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Abstract: Understanding the capacity fading mechanism of the LiNi0.8Co0.1Mn0.1O2 (NCM811)
cathode materials is crucial for achieving long-lasting lithium-ion batteries with high energy densities.
In this study, we investigated the factors affecting the capacity fading of NCM811 during repeated
cycling at high temperatures. We found that the change in the c-axis length during charging and
discharging is the main cause of the formation and propagation of microcracks in the primary
particles of NCM811. In addition, the electrolyte is decomposed on the microcrack surfaces and,
consequently, by-products are formed on the particle surface, increasing the impedance and resulting
in poor electronic and ionic connectivity between the primary particles of NCM811. In addition,
the transition metals in the NCM811 cathode material are dissolved in the electrolyte from the newly
formed microcrack surface between primary particles. Therefore, the electrolyte decomposition and
transition metal dissolution on the newly formed surface are the major deteriorative effects behind
the capacity fading in NCM811.
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1. Introduction

Thanks to growing concerns about global climate change, the development of environmentally
sustainable energy technology is necessary [1–5]. The utilization of smart-grid systems and long-range
electric vehicles (EVs), for instance, has become popular with regard to their efficient energy
consumption; thus, the need for large-scale energy storage systems for electricity provision and
control has increased significantly [6–9]. To meet these demands, batteries with high energy and power
densities are a crucial prerequisite. Lithium-ion batteries (LIBs) are considered the most promising
candidates owing to their high capacities, low self-discharging rates, and high operating potentials
compared with other electrochemical energy storage devices [10–12].

To improve the energy density of LIBs, many researchers have focused on the development of
cathode materials with high capacities, because the capacity limitation is related to the cathode in most
LIB systems. Among the many cathode materials, nickel rich LiNixCoyMnzO2 (NCM, where x + y +

z = 1, x ≥ 0.8) has been spotlighted as one of the most feasible candidates for next-generation LIBs
because of its high discharge capacity (~200 mAh g−1), low cost, and low toxicity [13,14]. Although
increasing the Ni content in NCM increases the specific discharge capacity, Ni-rich NCM shows
significant performance degradation, which is mostly attributed to cation mixing, surface side reactions,
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and intrinsic structural instability originating from the large volume changes during repeated cycling.
Many solutions to overcome the poor cycle performance have been proposed, including surface
coating, morphology control, and elemental doping [15–20]. Although cation mixing and surface
side reactions can be inhibited by employing the above-mentioned solutions, the microcracks formed
between primary particles, which is one of the main reasons for the poor cycle properties during
repeated cycles at high temperature, remain problematic [21–25]. Many studies related to the effects
of microcracks on the electrochemical performance of LiNi0.85Co0.1Al0.05O2 (lithium nickel cobalt
aluminum oxide, NCA) or NCM have been reported, but the deteriorative effect of the microcracks
on the electrochemical performance of Ni-rich NCM has not been adequately addressed. Therefore,
understanding the negative effects of the microcracks is crucial to improving the cycling performance
of Ni-rich NCM cathode materials.

Thus, we have focused on how the formation of microcracks between the primary particles
affects the capacity fading of NCM811 during repeated charge cycling at high temperatures [26,27].
To understand the deteriorative effect of the microcracks in the secondary particles, a pouch-type full cell
employing Ni-rich NCM cathode materials was prepared, and this cell was galvanostatically charged
and discharged for 600 cycles at 45 ◦C. After 600 cycles, the pouch-type full cell was disassembled,
and the structurally unstable Ni-rich NCM cathode materials were thoroughly analyzed. Finally,
based on the experimental findings, the negative effects of the microcracks in the secondary particles
on the electrochemical performance were identified.

2. Materials and Methods

Materials NCM811 (L&F, Korea) were used as the cathode material without further treatment.
The shape and surface morphology of the NCM811 particles were examined using focused ion beam
environmental scanning electron microscopy (FIB-ESEM, Quanta 3D FEG, FEI), and X-ray diffraction
(XRD, Empyrean, PANalytical) was used for structural analysis. The cross-sectional specimens for
transmission electron microscopy (TEM) measurements were prepared by ion milling (Ion slicer, JEOL,
EM-09100 IS). The specimens were prepared by epoxy embedding, followed by mechanical milling,
and ion milling. TEM (ARM-200F, JEOL) measurements, with a probe Cs aberration corrector (CEOS
GmBH) and energy dispersive spectroscopy (EDS, X-MaxN80TLE, Oxford), were conducted to analyze
the formation of microcracks in the NCM811 particles after cycling.

