
energies

Article

A Study on Deep Neural Network-Based DC Offset
Removal for Phase Estimation in Power Systems

Sun-Bin Kim 1, Vattanak Sok 1, Sang-Hee Kang 1 , Nam-Ho Lee 2 and Soon-Ryul Nam 1,*
1 Department of Electrical Engineering, Myongji University, Yongin 17058, Korea;

sbk9906@naver.com (S.-B.K.); vattanaksboy@gmail.com (V.S.); shkang@mju.ac.kr (S.-H.K.)
2 Korea Electric Power Research Institute, Daejeon 34056, Korea; namho.lee@kepco.co.kr
* Correspondence: ptsouth@mju.ac.kr; Tel.: +82-31-330-6361

Received: 25 March 2019; Accepted: 26 April 2019; Published: 28 April 2019
����������
�������

Abstract: The purpose of this paper is to remove the exponentially decaying DC offset in fault current
waveforms using a deep neural network (DNN), even under harmonics and noise distortion. The
DNN is implemented using the TensorFlow library based on Python. Autoencoders are utilized
to determine the number of neurons in each hidden layer. Then, the number of hidden layers is
experimentally decided by comparing the performance of DNNs with different numbers of hidden
layers. Once the optimal DNN size has been determined, intensive training is performed using
both the supervised and unsupervised training methodologies. Through various case studies, it was
verified that the DNN is immune to harmonics, noise distortion, and variation of the time constant of
the DC offset. In addition, it was found that the DNN can be applied to power systems with different
voltage levels.

Keywords: autoencoder; exponentially decaying DC offset; deep neural networks (DNNs); optimal
size; supervised training; Tensorflow; unsupervised training

1. Introduction

While the consumption of electrical energy is increasing day by day, other factors such as power
quality and reliability also need to be improved. Protective devices have been improved dramatically
as time has passed by to protect power systems and to provide continuous power supply to users.
However, variation of current magnitude, known as DC offset, sometimes confuses the operation of
protective devices, which leads to miss-operation or unnecessary power outage due to the inaccuracy
of current phasor estimation, which is the fundamental for operating modern protective devices.
In order to get better accuracy estimation, this paper proposes a method for constructing, training, and
testing a deep neural network (DNN) for removing the exponentially decaying DC offset in the current
waveform when a power system fault occurs.

Background

In recent decades, various algorithms and methods have been proposed to deal with the DC offset
problem [1–17]. An approach to remove the DC offset from fault current waveforms is to modify
their discrete Fourier transform (DFT) in the phasor domain [2–11]. Most phasor-domain algorithms
remove DC offset by analyzing the relationship between the real and imaginary parts of the phasor. By
taking advantages of the superior performance of the DFT, phasor-domain algorithms can effectively
eliminate DC offset and provide smooth transient response. These algorithms are also robust against
noise, but the disadvantage is that the phasor estimation needs more than one cycle.

Another approach is to remove the DC offset directly in the time domain [12–17]. Most time-domain
algorithms significantly remove the DC offset faster than phasor-domain algorithms. Phasor estimation

Energies 2019, 12, 1619; doi:10.3390/en12091619 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2801-0783
http://dx.doi.org/10.3390/en12091619
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/9/1619?type=check_update&version=2

Energies 2019, 12, 1619 2 of 19

can also be achieved in the time domain, either simultaneously with or directly after removing the
DC offset [12–14]. These methods provide a fast response, but are prone to errors when the fault
current waveform contains high-frequency components. To overcome this drawback, some algorithms
remove the DC offset in the time domain, then apply the DFT for phasor estimation [15–17]. Similar to
phasor-domain algorithms, these new algorithms effectively eliminate DC offset. However, the time
delay imposed by performing the DC offset removal and DFT leads to taking more than one cycle to
estimate the phasor.

In order to eliminate the time delay while removing the DC offset in the time domain, the DNN
method has been proposed in this paper. The DNN output is the signal of current waveform after
removing the DC offset without any time delay. The non-DC offset output is then applied as an input
for DFT-based phasor estimation algorithm. In addition to the nonlinearity of the DC offset, the phasor
estimation accuracy is usually affected by random noise, which is frequently caused by the analog to
digital conversion (ADC) process [18]. As DNN is one of the most effective solutions for nonlinear
applications [19–23], it will be chosen to deal with the nonlinearity of DC offset. In this study, in order
to improve the training speed through parallel computation [24], a CPU NVIDIA GTX 1060 graphics
processing unit has been used for training the DNN.

The details of proposed method, experiment procedures, and results will be discussed in the
following sections. Section 2 will explain the preparation of the training data, while the structure and
DNN training will be demonstrated in Section 3. The results and conclusion are provided in Sections 4
and 5, respectively.

2. Data Acquisition

There are four stages of training data preparation: data generation, moving window formation,
normalization, and random shuffling. As the training datasets have a considerable influence on the
performance of DNN, there should be a sufficient amount of data of the required quality, such that the
training process can find a good local optimum that satisfies every training dataset given to the DNN.
In this study, the theoretical equations for each component (DC offset, harmonics, and noise) were
modeled using Python code and training data were acquired directly through iterative simulations.

2.1. Data Generation

We modeled a simple single-phase RL circuit (60 Hz) to simulate power system faults with DC
offset, harmonics, and noise based on theoretical equations. It was designed to manually determine
the time constant, fault inception angle, number of harmonics, and amount of noise. The modeling
result is then compared with that of PSCAD/EMTDC simulation. The results show that the modeling
single-phase RL (60 Hz) is adequate to apply for simulation based on the theorical condition.

2.1.1. Exponentially Decaying DC Offset

It is well known that DC offset occurs in current waveform during faults in a power system. The
fault current with DC offset after fault inception time t0 is given in (1), and its illustration is shown in
Figures 1 and 2.

i(t) =
Em

Z
sin(ω(t− t0) + α−φ) +

(
i
(
t−0

)
−

Em

Z
sin(α−φ)

)
e−

(t−t0)
τ , (1)

where φ is the angle of the RL circuit, which is near to 90◦; and α is the inception angle.
A sudden increase in current causes a discontinuous section in the waveform. However, according

to Faraday’s Law of Induction, the current flowing in the line cannot change instantaneously in the
presence of line inductance. This is the main cause of the DC offset, and the initial value of the DC
offset depends on the fault inception angle, while its decay rate depends on the time constant of the
power system. Particularly, Figure 2b demonstrates fault current when the inception angle is 90◦

and its waveform is similar to fault current waveform without DC offset. Assuming that there is no

Energies 2019, 12, 1619 3 of 19

current just before the fault inception time
(
i
(
t−0

)
= 0

)
, the DC offset given in (1) is almost zero because

sin(α−φ) is near to zero.Energies 2019, 12, x FOR PEER REVIEW 3 of 19

 82

Figure 1. Current increasing during fault occurs at t0 (fault inception angle 0˚). 83

