant [17]. It should be remembered that the ESO together
with the nonlinear plant takes the form of chain-like integrators where any of the linear or nonlinear
control design methods, like those presented in [18–23], can be applied for feedback stabilization and
performance enhancement.

1.3. Paper Scope and Contribution

In this paper, a new class of nonlinear extended state observers (NLESO) are proposed to actively
reject the generalized disturbance for a general uncertain nonlinear system according to the principle
of estimation/cancelation. For this NLESO, a saturation-like nonlinear error function was suggested to
attenuate the large observer error at the starting stage and/or at the time of a discontinuous disturbance
is injected to the system, consequently alleviating the peaking phenomenon. From the stability analysis
of the error dynamics of NLESO observer, the finite-time stability analysis based on Lyapunov principle
and self-stable region (SSR) were introduced an applied on NLESO.

1.4. Problem Statement and Motivation

Assume an n-dimensional SISO nonlinear system, which is expressed by [24],

yn(t) = f (t, x1(t), x2(t), . . . , xn(t)) + w(t) + bu(t) (1)

which can be rewritten as a chain of integrals with nonlinear uncertainties appearing in the
n-th equation, 

.
x1(t) = x2(t),
.
x2(t) = x3(t),

...
.
xn(t) = f (t, x1(t), x2(t), . . . , xn(t)) + w(t) + bu(t),

y(t) = x1(t)

(2)

where u(t) ∈ C(R,R) is the control input, y(t) the measured output, f (·) ∈ C(Rn,R) an unknown
system function, w(t) ∈ C(R,R) the uncertain exogenous disturbance, x(t) = (x1(t), x2(t), . . . , xn(t))

T

the state vector of the nonlinear system, and x(0) = (x10, x20, . . . , xn0)
T the initial state, L(t) =
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f (t, x1(t), x2(t), . . . , xn(t)) + w(t) is called “generalized disturbance” [25]. By adding the extended
state xn+1(t)L(t) = f (t, .) + w(t), the system (2) can be written as,

.
x1(t) = x2(t),
.
x2(t) = x3(t),

...
.
xn(t) = xn+1(t) + bu(t),

.
xn+1(t) = ∆(t) =

.
f (t, x1(t), x2(t), . . . , xn(t)) +

.
w(t),

y(t) = x1(t)

(3)

with x(0) =
(

x10, x20, . . . , xn0, x(n+1)0

)T
. The following linear ESO (LESO) needs to be designed to

estimate the states of the nonlinear system as well as the generalized disturbance L(t) and is described
as [26], 

.
x̂1(t) = x̂2(t) + β1(y(t)− x̂1(t)),.
x̂2(t) = x̂3(t) + β2(y(t)− x̂1(t)),

...
.
x̂ρ(t) = x̂ρ+1(t) + bu(t) + βρ(y(t)− x̂1(t)),.

x̂ρ+1(t) = βρ+1(y(t)− x̂1(t)),

(4)

where x̂n+1(t) = L̂ = f̂
(
t, x1(t), x2(t), . . . , xρ(t)

)
+ ŵ(t), βi, i ∈ {1, 2, . . . , ρ, ρ + 1} is a constant

observer gain to be tuned. With βi = ai
εi , where ai, i ∈ {1, 2, . . . , ρ, ρ + 1} are pertinent constants,

and ε is the constant gain or the reciprocal of observer’s bandwidth, ρ is the relative degree of the
nonlinear system [24]. The observer gain is directly proportional to the observer bandwidth. Selecting
a bandwidth that is too large will lead to a drop in the estimation error within an acceptable bound [27].
Therefore, the observer bandwidth is chosen to be sufficiently larger than the disturbance frequency
and smaller than the frequency of unmodelled dynamics [28]. On the other hand, the performance
of the ESO will be deteriorated if the bandwidth of the ESO is selected as either too low or too high.
The side effects of adopting a large value for bandwidth can be summarised as the measurement noise
causes a degradation on the output tracking and the control signal. Some unmodelled high frequencies
dynamics may be activated beyond a certain frequency, causing inconsistency in the closed-loop
system.

Motivated by the above reasons, the aim is to design a nonlinear ESO(NLESO) whose functions
are as follows:

1. Its states approach as accurate as possible the states of (3) through time and coincide with them
as t→ ∞ .

2. It reduces the peaking phenomenon.
3. It avoids large transient behaviours.
4. It guarantees fast-convergence and robustness concerning noise.

A general nonlinear extended state observer is given by,

.
x̂1(t) = x̂2(t) + g1(y(t)− x̂1(t)),.
x̂2(t) = x̂3(t) + g2(y(t)− x̂1(t)),

...
.
x̂ρ(t) = x̂ρ+1(t) + bu(t) + gρ(y(t)− x̂1(t)),.

x̂ρ+1(t) = gρ+1(y(t)− x̂1(t))

(5)

If the nonlinear functions gi : R→ R, i ∈ {1, 2, . . . , ρ + 1} were selected appropriately, the state
variables of the nonlinear system could track the state variables of the original system and generalized
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disturbance. A nonlinear function is the mathematical fitting of “big error, small gain or small error,
big gain” [29]. This function is generally selected as a nonlinear combination power function and is
given as [30,31].

f al(e, α, δ) =

{
e

δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ
(6)

where δ is a small number which is used to express the length of the linear part [32]. The f al(·) is a
piecewise continuous, nonlinear saturation, a monotonous increasing function.