The electrochemical properties of NCM811 were tested in a pouch-type full cell and a coin-half cell.
The cathode was prepared by casting slurries containing the active material (92 wt%), a conductive
agent (Super P, 4 wt%), and a binder (polyvinylidene difluoride (PVdF), 4 wt%) in N-methylpyrrolidine
(NMP) on an Al foil (15 µm) for both the pouch full cell and coin-half cell. The residual NMP
was removed by drying under vacuum for 12 h at 120 ◦C. A natural graphite anode and a porous
polyethylene membrane were used for full cell fabrication and a lithium metal was used as an anode for
the coin-half cell. In addition, 1.0 M LiPF6 dissolved in ethylene carbonate (EC)/ethyl methyl carbonate
(EMC) (1:2 vol., PANAX Etec Co., Ltd., Nonsan, Korea) containing 3 wt% vinylene carbonate (VC) was
used as the electrolyte for both the full cell and the coin-half cell. The cyclability of the full cell was
tested in a voltage range from 3.0 to 4.2 V under a constant current at 1 C rate and 45 ◦C, and the coin
cell was galvanostatically charged and discharged in a voltage range from 3.0 to 4.3 V (vs. Li/Li+) to
measure the reversible capacity and coulombic efficiency.

3. Results and Discussion

Before the high-temperature cycling tests, the morphology of the NCM811 cathode material
was examined using FIB-ESEM. On the basis of the FIB-ESEM images (Figure 1a), the bare NCM811
particles have a typical spherical shape with an average size of 7 µm (Figure 1a inset) and were formed
by the agglomeration of primary particles with a size of approximately 500 nm. To investigate the
structure of the pristine NCM811, XRD measurements were performed, and the results are shown in
Figure 1b. We observed noticeably separated (006)/(102) and (108)/(110) peaks, which are consistent
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with the typical patterns of an ordered layered structure. Consequently, the pristine NCM811 cathode
materials have the typical α-NaFeO2 layered structure without any structural deformation or defects
with a hexagonal crystal structure in the R-3m space group, as illustrated in the schematic of the
NCM811 crystal structure [28–32].
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Figure 1. The morphology, structural, and electrochemical characteristics of the LiNi0.8Co0.1Mn0.1O2

(NCM811) cathode material. (a) Focused ion beam environmental scanning electron microscopy
(FIB-ESEM) image of NCM811 secondary particles in which primary particles agglomerated into
spheres. (b) X-ray diffraction (XRD) patterns indicating that NCM811 has a layered structure in the
R-3m space group. (c) Electrochemical performance over 600 cycles at 45 ◦C tested in a pouch-type
full cell.

To understand the effect of the microcracks formed between primary particles on the capacity
fading of the NCM811 cathode material during high-temperature cycling tests, a pouch-type full cell
containing the NCM811 cathode material was prepared and galvanostatically charged and discharged
for 600 cycles at 45 ◦C. As expected, the pouch-type full cell employing NCM811 showed poor cycle
performance with a capacity retention of 73.2% of the initial discharge capacity after 600 galvanostatic
cycles at 45 ◦C (Figure 1c). To understand the poor cycle life of NCM811, the pouch-type full cell
was disassembled after 600 cycles, and the cycled NCM811 was analyzed by scanning transmission
electron microscopy (STEM). Figure 2a shows a TEM image of cross-sectioned sample of NCM811
before cycling tests at 45 ◦C. Clearly, the primary particles are densely packed, and there are grain
boundaries between the primary particles. In addition, there are no defects and microcracks. On the
other hand, many cracks are formed and have propagated along the grain boundaries between the
primary particles of the NCM811 cathode material particles after 600 cycles at 45 ◦C, as shown in
Figure 2b, resulting in the poor cycle performance of NCM811.
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Figure 2. Cross-sectional scanning transmission electron microscopy (STEM) images for NCM811 (a)
before cycling (bare) and (b) after 600 cycles at 45 ◦C.