 84
Figure 2. Exponentially decaying DC offset at different fault inception angles: (a) fault inception angle 85
of 180˚; (b) fault inception angle of 90˚. 86

A sudden increase in current causes a discontinuous section in the waveform. However, 87
according to Faraday’s Law of Induction, the current flowing in the line cannot change 88
instantaneously in the presence of line inductance. This is the main cause of the DC offset, and the 89
initial value of the DC offset depends on the fault inception angle, while its decay rate depends on the 90
time constant of the power system. Particularly, Figure 2b demonstrates fault current when the 91
inception angle is 90˚ and its waveform is similar to fault current waveform without DC offset. 92
Assuming that there is no current just before the fault inception time (𝑖(𝑡) = 0), the DC offset given 93
in (1) is almost zero because sin(𝛼 − 𝜙) is near to zero. 94

2.1.2. Harmonics 95
Harmonics are defined in the works of [25] as sinusoidal components of a periodic wave or 96

quantity having a frequency that is an integral multiple of the fundamental frequency, and can be 97
expressed as follows: 98 𝑖 (𝑡) = 𝐴 sin (𝑛𝜔𝑡 − 𝜃), (2)

where n is the harmonic order and An is its amplitude. The second, third, fourth and fifth harmonic 99
components were considered in this paper to maintain an acceptable training speed. 100

2.1.3. Additive Noise 101
There are many types of noise interference; however, the typical noise type in power system 102

measurements is quantization noise [26] in AD conversion. As noise components have no specified 103
frequency, it was approximated as additive Gaussian white noise (AGWN) and the amount of noise 104
was adjusted by setting the signal-to-noise ratio (SNR), which can be expressed as follows: 105 𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔 𝐴 𝐴⁄ . (3)

Figure 1. Current increasing during fault occurs at t0 (fault inception angle 0◦).

Energies 2019, 12, x FOR PEER REVIEW 3 of 19

 82

Figure 1. Current increasing during fault occurs at t0 (fault inception angle 0˚). 83

 84
Figure 2. Exponentially decaying DC offset at different fault inception angles: (a) fault inception angle 85
of 180˚; (b) fault inception angle of 90˚. 86

A sudden increase in current causes a discontinuous section in the waveform. However, 87
according to Faraday’s Law of Induction, the current flowing in the line cannot change 88
instantaneously in the presence of line inductance. This is the main cause of the DC offset, and the 89
initial value of the DC offset depends on the fault inception angle, while its decay rate depends on the 90
time constant of the power system. Particularly, Figure 2b demonstrates fault current when the 91
inception angle is 90˚ and its waveform is similar to fault current waveform without DC offset. 92
Assuming that there is no current just before the fault inception time (𝑖(𝑡) = 0), the DC offset given 93
in (1) is almost zero because sin(𝛼 − 𝜙) is near to zero. 94

2.1.2. Harmonics 95
Harmonics are defined in the works of [25] as sinusoidal components of a periodic wave or 96

quantity having a frequency that is an integral multiple of the fundamental frequency, and can be 97
expressed as follows: 98 𝑖 (𝑡) = 𝐴 sin (𝑛𝜔𝑡 − 𝜃), (2)

where n is the harmonic order and An is its amplitude. The second, third, fourth and fifth harmonic 99
components were considered in this paper to maintain an acceptable training speed. 100

2.1.3. Additive Noise 101
There are many types of noise interference; however, the typical noise type in power system 102

measurements is quantization noise [26] in AD conversion. As noise components have no specified 103
frequency, it was approximated as additive Gaussian white noise (AGWN) and the amount of noise 104
was adjusted by setting the signal-to-noise ratio (SNR), which can be expressed as follows: 105 𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔 𝐴 𝐴⁄ . (3)

Figure 2. Exponentially decaying DC offset at different fault inception angles: (a) fault inception angle
of 180◦; (b) fault inception angle of 90◦.

2.1.2. Harmonics

Harmonics are defined in the works of [25] as sinusoidal components of a periodic wave or
quantity having a frequency that is an integral multiple of the fundamental frequency, and can be
expressed as follows:

in(t) = An sin(nωt− θ), (2)

where n is the harmonic order and An is its amplitude. The second, third, fourth and fifth harmonic
components were considered in this paper to maintain an acceptable training speed.

2.1.3. Additive Noise

There are many types of noise interference; however, the typical noise type in power system
measurements is quantization noise [26] in AD conversion. As noise components have no specified
frequency, it was approximated as additive Gaussian white noise (AGWN) and the amount of noise
was adjusted by setting the signal-to-noise ratio (SNR), which can be expressed as follows:

SNRdB = 10·log
(
Asignal/Anoise

)
. (3)

The noise component will disrupt the normal operation of digital filtering algorithms, as discussed
in earlier sections.

2.1.4. Simulation

On the basis of the theories discussed above, we modeled a simple RL circuit in Python code
using NumPy for the simulation of current waveforms. Then, we iterated over the parameters shown
in Table 1 to obtain a range of situations that can occur in a power system. As shown in Table 1, the

Energies 2019, 12, 1619 4 of 19

total number of performing simulations is 6480. For simple rehearsal training, the parameters are
selected less strictly to maintain an acceptable training speed.

Table 1. Parameters for generating the training datasets. SNR—signal-to-noise ratio.

Parameter Values

Time constant [ms] 10
60

20
70

30
80

40
90

50
100

Fault inception angle [◦] 0 90 180 −90
2nd Harmonics ratio [%] 0 10 20
3rd Harmonics ratio [%] 0 7 14
4th Harmonics ratio [%] 0 5 10
5th Harmonics ratio [%] 0 3 6

SNR [dB] 25 40

The validation datasets were generated using the same methodology as the training datasets;
however, the validation datasets do not include any of the training datasets. Their generation was
conducted by iterating over the parameters given in Table 2.

Table 2. Parameters for generating the validation datasets.

Parameter Values

Time constant [ms] 25 32 47
Fault inception angle [◦] 45 92 135
2nd Harmonics ratio [%] 15 18
3rd Harmonics ratio [%] 7 9
4th Harmonics ratio [%] 2 4
5th Harmonics ratio [%] 0.5 1

SNR [dB] 25

2.2. Pre-Processing

Pre-processing includes moving window formation, normalization, and random shuffling. This
process was carried out to generate training data in a form suitable for implementing a DNN. In this
paper, the DNN was planned to reconstruct an output of one cycle corresponding to the fundamental
current waveform when the DNN received one cycle of the current waveform including DC offset,
harmonics, and noise. As 64 samples/cycle was decided as the sampling rate, the size of the input
and output layers of the DNN was also determined to be 64. After performing 6480 simulations, we
used the moving window technique to prepare the training datasets. Because each simulation lasted
0.4 s with a sampling frequency of 3840 Hz (64 samples/cycle), the total number of training datasets
was 9,545,040.