1.5. Paper Structure

The rest of the paper is organized as follows: In Section 2, preliminary assumptions and
mathematical definitions from nonlinear control theory are summarized. The main results of the
proposed NLESO with the stability studies are presented in Section 3. Section 4 describes an enhanced
version of ADRC with the proposed NLESO as its central core. The simulations of the enhanced
ADRC on the permanent magnet DC motor are shown in Section 5. Conclusions and future work are
mentioned in Section 6.

2. Basic Definitions and Assumptions

Some of the definitions of the nonlinear control theory mentioned below are needed in the
mathematical analysis of the Nonlinear ESO (NLESO) proposed in this paper.

Definition 1. [33]: Assuming that S is a region in the state space, which contains the origin. If it satisfies the
condition that any system’s trajectory, which remains in it after a particular time, will eventually converge to the
origin, then S is called the self-stable region (SSR) of the system.

Lemma 1. [34,35]: the system
.
e = −k sgn(e) |e|α (7)

is globally finite-time stable where k > 0, α ∈ (0, 1). For any initial value of e(t) at t = to, i.e., eo, it is easily

obtained that the solution trajectory of (7) will reach e = 0 in finite time t f =
|eo |1−α

(1−α)k .

Theorem 1. [36,37]: Consider the nonlinear system
.
x = f (x) with f(0) = 0. Suppose there exists a

continuous function V : D→ R on an open neighborhood D⊆ R n of the origin such that the following
conditions hold,

1. V(x) is positive definite.

2.
.

V(x) + cVα ≤ 0.

Then, the origin is finite-time stable, and the settling time tf depending on the initial conditions x(0) = xo is
given as,

t f ≤
V(xo)

1−α

c(1− α)
(8)

for all xo in some open neighborhood of the origin, where c > 1, 0 < α < 1.

The assumptions given below are related to finite-time stability analysis of both the ESO and the
closed-loop system.

Assumption (A1). The function f and w(t) is continuously differentiable for all (t, x(t)) ∈ R×Rn.
Assumption (A2). The generalized disturbance L(t) is bounded and belongs to a known compact

set L ⊂ R, i.e.,
sup L(t) ≤ ∞ ,

t
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Assumption (A3). There is a positive constant M such that |∆(t)| ≤ M for t ≥ 0, where

∆(t) =
.
L(t) =

.
f (t, x1(t), x2(t), . . . , xn(t)) +

.
w(t) ≤ M (9)

Assumption (A4). The solution xi of (2) satisfy |xi(t)| ≤ B for some constant B > 0 for all i = 1, 2,
. . . , n, and t ≥ 0.

3. Main Results

In this section, the proposed NLESO will be presented followed by the stability analysis and
its finite-time convergence based on self-stable region technique. The conversion of the mismatched
disturbance into matched one will also be introduced.

3.1. The Proposed NLESO

The proposed NLESO for the general uncertain nonlinear system of (3) is designed as,

.
x̂1(t) = x̂2(t) + β1g1(ω0(y(t)− x̂1(t))),.
x̂2(t) = x̂3(t) + β2g2(ω0(y(t)− x̂1(t))),

...
.
x̂ρ(t) = x̂ρ+1(t) + bu(t) + βρgρ(ω0(y(t)− x̂1(t))),.

x̂ρ+1(t) = βρ+1gρ+1(ω0(y(t)− x̂1(t)))

(10)

where x̂n+1(t) = L̂, βi = aiω0
i−1, ω0 > 0 is the ESO bandwidth, and ai, i = 1, 2, . . . .., ρ + 1, are selected

according to,

ai =
(ρ + 1)!

i!(ρ + 1− i)!

such that the characteristic equation

sρ+1 + a1sρ + · · · . . . + aρs + aρ+1 = (s + 1)ρ+1

is Hurwitz, where ρ is the relative degree of the nonlinear system. The nonlinear function gi : R→ R
is designed as:

gi(ω0e) = ci

(
Kα|ω0e|α−1 + Kβ|ω0e|β

)
ω0e, i = 1, 2, . . . ρ + 1 (11)

where Kα, Kβ, α, ci, and β are the positive design parameters, ci, i = 1,2, . . . ..ρ + 1 are used to help
further reduce peaking phenomenon, a coherent problem with LESO, they are chosen such that
c1 > c1 > . . . > cρ+1. It should be noted that the proposed NLESO estimates the states of the
uncertain nonlinear system up to relative degree ρ of the nonlinear system. For the chain of integrals
characterized by (2) or (3), the relative degree is ρ = n. So, the NLESO will estimate up to n-th states of
(3) in addition to the generalized disturbance defined by xn+1(t).

The proposed nonlinear function has a saturation-like profile which obeys the principle of “small
error, large gain, and large error, small gain”, it is an odd function in terms of the error e. It has the
following additional features: g (0) = 0 and g (ω0e) = k(ω0e). ω0e, where kmin ≤ k(ω0e) < ∞ and
k(ω0e) = ci

(
Kα|ω0e|α−1 + Kβ|ω0e|β

)
.