To clarify the main cause of the microcracks between the primary particles of NCM811, in situ
XRD observation was conducted with different cut-off voltages in the charge process. Figure 3a
summarizes the changes in the c-axis with the degree of delithiation. The c-axis had its maximum
value at around x = 0.5 and gradually decreased after x > 0.5. In particular, we found that the length of
c-axis drastically decreased in the voltage range between 4.05 and 4.5 V versus Li/Li+. The change
in the length of the c-axis seems to affect the formation of microcracks [33–37]. From the featured
diffraction patterns of NCM811 in the charge process (Figure 3b), (003) reflection was adopted to ensure
the structural variation in the Figure 3c. During Li+ desertion, peak shift tendency verifies the phase
transition of NCM811 from hexagonal to monoclinic and then back to hexagonal, which was in good
agreement with previous studies [38,39]. To confirm this, coin cells assembled with NCM811 were
galvanostatically charged and discharged for 50 cycles under different charge cut-off voltages of 4.05,
4.30, and 4.50 V versus Li/Li+, respectively. The coin cells were disassembled after the cycling tests,
and the cycled NCM811 cathode materials were analyzed by STEM (Figure 4). A small number of
microcracks were observed on the NCM811 cathode materials that had been charged and discharged
for 50 cycles at a cut-off voltage of 4.05 V, because the length of the c-axis is not significantly changed on
the application of these charging cut-off voltages. On the other hand, many microcracks appeared on
the NCM811 cathode materials that had been charged and discharged for 50 cycles at a cut-off voltage
of 4.50 V, because the length of the c-axis was affected by these charging cut-off conditions. This result
implies that the change in the length of the c-axis strongly affects the formation of microcracks in the
NCM811 cathode materials. Consequently, we believe that the change in the c-axis during charging
and discharging is one of the main causes of the formation of microcracks in the primary particles of
NCM811 [22,25,33–35].
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To confirm the effects of the formation and propagation of microcracks on the capacity fading of
NCM811 during repeated cycling, the chemical component of the surface microcracks was analyzed
using EDS measurements for the cycled cathode. As displayed in Figure 5, fluorine was detected on
the surface formed by the propagation of microcracks between the primary particles. The fluorine
seems to originate from the decomposition of the lithium hexafluorophosphate (LiPF6) salt in the liquid
electrolyte that penetrated the newly formed microcracks between primary particles during repeated
cycling, indicating that the new microcrack surface can promote the decomposition of the liquid
electrolyte. It is well known that the by-products formed on the surface of cathode materials by the
decomposition of the liquid electrolyte result in poor ionic and electronic connectivity in the primary
particle subsurface [35,36]. Therefore, we believe that the by-products formed on the subsurface
exposed by the propagation of the microcracks between primary particles would give rise to increased
impedance and poor electronic and ionic connectivity between the primary particles of NCM811,
leading to serious capacity fading.
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for NCM811 after 600 cycles at 45 ◦C: (a) STEM image of the microcracks, and EDS mapping images of
(b) overall, (c) Ni, and (d) F species.
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Generally, transition metal dissolution from cathode materials can be confirmed by comparison of
the contrast differences in the STEM images. In addition, it is possible to make a relative quantitative
analysis of the transition metal dissolution by comparison of the degree of contrast because the ion
beam is scattered from the prepared sample in dark-field STEM mode [40,41]. To clarify the effects
of the exposure of the subsurface by microcrack propagation on the dissolution of transition metal
from the cathode materials, the subsurface microcracks were analyzed by STEM. Figure 6 shows
STEM images of the surface of the pristine primary particles and the surface formed by microcrack
propagation. Compared with the surface of the pristine primary particles, the atomic column contrast
was not uniform along the microcrack surface, indicating transition metal dissolution from the cycled
NCM811. Figure 7 shows the brightness profile at the surface of the pristine primary particles and
the microcracks based on the STEM observation. As expected, the contrast values obtained from the
STEM analysis of the surface of the pristine primary particles are much more uniform, whereas the
contrast values obtained from the newly formed surfaces by the microcrack propagation fluctuate
significantly. Interestingly, such significant differences were obviously observed in the atomic column
from the surface to ninth atomic inner layer. This result reveals that the transition metals in the cathode
materials are dissolved into the electrolyte from the newly formed microcrack surface between the
primary particles. Therefore, the electrolyte decomposition and transition metal dissolution on the
surface formed by microcrack propagation between the primary particles is the main cause of NCM811
capacity fading.
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4. Conclusions

The factors affecting the capacity fading of the NCM811 cathode material were investigated.
We found that there was a significant change in the c-axis length during charging and discharging,
and this is one of the main causes of the formation and propagation of microcracks between the primary
particles of NCM811. The formation and propagation of microcracks continuously produces new
surfaces on the surface and interior of the NCM811 cathode material.

In addition, the electrolyte was decomposed on the microcrack surfaces, and the by-products from
electrolyte decomposition form on this surface, leading to an increase in the impedance and resulting in
poor electronic and ionic connectivity between the primary particles of NCM811. In addition, transition
metals in the NCM811 cathode materials are dissolved into the electrolyte from the microcrack surfaces
between primary particles. As a result, the electrolyte decomposition and transition metal dissolution
on the newly formed surface are the main causes of NCM811 capacity fading.

We have shown that microcracks were formed between the primary particles during cycling,
and the organic liquid electrolyte eventually penetrated and was decomposed at the newly formed
surfaces of the primary particles. This side reaction resulted in an increase in the internal resistance and
additional transition metal dissolution from the interior of the active material particles. In addition,
we have demonstrated the main reason for the formation of microcracks was the change in the c-axis
lattice parameter of NCM811 during de-lithiation, particularly the rapid change after the extraction
of 0.5 Li+. These detrimental and complex effects have a significant influence on the electrochemical
capability of NCM811. Consequently, to obtain better performance and a long battery life of Ni-rich
NCM, the interparticle strength and structural stability must be improved.
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