Next, we performed data normalization such that every training data lay between −1.0 and +1.0.
This was done so that the final DNN could be generally applied to different power systems under
different conditions (voltage level, source impedance, etc.) [27]. For normalization, every value in the
input data was divided by the maximum absolute value and the same procedure was applied to the
labels. Finally, we randomly shuffled the entire datasets so that we could perform training not focused
on specific data. If random shuffling is not performed, divided mini-batches in the stochastic gradient
descent (SGD) algorithm would have high variance, leading to the cost minimizing process becoming
unstable [28].

3. Design of a DNN and Its Training

The size of a DNN is decided by the number of hidden layers and the number of neurons in
each layer. Generally, DNNs tend to have better performance when their size is larger [29]; however,
too many layers and neurons may induce the DNN to overfit on the training datasets, leading to it

Energies 2019, 12, 1619 5 of 19

being inappropriate for applications in different environments. Thus, the size of a DNN should be
determined carefully to ensure its generality. In this study, we used autoencoders for determining
the number of neurons in each hidden layer. Then, the number of hidden layers was experimentally
decided by comparing the performance of DNNs with different numbers of hidden layers.

In addition to contributing to the determination of the number of neurons in each layer, the
autoencoder also plays a significant role in pre-training [30]. By using autoencoders for pre-training,
we can start training from well-initialized weights, so that it is more likely to reach better local optima
faster than the training process without pre-training. In other words, pre-training contributes to an
improvement in training efficiency.

3.1. Autoencoder

The autoencoder can be described in brief as a self-copying neural network used for unsupervised
feature extraction. The autoencoder consists of two parts: the encoding layer and the decoding layer. It
is possible to restore the original input using only the features extracted by a well-trained autoencoder.
This implies that the extracted features are distinct characteristics representing the original input.
Also, we can see that these features may reflect nonlinear characteristics of the input, as the activation
function of the encoding layer is selected to be a rectified linear unit (ReLU) function. After one
autoencoder is trained sufficiently, we can train the second autoencoder using the extracted features
from the first autoencoder as an input. By repeating this process, we can achieve the gradational and
multi-dimensional features of the original input. After training several autoencoders in this way, the
encoding layers of every trained autoencoder are stacked, known as stacked autoencoders.

3.2. Training Scenario of a DNN

Figure 3 shows an overall process of the DNN training for this simulation. For every training step,
the same cost function, optimizer, and training algorithm are utilized.

Energies 2019, 12, x FOR PEER REVIEW 5 of 19

descent (SGD) algorithm would have high variance, leading to the cost minimizing process becoming 135
unstable [28]. 136

3. Design of a DNN and its Training 137
The size of a DNN is decided by the number of hidden layers and the number of neurons in each 138

layer. Generally, DNNs tend to have better performance when their size is larger [29]; however, too 139
many layers and neurons may induce the DNN to overfit on the training datasets, leading to it being 140
inappropriate for applications in different environments. Thus, the size of a DNN should be 141
determined carefully to ensure its generality. In this study, we used autoencoders for determining the 142
number of neurons in each hidden layer. Then, the number of hidden layers was experimentally 143
decided by comparing the performance of DNNs with different numbers of hidden layers. 144

In addition to contributing to the determination of the number of neurons in each layer, the 145
autoencoder also plays a significant role in pre-training [30]. By using autoencoders for pre-training, 146
we can start training from well-initialized weights, so that it is more likely to reach better local optima 147
faster than the training process without pre-training. In other words, pre-training contributes to an 148
improvement in training efficiency. 149

3.1. Autoencoder 150
The autoencoder can be described in brief as a self-copying neural network used for 151

unsupervised feature extraction. The autoencoder consists of two parts: the encoding layer and the 152
decoding layer. It is possible to restore the original input using only the features extracted by a well-153
trained autoencoder. This implies that the extracted features are distinct characteristics representing 154
the original input. Also, we can see that these features may reflect nonlinear characteristics of the input, 155
as the activation function of the encoding layer is selected to be a rectified linear unit (ReLU) function. 156
After one autoencoder is trained sufficiently, we can train the second autoencoder using the extracted 157
features from the first autoencoder as an input. By repeating this process, we can achieve the 158
gradational and multi-dimensional features of the original input. After training several autoencoders 159
in this way, the encoding layers of every trained autoencoder are stacked, known as stacked 160
autoencoders. 161

3.2. Training Scenario of a DNN 162
Figure 3 shows an overall process of the DNN training for this simulation. For every training step, 163

the same cost function, optimizer, and training algorithm are utilized. 164

 165
Figure 3. Deep neural network (DNN) training process. AE—autoencoder. 166 Figure 3. Deep neural network (DNN) training process. AE—autoencoder.

Root mean square deviation (RMSD) is used as the cost function, as given in (4):

Cost =

√√√ 64∑
i=1

(Outputi − Labeli)
2
/

nsamples. (4)

Energies 2019, 12, 1619 6 of 19

Among several optimizers offered in the TensorFlow library [31], the Adam optimizer was selected.
This optimizer is a mixture of the RMSProp optimizer and the Momentum optimizer, which based on a
general gradient descent (GD) algorithm. In the training loop, the RMSProp optimizer takes a different
number of update values for each weight, which makes the training process more adaptive. This helps
accelerate the training speed and refine the training process. The Momentum optimizer adds inertia to
the weight update, to accelerate the convergence speed and allow the possibility of escape from bad
local minima. The Adam optimizer is considered as one of the most efficient tools for achieving our
purpose, as it combines the best features of both optimizers. The Adam optimizer is very effective,
straight forward, requires little memory, is well suited for problems that are large in terms of data or
parameters, and is appropriate for problems with noisy or sparse gradients [32].

3.2.1. Pre-Training Hidden Layers

Selecting a method to train hidden layers is significant for DNN. There are many techniques
available such as an autoencoder, principal component analysis (PCA), missing values ratio, low
variance filter, and others. However, the goal of this paper is to increase the accuracy of phase
estimation, so the autoencoder is selected as it can replicate the structure of original data, and its
performance is very accurate [33]. The key point regarding this process is the necessity of training an
autoencoder sufficiently before moving on to the next autoencoder. If an autoencoder is not trained
sufficiently, a certain amount of error would exist that would be delivered to the next autoencoder,
causing cascading errors. In short, the pre-training is useless if the autoencoders are not properly
trained. On this basis, we determined the number of neurons in hidden layers.

In layer-wise training shown in Figure 4, several autoencoders were implemented with different
numbers of neurons. After training (unsupervised training using input as label), the training accuracy
is compared to select the optimal size of the layer. Although more neurons give better performance in
a neural network, there is a limit to the number of such neurons, beyond which the reconstructing
performance of the autoencoder would not be improved further. In addition, the number of neurons in
each layer may be different from the input size to prevent overfitting.