3.2. Stability Analysis of the Proposed NLESO

The convergence of the proposed NLESO is studied based on how well it estimates the states of the
uncertain nonlinear system and the generalized disturbance, Theorem 2 below shows the convergence
analysis in terms of the estimation error dynamics and finite-time stability.
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Theorem 2. Consider the nonlinear system of (2) and assumptions 1–4 are satisfied, then the proposed NLESO
described by (10) is globally asymptotically stable, it is finite-time convergent to (3) with tf > to such that
ei = 0, i = 1, 2, . . . ., n + 1 for all t > tf.

Proof. By introducing the augmented state xn+1 = L into (2), we obtained (3). Moreover, set{
ei(t) = xi(t)− x̂i(t) i ∈ {1, 2, . . . n}

en+1(t) = xn+1(t)− x̂n+1(t) i = n + 1
(12)

It should be noted that in (12), xn+1(t)− x̂n+1(t) = L− L̂, where L and L̂ are the generalized
disturbances and the estimated generalized disturbance, respectively. A direct computation shows
that the estimation error dynamics of (12) satisfies:

.
x1(t)−

.
x̂1(t) = x2(t)− (x̂2(t) + β1g1(ω0(y(t)− x̂1(t)))

.
x2(t)−

.
x̂2(t) = x3(t)− (x̂3(t) + β2g2(ω0(y(t)− x̂1(t)))

...
.
xn(t)−

.
x̂n(t) = xn+1(t) + bu(t)− (x̂n+1(t) + bu(t) + βngn(ω0(y(t)− x̂1(t))))

.
xn+1(t)−

.
x̂n+1(t) = ∆(t)− βn+1gn+1(ω0(y(t)− x̂1(t)))

(13)

Substituting (11) in (13), gives

.
e1(t) = e2(t)− β1c1Kα|ω0e1(t)|α−1ω0e1(t)− β1c1Kβ|ω0e1(t)|βω0e1(t)
.
e2(t) = e3(t)− β2c2Kα|ω0e1(t)|α−1ω0e1(t)− β2c2Kβ|ω0e1(t)|βω0e1(t)

...
.
en(t) = en+1(t)− βncnKα|ω0e1(t)|α−1ω0e1(t)− βncnKβ|ω0e1(t)|βω0e1(t)

.
en+1(t) = ∆(t)− βn+1cn+1Kα|ω0e1(t)|α−1ω0e1(t)− βn+1cn+1Kβ|ω0e1(t)|βω0e1(t)

(14)

where ∆(t) is the derivative of the generalized disturbance L given by (9). According to Lemma
1 and Theorems 5–7 of [37], and if assumption A3 holds true, then the error dynamics of
(14) are asymptotically stable, i.e., the error e1(t) in the first equation approaches zero, so do
e2(t), e3(t), . . . . . . , en+1(t) go to zero. Moreover, the error dynamics of (14) are finite-time stable,
i.e., the NLESO converges to (3) within tf > to such that ei = 0, i = 0, 1, . . . ., n + 1 For all t > tf.

To prove it is time-finite convergent, we use the self-stable region (SSR) approach in Reference [33]
to accomplish this task as follows,

Firstly, for simplicity, assume n = 1, then the error dynamics of the NLESO is{ .
e1(t) = e2(t)− β1c1Kα|ω0e1(t)|α−1ω0e1(t)− β1c1Kβ|ω0e1(t)|βω0e1(t)
.
e2(t) = ∆(t)− β2c2Kα|ω0e1(t)|α−1ω0e1(t)− β2c2Kβ|ω0e1(t)|βω0e1(t)

(15)

Define m2(e1, e2) = e2− β1c1Kα|ω0e1(t)|α−1ω0e1(t)− β1c1Kβ|ω0e1|βω0e1 + kq1(e1) sgn(e1) where
q1(e1(t)) is positive definite continuous function, i.e., q1(0) = 0, k > 1. Also, define S =

{e1, e2 : |m2(e1, e2)| ≤ q1(e1)}, assume that there exists (e1, e2) ∈ S, ∀ t > T. According to the structure
of S

e2 − β1c1Kα|ω0e1(t)|α−1ω0e1(t)− β1c1Kβ|ω0e1|βω0e1 + kq1(e1) sgn(e1) ≤ q1(e1)

or
e2 − β1c1Kα|ω0e1(t)|α−1ω0e1(t)− β1c1Kβ|ω0e1|βω0e1 ≤ q1(e1)− kq1(e1) sgn(e1). (16)
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Choose a Lyapunov candidate function V(e1(t)) as

V(e1(t)) =
∫ e1(t)

0
e1(t)de1(t)

Then,

.
V(e1(t)) = e1

de1(t)
dt

= e1

(
e2(t)− β1c1Kα|ω0e1(t)|α−1ω0e1(t)− β1c1Kβ|ω0e1(t)|β.ω0e1(t)

)
. (17)

Substituting (16) in (17), we get

.
V(e1(t)) ≤ |e1|(q1(e1)− kq1(e1) ) ≤ −(k− 1)|e1| q1(e1). (18)

From the positiveness definition of q1(e1) and since k > 1, we conclude that
.

V(e1(t)) is negative
definite. Hence,

t→ ∞ =⇒ e1(t)→ 0

and based on the structure of S
t→ ∞ =⇒ e2(t)→ 0

Let q1(e1) = k1 |e1(t)|α, with k1 > 0 and 0 < α <1. With this choice of q1(e1),
.

V(e1(t)) becomes

.
V(e1(t)) ≤ −r|e1|1+α

From V(e1(t)) =
∫ e1(t)

0 e1(t)de1(t), one can deduce that V =
e2

1
2 or e1 = (2V)

1
2 , and

.
V(e1(t)) gets

its final form as .
V(e1(t)) ≤ −r(2V)

1+α
2 (19)

with r = (k− 1) k1. According to Theorem 1, the error dynamics of (15) is finite-time convergent with

t f ≤
V(e1(t0))

1−α̃

c(1− α̃)

where α̃ = 1+α
2 . �

Remark 1. The proof of the first part of Theorem 3 is based on the Filippov sense, where any discontinuous
differential equation

.
x = v(x), x ∈ Rn, and v is a locally bounded measurable vector function, is replaced by an

equivalent differential inclusion
.
x ∈ V(x) (see Reference [38]). While the second part was proved by self-stable

region approach defined in Definition 1, see Reference [39] and the references therein.

The dynamics of the proposed NLESO given by (10) can be represented in terms of (14) as,

.
x̂1(t) = x̂2(t) + e2(t)−

.
e1(t),.

x̂i(t) = x̂i+1(t) + ei+1(t)−
.
ei(t) , i = 1, . . . , n− 1

.
x̂n(t) = x̂n+1(t) + en+1(t)−

.
en(t) + u(t)

.
x̂n+1(t) = ∆(t)− .

en+1(t)

(20)

The dynamics (20) tells us that the states of the NLESO suffer from observer error dynamics (14).

3.3. Mismatched Disturbance and System of Integrals Chain

The original ESO in the works [2,3] assume that the plant is expressed in the integral chain form
(ICF) satisfying the matched condition (Brunovsky form) [40]. Therefore, its applicability is restricted
to systems which, directly or using a change of variable, can be expressed in the ICF. Performing such
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transformation is not always easy, as mentioned in [41,42], especially if the system has zero-dynamics.
Furthermore, in certain nonlinear systems, the disturbances appear in the system in a different channel
of the control input and hence does not satisfy the matching condition. Consequently, the standard
manipulation of ADRC for this mismatched disturbance is no longer available. For example, assume
the following uncertain nonlinear system,

.
x1(t) = f1(x1(t), x2(t), . . . , xn(t)) + b1d1(t)

...
.
xi(t) = fi(x1(t), x2(t), . . . , xn(t)) + bidi(t)

.
xn(t) = fn(x1(t), x2(t), . . . , xn(t)) + bnu(t) + bndn(t)

y(t) = x1(t)

(21)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T∈ Rn, u ∈ R, y(t) are the states of the system, the control input,

and the system output, respectively. fi, are smooth function and are differentiable and fi(·) 6= 0 for i =
1, 2, . . . , n−1, di(t)∈ R represents the external mismatched disturbance, dn is the matched disturbance.

Therefore, motivated by the successful results of the ESO, it was recently pointed out in
Reference [43] that it is imperative to develop ESO-based control techniques for systems without
assuming the ICF and satisfying the matching condition (the disturbance must appear on the same
channel of the control input, i.e., Brunovsky form). The next theorem is proposed to deal with mismatch
disturbances and uncertainties assuming n = 2 for simplicity and omitting the time variable t from the
dynamic equations for succinctness.

Theorem 3. Consider the second-order affine nonlinear dynamical system with mismatched disturbance
satisfying assumption A2 represented by,

.
x1 = f1(x1, x2) + b1d
.
x2 = f2(x1, x2) + b2u

y = x1

(22)

The above system can be transformed into the nonlinear model satisfying the matching condition (Brunovsky
form) with the state-space given by,

.
x̃1 = x̃2.

x̃2 = f̂ (x̃1, x̃2, x2) + b̂
(

u + d̂
)

y = x̃1

(23)

where f̂ (x1, x2) =
∂ f1(x1,x2)

∂x1
f1(x1, x2) +

∂ f1(x1,x2)
∂x2

f2(x1, x2), b̂ = b2
∂ f1(x1,x2)

∂x2
,

d̂ = (b1
∂ f1(x1, x2)

∂x1
d + b1

.
d)/(b2

∂ f1(x1, x2)

∂x2
).

Remark 2. It must be noted that the matched disturbance d̂ or d̂new is different from the original mismatched
disturbance d of (22) in the sense that, after being transformed into the same channel of the control input, it
is expressed in terms of the dynamic states of the nonlinear system and derivative of the original mismatched
disturbance. In effect, the proposed NLESO will, in real-time manner, estimate and cancel f̂ (x̃1, x̃2, x2) + d̂,
and depending on how well the NLESO estimate the dynamic states of the nonlinear system and the generalized
disturbance, the nonlinear system together with the NLESO will look like a chain of integrals up to the relative
degree ρ of the original uncertain nonlinear system.
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4. Application of The Proposed NLESO in ADRC