Energies 2019, 12, x FOR PEER REVIEW 6 of 19

Root mean square deviation (RMSD) is used as the cost function, as given in (4): 167 𝐶𝑜𝑠𝑡 = ∑ (𝑂𝑢𝑡𝑝𝑢𝑡 − 𝐿𝑎𝑏𝑒𝑙) 𝑛 . (4)

Among several optimizers offered in the TensorFlow library [31], the Adam optimizer was 168
selected. This optimizer is a mixture of the RMSProp optimizer and the Momentum optimizer, which 169
based on a general gradient descent (GD) algorithm. In the training loop, the RMSProp optimizer 170
takes a different number of update values for each weight, which makes the training process more 171
adaptive. This helps accelerate the training speed and refine the training process. The Momentum 172
optimizer adds inertia to the weight update, to accelerate the convergence speed and allow the 173
possibility of escape from bad local minima. The Adam optimizer is considered as one of the most 174
efficient tools for achieving our purpose, as it combines the best features of both optimizers. The Adam 175
optimizer is very effective, straight forward, requires little memory, is well suited for problems that 176
are large in terms of data or parameters, and is appropriate for problems with noisy or sparse 177
gradients [32]. 178

3.2.1. Pre-Training Hidden Layers 179
Selecting a method to train hidden layers is significant for DNN. There are many techniques 180

available such as an autoencoder, principal component analysis (PCA), missing values ratio, low 181
variance filter, and others. However, the goal of this paper is to increase the accuracy of phase 182
estimation, so the autoencoder is selected as it can replicate the structure of original data, and its 183
performance is very accurate [33]. The key point regarding this process is the necessity of training an 184
autoencoder sufficiently before moving on to the next autoencoder. If an autoencoder is not trained 185
sufficiently, a certain amount of error would exist that would be delivered to the next autoencoder, 186
causing cascading errors. In short, the pre-training is useless if the autoencoders are not properly 187
trained. On this basis, we determined the number of neurons in hidden layers. 188

 189
Figure 4. Layer-wise training of a DNN using autoencoders to determine the optimal number of 190
neurons in each layer (optimal layer size). 191

In layer-wise training shown in Figure 4, several autoencoders were implemented with different 192
numbers of neurons. After training (unsupervised training using input as label), the training accuracy 193
is compared to select the optimal size of the layer. Although more neurons give better performance in 194
a neural network, there is a limit to the number of such neurons, beyond which the reconstructing 195
performance of the autoencoder would not be improved further. In addition, the number of neurons 196
in each layer may be different from the input size to prevent overfitting. 197

After the size of the first autoencoder is determined, the same procedure is repeated on the 198
second autoencoder; the extracted features from the first autoencoder are used as an input. These steps 199
are repeated several times until there is no further noticeable improvement in the reconstruction 200
performance. 201

Figure 4. Layer-wise training of a DNN using autoencoders to determine the optimal number of
neurons in each layer (optimal layer size).

After the size of the first autoencoder is determined, the same procedure is repeated on
the second autoencoder; the extracted features from the first autoencoder are used as an input.
These steps are repeated several times until there is no further noticeable improvement in the
reconstruction performance.

3.2.2. Pre-Training Output Layer

The output layer is known as the regression layer in this study, because we are performing
regression through the DNN, not classification. Training an output layer is identical to training an

Energies 2019, 12, 1619 7 of 19

autoencoder, except for the activation function. For an autoencoder, the ReLU function was used
to reflect nonlinear characteristics in the extracted features. However, ReLU cannot be used as an
activation function for the output layer, as ReLU only passes positive values and cannot express
negative values. We aim to obtain a sinusoidal current waveform containing negative values, from
the output layer; thus, the output layer was set as a linear layer, meaning that it has no activation
function. By setting the output layer as a linear layer, it becomes possible to express negative values,
and training can proceed. As the signal without interference (DC offset, harmonics, and noise) was
used as a label, the training process of the output layer is supervised.

3.2.3. Supervised Fine Tuning

DNN training includes the input layer, hidden layers, and output layer. After completing the
pre-training of each layer, every layer is stacked together. To improve the performance of the DNN, it
is necessary to connect the pre-trained layers naturally, and to adjust the pre-trained weights precisely
while taking every layer into account. The DNN is optimized using this process, which is called
supervised fine tuning.

3.3. Determination of the DNN Size

To determine the DNN size including the number of neurons in each layer and the number of
hidden layers, we used partial datasets instead of the whole datasets, because using 9,545,040 datasets
would be time-consuming and ineffective and, as the purpose of this step is investigation of the
reconstruction ability of autoencoders with different sizes, there would be no issue in using partial
datasets. The validation datasets were used as the partial datasets to determine the DNN size.

The DNN size was decided according to an experimental procedure based on applying the training
process repeatedly. We implemented DNNs with different numbers of hidden layers, so that we could
determine the optimal number of layers by analyzing the training results, similar to the determination
of the number of neurons in each layer. After completing the determination of the DNN size, we
re-initialized all weights before the pre-training process.

3.3.1. Number of Neurons in Each Layer

As described in Section 3.2.1, for the first hidden layer, we implemented autoencoders with a
different number of neurons and recorded the average cost of each epoch during training. For the first
hidden layer, we implemented autoencoders with different sizes and recorded the average cost of each
epoch during training. Figure 5 shows the effect of the number of neurons on the cost reduction. In
every case, regardless of the number of neurons, there was no significant change in cost after about
150 epochs. However, the point of convergence differed depending on the size. In fact, except for
sizes 10 and 20, every other case converged to a similar cost value. This implies that 30 neurons
may be an adequate number for AE1. To confirm this, we analyzed the training accuracy of each
case by calculating the maximum cost, average cost, and its standard deviation. Figures 6 and 7
show the waveforms corresponding to the maximum RMSD for different sizes of AE1. The results of
experimental training for AE1 are summarized in Table 3. From the cost reduction curve shown in
Figure 5, we expected that AE1 with 30 neurons would be optimal. However, from the RMSD analysis
given in Table 3, it was found that AE1 with 50 neurons would be optimal. With more than 40 neurons,
the RMSD started to fall within the acceptable range.