The classical active disturbance rejection control (ADRC) proposed by Han [2] is built by
combining the tracking differentiator (TD), the nonlinear state error combination (NLSEF), and the
linear extended state observer (LESO). In this work, an enhanced version of the ADRC(EADRC), which
is called EADRC-NLESO, is illustrated to emphasize that the proposed NLESO is employed in the
design; it consists of a second-order nonlinear differentiator (SOND) [44], an improved nonlinear state
error feedback (INLSEF) controller [45], and the proposed NLESO. In the improved INLSEF controller,
the algorithm uses the sign(.) together with the exponential function, which are integrated as follows:
uINLSEF = uo = Ψ(e) = k(e)T f (e) + uint, where e ∈ Rn is the vector of the state error, defined as

e =
[

e(0) . . . .e(i) . . . . e(n−1)
]T

. In this regard, e(i) is the i-th derivative of the state error defined

as, e(i) = x(i) − z(i). The function k(e) and the function f (e) are defined in Reference [45]. It must be
mentioned that uint = 0 in our work, where integral action in ADRC is almost achieved by the ESO.
Supposedly, the ESO will estimate and cancel online all the errors caused by any kind of discrepancy
in the nonlinear system including the external disturbances. The NLESO (for n = 2) has the following
state-space representation,

.
x̂1 = x̂2(t) + β1c1[Kα|ω0(y− x̂1(t))|αsign(ω0(y− x̂1(t)))+

Kβ|ω0(y− x̂1(t))|β(ω0(y− x̂1(t)))]
.
x̂2 = x̂3(t) + bu + β2c2[Kα|ω0(y− x̂1(t))|αsign(ω0(y− x̂1(t)))+

Kβ|ω0(y− x̂1(t))|β(ω0(y− x̂1(t)))]
.
x̂3 = β3c3[Kα|ω0(y− x̂1(t))|αsign(ω0(y− x̂1(t)))+

Kβ|ω0(y− x̂1(t))|β(ω0(y− x̂1(t)))]

(24)

where x̂(t) = [x̂1(t), x̂2(t), x̂3(t)]
T ∈ R3, is a vector that includes the predictable states of the plant and

the total-disturbance. The coefficients β1 = 3, β2 = 3ωo, β3 = ω2
o , Kα, α, Kβ, c1, c2, c3 and β ∈ R+ are

NLESO design parameters.
Another structure of ADRC was designed to compare the performance of the proposed

EADRC-NLESO with it. It has the same configuration of the EADRC-NLESO, but with LESO instead
of the NLESO; throughout the simulations, it is referred to as EADRC-LESO. Based on the above, the
control signal, which actuates the nonlinear system in the ADRC paradigm, is given by,

v = uo −
x̂3(t)

b
. (25)

It is worthy to mention that other ADRC configurations like those presented in [46–49] can be used in
the comparison, however, the one with the better performance has been used in this work.

5. Simulations Results

As an application of the EADRC, the following numerical simulations include the nonlinear
control of the permanent magnet DC (PMDC) motor shown in Figure 1 with Coulomb friction force
using EADRC. The nonlinear model of the PMDC motor, including the external disturbance, is of a
mismatched type, see (26). Applying Newton’s law and Kirchoff’s law, we get the following equations,{

Jeq
d2θ
dt2 = T − TL − beq

dθ
dt

L di
dt = −Ri + v− e

=


d2θ
dt2 = 1

Jeq

(
Kti− TL − beq

dθ
dt

)
di
dt =

1
L

(
−Ri + v− Kb

dθ
dt

) (26)

where v is the input voltage applied to the motor (Volt), Kb is electromotive force constant (Volt/rad/s),
Kt is the torque constant (N.m/A), R is the electric resistance constant(Ohm), L is the electric
self-inductance (Henry), Jeq is the total-equivalent moment of inertia(kg.m2), Jeq = Jm+ JL/N2, where
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JL is the load moment of inertia (kg.m2), Jm is the motor armature moment of inertia(kg.m2), beq is
the total-equivalent viscous damping of the combined motor rotor and load (N.m/rad/s), beq = bm+
bL/N2, bm is the motor’s rotor damping (N.m/rad/s), and bL is the load viscous damping (N.m/rad/s),
N is the gearbox ratio, TL (N.m) is the load torque applied at the motor side.Energies 2019, 12, x FOR PEER REVIEW 10 of 22 
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Applying the transformation of Appendix A, we get a simplified model for the nonlinear
state-space representation of the PMDC motor expressed in Brunovsky form given by [3],

.
x1 = x2

.
x2 = − R beq+KtKb

L Jeq
x1 −

(L beq+R Jeq)
L Jeq

x2 +
Kt

L Jeq
(v + d)

y = x1/N

(27)

The detailed derivation of (27) can be found in Appendix B. As can be seen, the relative degree
ρ = n. The state x1 is the angular velocity (rad/s) of the PMDC motor before dividing the actual
angular velocity of the motor shaft dθ

dt by the gear ratio N, while the output y is measured after the
gearbox, i.e., y = 1

N x1. The state x2 is the angular acceleration (rad/s2). The equivalent disturbance

at the input is given as d = − L
Kt

.
TL − R

Kt
TL and TL (N.m) is the load torque applied at the motor side.

The load torque is given as

TL =
1
N
(Text + Fcsgn(x1)) (28)

where Fc is the Coulomb friction force [50]; it is a nonlinear function of x1, which is why the system of
(27) is nonlinear, Text is the external disturbance torque, usually of discontinuous type. The values of
the parameters for PMDC motor are [51]: Ra = 0.155, La = 0.82, Kb = 1.185, Kt = 1.188, n = 3.0, Jeq = 0.275,
and beq = 0.392, Fc = 1. The parameters of the proposed EADRC-NLESO are as follows, INLSEF:
k11 = 1.955, k12 = 1.222, k21=0.502, k22 = 3.265, µ1 = 4.925, µ2 = 3.744, α1 = 0.693, α2 = 0.770. The SOND:
a = 0.978, b = 5.587, c = 8.386, σ = 26.5. The NLESO: ωo = 35, Kα = 0.999, α = 0.3013, Kβ = 0.38, β = 0.305,
β1 = 3, β2 =105, β3 = 1225, c1 = 0.5, c2 = 0.125, c3 = 0.0625. While the parameters of the EADRC-LESO
are, INLSEF: k11 = 1.763, k12 = 0.7199, k21= 0.762, k22 = 3.04, µ1 = 8.69, µ2 = 2.35, α1 = 0.688, α2 = 0.644.
The SOND: a = 0.978, b = 5.587, c = 8.386, σ = 26.5. The LESO: ωo = 35, β1 = 105, β2 = 3675, β3 = 42875.

The PMDC controlled by both EADRC-NLESO and EADRC-LESO is tested by applying a
reference angular-velocity equal to 1 rad per second at t = 0 and for Tf = 10 s. To verify “Peaking
Phenomenon”, the initial conditions of both NLESO and LESO were set to x̂1(0) = 0.5, x̂2(0) =

x̂3(0) = 0, and that of the PMDC motor were, x1(0) = x2(0) = x3(0) = 0. The results are shown in
Figures 2 and 3.
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Figure 3. Results of the numerical simulations of the PMDC motor by EADRC-linear extended state
observer (LESO).

For ωo = 35, the output responses of the PMDC motor system of (27) using EADRC-NLESO are
plotted in Figure 2. The angular velocity x1(t) and its estimation x̂1(t) are drawn in Figure 2a, while the
angular acceleration x2(t) and its estimation x̂2(t) are plotted in Figure 2b. The generalized disturbance
x3(t) together with its estimation are depicted in Figure 2c. It can be seen that the estimation using
NLESO is almost guaranteed. For the same ωo, the numerical results of the PMDC motor of (27) are
plotted in Figure 3, but using EADRC-LESO. It was clear that the LESO satisfactorily achieved state
and generalized disturbance estimation, but suffers from “Peaking phenomenon”, where x̂1(t) peaks
to −0.225, x̂2(t) to −13.3, and x3(t) to −139.6, compared to NLESO where x̂1(t) peaks to −0.026, x̂2(t)
to −3.27, and x3(t) did not peak. The underestimation in generalized disturbance x̂3(t) (i.e., x3(t)
does not exactly follow x3(t)) can be treated successfully by increasing ωo, but on the account of noise
filtration. The control signal in EADRC-LESO peaks down to −16 volts and up to 26 volts, whereas it
peaks just to about 16.5 volts in EADRC-NLESO. It is apparent that the peaking in EADRC-NLESO is
much smaller than that of EADRC -LESO.

To investigate the performance of the proposed NLESO to an exogenous disturbances,
an experiment was conducted with an external torque acting as a step disturbance equal to 2 N.m
((2 N.m/3) = 0.666 N.m seen from the rotor side) is applied after the gearbox during the simulation at
t = 5 s using MATLAB Simulink environment. The numerical results are shown in Figure 4. From this
figure, it is easy to verify that both methods cancel the effect of the disturbance on the angular velocity
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efficiently with the EADRC-NLESO exhibiting an undershoot larger than that of the EADRC-LESO
(see Figure 3a, at t = 5). The integration-time-absolute-error (ITAE) performance measure defined as,

ITAE =
∫ 10

0
t× |r− y| dt (29)

where y is the PMDC motor angular velocity output, and r is the reference signal, is used to measure
the performance of both NLESO and LESO at steady-state. Its value in EADRC-LESO is 2.238, and the
ITAE value using EADRC-NLESO is 0.485. It is clear that EADRC-NLESO outperforms EADRC-LESO
significantly. Also, the control signal in the EADRC-LESO had a high peak at the starting and fluctuated
after that until it reached the time of disturbance occurrence, again overshooting to 9.3 volts. On the
other hand, the control signal in EADRC-NLESO overshoots with positive values only and to the half
of that in EADRC-LESO. This leads to an increase of the energy required in the EADRC-LESO case,
where an energy index defined as the integral square of the control signal (u) denoted as ISU is used to
measure how much energy the control scheme requires, i.e.,

ISU =
∫ 10

0
u2dt
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Based on ISU index, the control energy in EADRC-NLESO is 161.600 and 172.922 in EADRC-LESO.
It must be mentioned that a limiter of ∓12 volts has been placed before the PMDC motor to limit the
control signal input within the safe bounds.