Energies 2019, 12, 1619 8 of 19

Energies 2019, 12, x FOR PEER REVIEW 7 of 19

3.2.2. Pre-Training Output Layer 202
The output layer is known as the regression layer in this study, because we are performing 203

regression through the DNN, not classification. Training an output layer is identical to training an 204
autoencoder, except for the activation function. For an autoencoder, the ReLU function was used to 205
reflect nonlinear characteristics in the extracted features. However, ReLU cannot be used as an 206
activation function for the output layer, as ReLU only passes positive values and cannot express 207
negative values. We aim to obtain a sinusoidal current waveform containing negative values, from 208
the output layer; thus, the output layer was set as a linear layer, meaning that it has no activation 209
function. By setting the output layer as a linear layer, it becomes possible to express negative values, 210
and training can proceed. As the signal without interference (DC offset, harmonics, and noise) was 211
used as a label, the training process of the output layer is supervised. 212

3.2.3. Supervised Fine Tuning 213
DNN training includes the input layer, hidden layers, and output layer. After completing the 214

pre-training of each layer, every layer is stacked together. To improve the performance of the DNN, 215
it is necessary to connect the pre-trained layers naturally, and to adjust the pre-trained weights 216
precisely while taking every layer into account. The DNN is optimized using this process, which is 217
called supervised fine tuning. 218

3.3. Determination of the DNN Size 219
To determine the DNN size including the number of neurons in each layer and the number of 220

hidden layers, we used partial datasets instead of the whole datasets, because using 9,545,040 datasets 221
would be time-consuming and ineffective and, as the purpose of this step is investigation of the 222
reconstruction ability of autoencoders with different sizes, there would be no issue in using partial 223
datasets. The validation datasets were used as the partial datasets to determine the DNN size. 224

The DNN size was decided according to an experimental procedure based on applying the 225
training process repeatedly. We implemented DNNs with different numbers of hidden layers, so that 226
we could determine the optimal number of layers by analyzing the training results, similar to the 227
determination of the number of neurons in each layer. After completing the determination of the DNN 228
size, we re-initialized all weights before the pre-training process. 229

 230

Figure 5. Cost reduction curve of autoencoder 1 (AE1) with different sizes. RMSD—root mean square 231
deviation. 232

Figure 5. Cost reduction curve of autoencoder 1 (AE1) with different sizes. RMSD—root mean
square deviation.

Energies 2019, 12, x FOR PEER REVIEW 8 of 19

3.3.1. Number of Neurons in Each Layer 233
As described in Section 3.2.1, for the first hidden layer, we implemented autoencoders with a 234

different number of neurons and recorded the average cost of each epoch during training. For the first 235
hidden layer, we implemented autoencoders with different sizes and recorded the average cost of 236
each epoch during training. Figure 5 shows the effect of the number of neurons on the cost reduction. 237
In every case, regardless of the number of neurons, there was no significant change in cost after about 238
150 epochs. However, the point of convergence differed depending on the size. In fact, except for sizes 239
10 and 20, every other case converged to a similar cost value. This implies that 30 neurons may be an 240
adequate number for AE1. To confirm this, we analyzed the training accuracy of each case by 241
calculating the maximum cost, average cost, and its standard deviation. Figures 6 and 7 show the 242
waveforms corresponding to the maximum RMSD for different sizes of AE1. The results of 243
experimental training for AE1 are summarized in Table 3. From the cost reduction curve shown in 244
Figure 5, we expected that AE1 with 30 neurons would be optimal. However, from the RMSD analysis 245
given in Table 3, it was found that AE1 with 50 neurons would be optimal. With more than 40 neurons, 246
the RMSD started to fall within the acceptable range. 247

 248

Figure 6. The waveform with the maximum RMSD for different sizes of AE1. 249

 250
Figure 7. The waveform with the maximum RMSD for different sizes of AE1. 251

This result implies that the performance of the autoencoder does not depend entirely on the final 252
cost of training. Among the eight candidates that fall within the desired range of RMSD, 50 neurons 253
are chosen as the size of AE1 because of a desire to spare neurons for AE1 in order to simulate partial 254
datasets rather than the whole datasets. 255

As the size of AE1 was determined to be 50, the size of the first hidden layer of the DNN would 256
also be 50. This is the entire procedure for deciding the hidden layer size. We performed three more 257

Figure 6. The waveform with the maximum RMSD for different sizes of AE1.

Energies 2019, 12, x FOR PEER REVIEW 8 of 19

3.3.1. Number of Neurons in Each Layer 233
As described in Section 3.2.1, for the first hidden layer, we implemented autoencoders with a 234

different number of neurons and recorded the average cost of each epoch during training. For the first 235
hidden layer, we implemented autoencoders with different sizes and recorded the average cost of 236
each epoch during training. Figure 5 shows the effect of the number of neurons on the cost reduction. 237
In every case, regardless of the number of neurons, there was no significant change in cost after about 238
150 epochs. However, the point of convergence differed depending on the size. In fact, except for sizes 239
10 and 20, every other case converged to a similar cost value. This implies that 30 neurons may be an 240
adequate number for AE1. To confirm this, we analyzed the training accuracy of each case by 241
calculating the maximum cost, average cost, and its standard deviation. Figures 6 and 7 show the 242
waveforms corresponding to the maximum RMSD for different sizes of AE1. The results of 243
experimental training for AE1 are summarized in Table 3. From the cost reduction curve shown in 244
Figure 5, we expected that AE1 with 30 neurons would be optimal. However, from the RMSD analysis 245
given in Table 3, it was found that AE1 with 50 neurons would be optimal. With more than 40 neurons, 246
the RMSD started to fall within the acceptable range. 247

 248

Figure 6. The waveform with the maximum RMSD for different sizes of AE1. 249

 250
Figure 7. The waveform with the maximum RMSD for different sizes of AE1. 251

This result implies that the performance of the autoencoder does not depend entirely on the final 252
cost of training. Among the eight candidates that fall within the desired range of RMSD, 50 neurons 253
are chosen as the size of AE1 because of a desire to spare neurons for AE1 in order to simulate partial 254
datasets rather than the whole datasets. 255

As the size of AE1 was determined to be 50, the size of the first hidden layer of the DNN would 256
also be 50. This is the entire procedure for deciding the hidden layer size. We performed three more 257

Figure 7. The waveform with the maximum RMSD for different sizes of AE1.

This result implies that the performance of the autoencoder does not depend entirely on the final
cost of training. Among the eight candidates that fall within the desired range of RMSD, 50 neurons
are chosen as the size of AE1 because of a desire to spare neurons for AE1 in order to simulate partial
datasets rather than the whole datasets.

Energies 2019, 12, 1619 9 of 19

Table 3. Root mean square deviation (RMSD) analysis (autoencoder 1 (AE1)).

Number of Neurons Maximum Average Standard Deviation

10 263.3774 95.0713 54.2323
20 125.2946 7.5627 5.3217
30 34.1716 6.5513 0.7282
40 17.7876 6.5220 0.6824
50 11.7860 6.5247 0.6814
60 14.9845 6.5217 0.6825
70 22.3760 6.5260 0.6838
80 17.8318 6.5221 0.6849
90 26.2250 6.5210 0.6844
100 13.7827 6.5215 0.6821
110 15.7016 6.5884 0.6788

As the size of AE1 was determined to be 50, the size of the first hidden layer of the DNN would
also be 50. This is the entire procedure for deciding the hidden layer size. We performed three more
experiments under the same scenario to determine the size of the next hidden layers and determined
the size of hidden layers as follows: Hidden layer 1:50, Hidden layer 2:50, Hidden layer 3:60, and
Hidden layer 4:50.

3.3.2. Number of Hidden Layers

After the four different sizes of DNNs in TensorFlow are implemented, as shown in Figure 8, each
output layer is trained before performing the fine tuning.