Another experiment has been conducted to test the proposed NLESO against measurement noise.
Assume that y(t) has been contaminated by a Gaussian distributed random signal n(t),

yn(t) = y(t) + n(t)

with 36× 10−6 and zero mean and is added using MATLAB Simulink block called random number.
With the same values of the parameters in the above simulations including the bandwidth (ωo),
the results are presented in Figure 5. It can be seen that the noise still exists in the output response of the
EADRC-LESO, while EADRC-NLESO produces a smoother response and suppresses noise evidently.

Finally, we end our simulations by subjecting the PMDC motor of (27) to parameter uncertainties
and test the efficiency of EADRC-LESO, EADRC-NLESO, and compared to each other. The parameters
to be varied are defined in their allowable range as follows,

Jeq = Jeq
(
1 + ∆JδJ

)
, beq = beq(1 + ∆bδb) , R = R(1 + ∆RδR)

where Jeq = 0.275, beq = 0.392, and R = 0.155 are called the nominal values of Jeq, beq, and ∆J , ∆b, and
∆R are the possible relative changes in their respective parameters. Assume that δJ = δb = δR = −1
and let ∆J = 0.2, ∆b = 0.4, and δR = 0.5; the angular velocity of the PMDC motor of (39) using both
EADRC-LESO and EADRC-NLESO are graphed in Figure 6.

To end this section, let us discuss the advantages and disadvantages of using NLESO over LESO
in ADRC configuration. At steady state and for n = 2, the error dynamics in (14) will be zero, i.e.,
.
e1(t) =

.
e2(t) =

.
e3(t) = 0; then, one can find a relationship between error e1(t) in the last equation

of (14) in terms of ∆, β3, c3, and other parameters, e1(t) = ϕ(∆, β3, c3, . . .), where ϕ(.) is a nonlinear
function. The same can be done for e2(t) and e3(t), i.e., e2(t) = γ(∆, β2, . . . .), e3(t) = ϑ(∆, β1, . . . .),
and this makes the errors of the NLESO sensitive to ∆, which is the rate of the generalized disturbance
L(t), while in LESO, the errors are linearly depending on ∆. That explains the jumps in the generalized
disturbance using EADRC-NLESO at the points in the times where L(t) exhibits a sudden increase or
decrease (e.g., sudden external disturbance) or parameter variations in the nonlinear system of the
PMDC motor described in (39). Figures 4a and 6 clarify this reasoning.
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Next, we comment on the peaking phenomenon in both EADRC-LESO and EADRC-NLESO
scenarios; it occurs at the starting when there is an initial condition x̂1(0) for x̂1(t) different from
that of x1(t)(i.e.x̂1(0) 6= x1(0)), this makes the terms in the equations of (14) that depends on ωo, i.e.,
aiω0

i−1 gi(ω0(y(t)− x̂1(t))) very large for some gi’s and with large ω0. This term with a large value
in the right-hand side makes the ESO to produce large fluctuation on its output channels. For example,
when gi(e) = e, that means the ESO acts as a LESO, then the term aiω0

i−1 gi(ω0(y(0)− x̂1(0))) will
have a high value for y(0)− x̂1(0) and large ω0. The nonlinear function of (11) in our proposed NLESO
(10) has a saturation-like behaviour for large e1, in addition to the attenuating factors ci(c1 > c1 >

. . . . . . > cn+1), which explains why our proposed NLESO has a smaller peaking than LESO for the
same ω0. For example, the ω0-dependent term in the i-th equation of (14) can be expressed as

aiω0
i−1ciKα|ω0(y(0)− x̂1(0))|α−1ω0e1(0) + aiω0

i−1ciKβ|ω0(y(0)− x̂1(0))|βω0e1(0)

The Kβ has small value in most cases as compared to Kα, so for the easiness of illustration,
we neglect the second term and the ω0-dependent becomes aiciKα ω0

α+i−1|(y(0)− x̂1(0))|α−1e1(0),
and since α + i− 1 < i, then ω0

α+i−1 < ω0
i in the NLESO for big ω0. For example, assume ω0 = 35,

α = 0.3, n = 2, ρ = 2, c3 = 1/16, Kα = 0.99927, and e1(0) = 1, so |(y(0)− x̂1(0))| = 1. In the
third equation (i = 3), a3 = 1 and the ω0-dependent term, aiciKαω0

2+αe1(0) = 1 × 1
16 × 0.99927

× (35)2+0.3 × 1 = 222.289, whereas the corresponding term in the LESO is (ω0)
3 = (35)3 = 42, 875.

The reduction in the peaking with the proposed saturation-like function gi(.) defined in (11) in our
proposed NLESO of (10) is noteworthy.

The same reasoning can be extended to illustrate why the noise is attenuated using our proposed
NLESO of (10) with the saturation-like function gi(.) defined in (11), where the noise is magnified
to (ω0)

3n(t) in the i-th equation of the LESO of (4). While with our proposed saturation-like
function gi(.) defined in (11), the magnification of the noise n(t) in our proposed NLESO of (10)
is aiciKα ω0

α+i−1|(y(0)− x̂1(0))|α−1, which is proven to be less than (ω0)
3. The results of Figure 5

illustrate this justification.