Energies 2019, 12, x FOR PEER REVIEW 9 of 19

experiments under the same scenario to determine the size of the next hidden layers and determined 258
the size of hidden layers as follows: Hidden layer 1:50, Hidden layer 2:50, Hidden layer 3:60, and 259
Hidden layer 4:50. 260

Table 3. Root mean square deviation (RMSD) analysis (autoencoder 1 (AE1)). 261

Number of Neurons Maximum Average Standard Deviation
10 263.3774 95.0713 54.2323
20 125.2946 7.5627 5.3217
30 34.1716 6.5513 0.7282
40 17.7876 6.5220 0.6824
50 11.7860 6.5247 0.6814
60 14.9845 6.5217 0.6825
70 22.3760 6.5260 0.6838
80 17.8318 6.5221 0.6849
90 26.2250 6.5210 0.6844
100 13.7827 6.5215 0.6821
110 15.7016 6.5884 0.6788

3.3.2. Number of Hidden Layers 262
After the four different sizes of DNNs in TensorFlow are implemented, as shown in Figure 8, 263

each output layer is trained before performing the fine tuning. 264

 265

Figure 8. Four DNNs with different numbers of hidden layers. 266

The training process of the output layer was performed by the layer-wise training method, and 267
the training parameters and the training results for each output layer are shown in Figure 9. Every 268
DNN except DNN4 showed a similar training performance regarding the cost reduction. For more 269
precise comparison between different numbers of hidden layers, we performed RMSD analysis, and 270
the results are shown in Figure 10. In Figure 10, DNN1 had the lowest average RMSD; however, DNN2 271
and DNN3 performed better in terms of the maximum and standard deviation error. DNN4 showed 272
the worst performance, even though it had the most hidden layers. 273

 274
Figure 9. Four DNNs with different numbers of hidden layers. 275

Epoch

RM
SD

 v
al

ue

Figure 8. Four DNNs with different numbers of hidden layers.

The training process of the output layer was performed by the layer-wise training method, and
the training parameters and the training results for each output layer are shown in Figure 9. Every
DNN except DNN4 showed a similar training performance regarding the cost reduction. For more
precise comparison between different numbers of hidden layers, we performed RMSD analysis, and
the results are shown in Figure 10. In Figure 10, DNN1 had the lowest average RMSD; however, DNN2
and DNN3 performed better in terms of the maximum and standard deviation error. DNN4 showed
the worst performance, even though it had the most hidden layers.

Energies 2019, 12, x FOR PEER REVIEW 9 of 19

experiments under the same scenario to determine the size of the next hidden layers and determined 258
the size of hidden layers as follows: Hidden layer 1:50, Hidden layer 2:50, Hidden layer 3:60, and 259
Hidden layer 4:50. 260

Table 3. Root mean square deviation (RMSD) analysis (autoencoder 1 (AE1)). 261

Number of Neurons Maximum Average Standard Deviation
10 263.3774 95.0713 54.2323
20 125.2946 7.5627 5.3217
30 34.1716 6.5513 0.7282
40 17.7876 6.5220 0.6824
50 11.7860 6.5247 0.6814
60 14.9845 6.5217 0.6825
70 22.3760 6.5260 0.6838
80 17.8318 6.5221 0.6849
90 26.2250 6.5210 0.6844
100 13.7827 6.5215 0.6821
110 15.7016 6.5884 0.6788

3.3.2. Number of Hidden Layers 262
After the four different sizes of DNNs in TensorFlow are implemented, as shown in Figure 8, 263

each output layer is trained before performing the fine tuning. 264

 265

Figure 8. Four DNNs with different numbers of hidden layers. 266

The training process of the output layer was performed by the layer-wise training method, and 267
the training parameters and the training results for each output layer are shown in Figure 9. Every 268
DNN except DNN4 showed a similar training performance regarding the cost reduction. For more 269
precise comparison between different numbers of hidden layers, we performed RMSD analysis, and 270
the results are shown in Figure 10. In Figure 10, DNN1 had the lowest average RMSD; however, DNN2 271
and DNN3 performed better in terms of the maximum and standard deviation error. DNN4 showed 272
the worst performance, even though it had the most hidden layers. 273

 274
Figure 9. Four DNNs with different numbers of hidden layers. 275

Epoch

RM
SD

 v
al

ue

Figure 9. Four DNNs with different numbers of hidden layers.

Energies 2019, 12, 1619 10 of 19

Energies 2019, 12, x FOR PEER REVIEW 10 of 19

Fine tuning was then conducted to confirm the best-performing DNN. Unlike the layer-wise 276
training, fine tuning is a training process that involves all layers of the DNN; thus, we connected every 277
layer in the DNNs, as shown in Figure 8. The results of the fine tuning are shown in Figures 11 and 278
12. The results of RMSD analysis after fine tuning were significantly different to those from before. In 279
the results before fine tuning, the performance of DNN appeared to be independent of the number of 280
hidden layers. However, comparing the results after fine tuning, the maximum and standard 281
deviation error appeared to decrease as the number of hidden layers increased; DNN3 and DNN4 282
were within an acceptable range of error. Finally, DNN3 was chosen because it performed best in 283
terms of the average error and has the simplest structure capable of obtaining the desired accuracy. 284

 285

Figure 10. Maximum, average, and standard deviation of costs depending on the number of hidden 286
layers after output layer training; the two cases with the best performance are marked in red. 287

 288

Figure 11. Cost reduction curve of four DNNs with different numbers of nodes after fine tuning. 289

 290

Figure 12. Maximum, average, and standard deviation of costs depending on the number of hidden 291
layers after fine tuning; the two cases with the best performance are marked in red. 292

Figure 10. Maximum, average, and standard deviation of costs depending on the number of hidden
layers after output layer training; the two cases with the best performance are marked in red.

Fine tuning was then conducted to confirm the best-performing DNN. Unlike the layer-wise
training, fine tuning is a training process that involves all layers of the DNN; thus, we connected every
layer in the DNNs, as shown in Figure 8. The results of the fine tuning are shown in Figures 11 and 12.
The results of RMSD analysis after fine tuning were significantly different to those from before. In
the results before fine tuning, the performance of DNN appeared to be independent of the number of
hidden layers. However, comparing the results after fine tuning, the maximum and standard deviation
error appeared to decrease as the number of hidden layers increased; DNN3 and DNN4 were within
an acceptable range of error. Finally, DNN3 was chosen because it performed best in terms of the
average error and has the simplest structure capable of obtaining the desired accuracy.

Energies 2019, 12, x FOR PEER REVIEW 10 of 19

Fine tuning was then conducted to confirm the best-performing DNN. Unlike the layer-wise 276
training, fine tuning is a training process that involves all layers of the DNN; thus, we connected every 277
layer in the DNNs, as shown in Figure 8. The results of the fine tuning are shown in Figures 11 and 278
12. The results of RMSD analysis after fine tuning were significantly different to those from before. In 279
the results before fine tuning, the performance of DNN appeared to be independent of the number of 280
hidden layers. However, comparing the results after fine tuning, the maximum and standard 281
deviation error appeared to decrease as the number of hidden layers increased; DNN3 and DNN4 282
were within an acceptable range of error. Finally, DNN3 was chosen because it performed best in 283
terms of the average error and has the simplest structure capable of obtaining the desired accuracy. 284

 285

Figure 10. Maximum, average, and standard deviation of costs depending on the number of hidden 286
layers after output layer training; the two cases with the best performance are marked in red. 287

 288

Figure 11. Cost reduction curve of four DNNs with different numbers of nodes after fine tuning. 289

 290

Figure 12. Maximum, average, and standard deviation of costs depending on the number of hidden 291
layers after fine tuning; the two cases with the best performance are marked in red. 292

Figure 11. Cost reduction curve of four DNNs with different numbers of nodes after fine tuning.

Energies 2019, 12, x FOR PEER REVIEW 10 of 19

Fine tuning was then conducted to confirm the best-performing DNN. Unlike the layer-wise 276
training, fine tuning is a training process that involves all layers of the DNN; thus, we connected every 277
layer in the DNNs, as shown in Figure 8. The results of the fine tuning are shown in Figures 11 and 278
12. The results of RMSD analysis after fine tuning were significantly different to those from before. In 279
the results before fine tuning, the performance of DNN appeared to be independent of the number of 280
hidden layers. However, comparing the results after fine tuning, the maximum and standard 281
deviation error appeared to decrease as the number of hidden layers increased; DNN3 and DNN4 282
were within an acceptable range of error. Finally, DNN3 was chosen because it performed best in 283
terms of the average error and has the simplest structure capable of obtaining the desired accuracy. 284

 285

Figure 10. Maximum, average, and standard deviation of costs depending on the number of hidden 286
layers after output layer training; the two cases with the best performance are marked in red. 287

 288

Figure 11. Cost reduction curve of four DNNs with different numbers of nodes after fine tuning. 289

 290

Figure 12. Maximum, average, and standard deviation of costs depending on the number of hidden 291
layers after fine tuning; the two cases with the best performance are marked in red. 292

Figure 12. Maximum, average, and standard deviation of costs depending on the number of hidden
layers after fine tuning; the two cases with the best performance are marked in red.

Energies 2019, 12, 1619 11 of 19

3.4. DNN3 Training Result

Figure 13 shows the cost reduction curves of three autoencoders and the output layer, and
Figure 14 shows the cost reduction curve of fine tuning. Comparing the average cost between the
layer-wise trained DNN and the fine-tuned DNN3, the latter exhibited a lower final average cost. This
demonstrates the effectiveness of the fine-tuning step for improving performance.

Energies 2019, 12, x FOR PEER REVIEW 11 of 19

3.4. DNN3 Training Result 293
Figure 13 shows the cost reduction curves of three autoencoders and the output layer, and Figure 294

14 shows the cost reduction curve of fine tuning. Comparing the average cost between the layer-wise 295
trained DNN and the fine-tuned DNN3, the latter exhibited a lower final average cost. This 296
demonstrates the effectiveness of the fine-tuning step for improving performance. 297

After every training step had been completed, a validation test was performed. The purpose of 298
the validation test was to examine the generality of the DNN3. Even if the training is conducted 299
successfully, the DNN3 may not operate accurately in new situations it has not experienced before, a 300
phenomenon known as overfitting. The maximum, average, and standard deviation of the RMSD 301
were 11.3786, 2.1417, and 1.3150, respectively; there was no sign of overfitting. The average value of 302
RMSD was low, and the standard deviation was also sufficiently low. A more detailed analysis of 303
validation accuracy is provided in Figure 15 and Figure 16. The DNN3 shows good accuracy even in 304
situations that have not been experienced before in the training process. Finally, the training process 305
of DNN3 was considered to have been completed successfully. 306

 307

Figure 13. Cost reduction curves of three autoencoders and the output layer. 308

 309
Figure 14. Cost reduction curve of DNN3 fine-tuning stage. 310

Figure 13. Cost reduction curves of three autoencoders and the output layer.

Energies 2019, 12, x FOR PEER REVIEW 11 of 19

3.4. DNN3 Training Result 293
Figure 13 shows the cost reduction curves of three autoencoders and the output layer, and Figure 294

14 shows the cost reduction curve of fine tuning. Comparing the average cost between the layer-wise 295
trained DNN and the fine-tuned DNN3, the latter exhibited a lower final average cost. This 296
demonstrates the effectiveness of the fine-tuning step for improving performance. 297

After every training step had been completed, a validation test was performed. The purpose of 298
the validation test was to examine the generality of the DNN3. Even if the training is conducted 299
successfully, the DNN3 may not operate accurately in new situations it has not experienced before, a 300
phenomenon known as overfitting. The maximum, average, and standard deviation of the RMSD 301
were 11.3786, 2.1417, and 1.3150, respectively; there was no sign of overfitting. The average value of 302
RMSD was low, and the standard deviation was also sufficiently low. A more detailed analysis of 303
validation accuracy is provided in Figure 15 and Figure 16. The DNN3 shows good accuracy even in 304
situations that have not been experienced before in the training process. Finally, the training process 305
of DNN3 was considered to have been completed successfully. 306

 307

Figure 13. Cost reduction curves of three autoencoders and the output layer. 308

 309
Figure 14. Cost reduction curve of DNN3 fine-tuning stage. 310 Figure 14. Cost reduction curve of DNN3 fine-tuning stage.

After every training step had been completed, a validation test was performed. The purpose
of the validation test was to examine the generality of the DNN3. Even if the training is conducted
successfully, the DNN3 may not operate accurately in new situations it has not experienced before, a
phenomenon known as overfitting. The maximum, average, and standard deviation of the RMSD were
11.3786, 2.1417, and 1.3150, respectively; there was no sign of overfitting. The average value of RMSD
was low, and the standard deviation was also sufficiently low. A more detailed analysis of validation
accuracy is provided in Figures 15 and 16. The DNN3 shows good accuracy even in situations that
have not been experienced before in the training process. Finally, the training process of DNN3 was
considered to have been completed successfully.

Energies 2019, 12, 1619 12 of 19Energies 2019, 12, x FOR PEER REVIEW 12 of 19

 311
Figure 15. Validation test case 1. SNR—signal-to-noise ratio. 312

 313

Figure 16. Validation test case 2. 314

4. Performance Tests and Discussions 315
PSCAD/EMTDC is used to model the power system shown in Figure 17 and generate datasets 316

for performance testing. 317

 318
Figure 17. Power system model for test datasets (PSCAD/EMTDC). 319

After modeling was completed, single line to ground faults were simulated to acquire fault 320
current waveforms with DC offset. By adding harmonic components and additive noise, we were able 321
to prepare test datasets that can verify the performance of the DNN3. For a comparative analysis 322
between the proposed DNN3 and digital filtering algorithms, we implemented a second order 323
Butterworth filter and a mimic filter (known as a DC-offset filter), which is commonly used in the 324
existing digital distance relays [34]. Even if the noise component is removed using an analog low-pass 325

Figure 15. Validation test case 1. SNR—signal-to-noise ratio.