6. Conclusions

In this paper, a novel saturation-like function has been proposed and employed in the design of
a nonlinear extended state observer used to estimate the states and the generalized disturbance of
any uncertain nonlinear system with mismatch disturbance. Stability analysis based on Lyapunov
principles has shown the asymptotic convergence of the proposed ESO and finite-time stability is
always guaranteed provided that the generalized disturbance is bounded. The advantage of the
proposed ESO is that it produced smaller peaking and had immunity against measurement noise and
parameter variations. All the mathematical investigations and the conducted experiments included in
this paper proved that the proposed ESO presented better performance than the linear ESO for the
mentioned reasons. Employing the proposed ESO in the ADRC configuration provided an excellent
tool to control any uncertain nonlinear system and to counteract the generalized disturbance. As a
future direction, this work can be extended to a general MIMO uncertain nonlinear system and apply
the proposed ESO to non-affine control system like ball-and-beam system.
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Appendix A

Proof of Theorem 2
Differentiate the first equation of (23) w.r.t t along the dynamics of (22) one gets,

..
x1 =

∂ f1(x1, x2)

∂x1

.
x1 +

∂ f1(x1, x2)

∂x2

.
x2 + b1

.
d (A1)

..
x1 =

∂ f1(x1, x2)

∂x1
( f1(x1, x2) + b1d) +

∂ f1(x1, x2)

∂x2
( f2(x1, x2) + b2u) + b1

.
d. (A2)

Rearrange (A2), then,

..
x1 =

∂ f1(x1, x2)

∂x1
f1(x1, x2) +

∂ f1(x1, x2)

∂x2
f2(x1, x2) + b2

∂ f1(x1, x2)

∂x2

u +

 b1
.
d + b1

∂ f1(x1,x2)
∂x1

d

b2
∂ f1(x1,x2)

∂x2

.

(A3)
Then, (A3) is reduced to

..
x1 = f̂ (x1, x2) + b̂

(
u + d̂

)
Let, x̃1 = x1 x̃2 =

.
x1. Then, 

.
x̃1 = x̃2.

x̃2 = f̂ (x̃1, x̃2, x2) + b̂
(

u + d̂
)

y = x̃1

. (A4)

What remained is just x2, and one can find an expression of x2 from the first equation of (22) and
substitute this expression in (A4) to get a matched nonlinear state-space equation in terms of the new
coordinate system x̃1, x̃2. Finally, (A4) is called the canonical form of ADRC (Brunovsky form) [1].

Appendix B

Conversion of nonlinear PMDC motor mismatched model into a Brunovsky form
Let x1 = dθ

dt , x2 = i, then, the mismatched nonlinear mathematical model of the PMDC motor
can be written as { .

x1 = 1
Jeq

(
Ktx2 − TL − beqx1

)
.
x2 = 1

L (−Rx2 + v− Kbx1)
(A5)

Let
x̃1 = x1

x̃2 =
.
x1 =

1
Jeq

(
Ktx2 − TL − beqx1

)
. (A6)

Then, .
x̃1 = x̃2

.
x̃2 =

1
Jeq

(
Kt

.
x2 −

.
TL − beq

.
x1

)
. (A7)

Substituting (A5) into (A7), we get

.
x̃2 = 1

Jeq
[Kt

1
L (−Rx2 + v− Kb x̃1)−

.
TL − beq

1
Jeq

(
Ktx2 − TL − beq x̃1

)
]

= −x2

[
KtR
Jeq L +

beqKt

J2
eq

]
+ x̃1

[
b2

eq

J2
eq
− KtKb

Jeq L

]
+ Kt

Jeq L v +
beq

J2
eq

TL − 1
Jeq

.
TL.

(A8)
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To express (A8) in the new coordinate system (x̃1, x̃2), we need to eliminate x2 from (A8).
From (A6),

x2 =
1
Kt

(
Jeq x̃2 + TL + beq x̃1

)
. (A9)

Substituting (A9) in (A8), we have

.
x̃2 = − 1

Kt

(
Jeq x̃2 + TL + beq x̃1

)[ KtR
Jeq L +

beqKt

J2
eq

]
+ x̃1

[
b2

eq

J2
eq
− KtKb

Jeq L

]
+ Kt

Jeq L v +
beq

J2
eq

TL − 1
Jeq

.
TL

= − R
L x̃2 − R

Jeq L TL −
beqR
Jeq L x̃1 −

beq
Jeq

x̃2 −
beq

J2
eq

TL −
b2

eq

J2
eq

x̃1 +
b2

eq

J2
eq

x̃1 − KtKb
Jeq L x̃1+

Kt
Jeq L v +

beq

J2
eq

TL − 1
Jeq

.
TL

= − R
L x̃2 − R

Jeq L TL −
beqR
Jeq L x̃1 −

beq
Jeq

x̃2 − KtKb
Jeq L x̃1+

Kt
Jeq L v− 1

Jeq

.
TL

= −
(

R
L +

beq
Jeq

)
x̃2 −

(
beqR
Jeq L + KtKb

Jeq L

)
x̃1 +

Kt
Jeq L (v + d)

where d = − R
Kt

TL − L
Kt

.
TL. So,

.
x̃1 = x̃2.

x̃2 = −
(

R
L +

beq
Jeq

)
x̃2 −

(
beqR
Jeq L + KtKb

Jeq L

)
x̃1 +

Kt
Jeq L (v + d)

(A10)

which is exactly the model given by (39) and the load torque is given as TL = Text + Fcsgn(x1).
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