Energies 2019, 12, x FOR PEER REVIEW 12 of 19

 311
Figure 15. Validation test case 1. SNR—signal-to-noise ratio. 312

 313

Figure 16. Validation test case 2. 314

4. Performance Tests and Discussions 315
PSCAD/EMTDC is used to model the power system shown in Figure 17 and generate datasets 316

for performance testing. 317

 318
Figure 17. Power system model for test datasets (PSCAD/EMTDC). 319

After modeling was completed, single line to ground faults were simulated to acquire fault 320
current waveforms with DC offset. By adding harmonic components and additive noise, we were able 321
to prepare test datasets that can verify the performance of the DNN3. For a comparative analysis 322
between the proposed DNN3 and digital filtering algorithms, we implemented a second order 323
Butterworth filter and a mimic filter (known as a DC-offset filter), which is commonly used in the 324
existing digital distance relays [34]. Even if the noise component is removed using an analog low-pass 325

Figure 16. Validation test case 2.

4. Performance Tests and Discussions

PSCAD/EMTDC is used to model the power system shown in Figure 17 and generate datasets for
performance testing.

Energies 2019, 12, x FOR PEER REVIEW 12 of 19

 311
Figure 15. Validation test case 1. SNR—signal-to-noise ratio. 312

 313

Figure 16. Validation test case 2. 314

4. Performance Tests and Discussions 315
PSCAD/EMTDC is used to model the power system shown in Figure 17 and generate datasets 316

for performance testing. 317

 318
Figure 17. Power system model for test datasets (PSCAD/EMTDC). 319

After modeling was completed, single line to ground faults were simulated to acquire fault 320
current waveforms with DC offset. By adding harmonic components and additive noise, we were able 321
to prepare test datasets that can verify the performance of the DNN3. For a comparative analysis 322
between the proposed DNN3 and digital filtering algorithms, we implemented a second order 323
Butterworth filter and a mimic filter (known as a DC-offset filter), which is commonly used in the 324
existing digital distance relays [34]. Even if the noise component is removed using an analog low-pass 325

Figure 17. Power system model for test datasets (PSCAD/EMTDC).

After modeling was completed, single line to ground faults were simulated to acquire fault current
waveforms with DC offset. By adding harmonic components and additive noise, we were able to
prepare test datasets that can verify the performance of the DNN3. For a comparative analysis between
the proposed DNN3 and digital filtering algorithms, we implemented a second order Butterworth filter
and a mimic filter (known as a DC-offset filter), which is commonly used in the existing digital distance
relays [34]. Even if the noise component is removed using an analog low-pass filter before ADC, the

Energies 2019, 12, 1619 13 of 19

influence of the noise generated after the ADC cannot be eliminated from the current waveform. We
have taken this into account while generating the test datasets.

4.1. Response to Curents without Harmonics and Noise

In this test, the current waveform includes only the fundamental current and the DC offset.
Regarding the DC offset, three cases were considered: DC offset in a positive direction, DC offset in a
negative direction, and a relatively small amount of DC offset.

4.1.1. Instantaneous Current

Figures 18 and 19 show the input, DNN3 output, and DC-offset filter output for three different
cases. Every DNN3 output (size of 64) overlaps in the graph, and this demonstrates the distinct
features of the DNN3 output. As the DNN3 had no opportunity to be trained for transient states, it
exhibits unusual behavior near the fault inception time. However, subsequent tests have confirmed
that this phenomenon has no adverse effect on the phasor estimation process, based on full-cycle
discrete Fourier transform (DFT). As the output of the DNN3 is in the form of a data window, we
plotted the most recent values using a red line, as shown in Figure 20. From this point forwards, the
instantaneous current value will be plotted in this way.

Energies 2019, 12, x FOR PEER REVIEW 13 of 19

filter before ADC, the influence of the noise generated after the ADC cannot be eliminated from the 326
current waveform. We have taken this into account while generating the test datasets. 327

4.1. Response to Curents without Harmonics and Noise 328
In this test, the current waveform includes only the fundamental current and the DC offset. 329

Regarding the DC offset, three cases were considered: DC offset in a positive direction, DC offset in a 330
negative direction, and a relatively small amount of DC offset. 331

4.1.1. Instantaneous Current 332
Figures 18 and 19 show the input, DNN3 output, and DC-offset filter output for three different 333

cases. Every DNN3 output (size of 64) overlaps in the graph, and this demonstrates the distinct 334
features of the DNN3 output. As the DNN3 had no opportunity to be trained for transient states, it 335
exhibits unusual behavior near the fault inception time. However, subsequent tests have confirmed 336
that this phenomenon has no adverse effect on the phasor estimation process, based on full-cycle 337
discrete Fourier transform (DFT). As the output of the DNN3 is in the form of a data window, we 338
plotted the most recent values using a red line, as shown in Figure 20. From this point forwards, the 339
instantaneous current value will be plotted in this way. 340

 341

Figure 18. Performance test result on DC offset in the positive direction (time constant: 0.0210 s, fault 342
inception angle: 0˚): (a) input current signal; (b) DNN3 output; (c) DC-offset filter output. 343

 344

Figure 19. Performance test result on DC offset in the negative direction (time constant: 0.0210 s, fault 345
inception angle: 180˚): (a) input current signal; (b) DNN3 output; (c) DC-offset filter output. 346

Figure 18. Performance test result on DC offset in the positive direction (time constant: 0.0210 s, fault
inception angle: 0◦): (a) input current signal; (b) DNN3 output; (c) DC-offset filter output.

Energies 2019, 12, x FOR PEER REVIEW 13 of 19

filter before ADC, the influence of the noise generated after the ADC cannot be eliminated from the 326
current waveform. We have taken this into account while generating the test datasets. 327

4.1. Response to Curents without Harmonics and Noise 328
In this test, the current waveform includes only the fundamental current and the DC offset. 329

Regarding the DC offset, three cases were considered: DC offset in a positive direction, DC offset in a 330
negative direction, and a relatively small amount of DC offset. 331

4.1.1. Instantaneous Current 332
Figures 18 and 19 show the input, DNN3 output, and DC-offset filter output for three different 333

cases. Every DNN3 output (size of 64) overlaps in the graph, and this demonstrates the distinct 334
features of the DNN3 output. As the DNN3 had no opportunity to be trained for transient states, it 335
exhibits unusual behavior near the fault inception time. However, subsequent tests have confirmed 336
that this phenomenon has no adverse effect on the phasor estimation process, based on full-cycle 337
discrete Fourier transform (DFT). As the output of the DNN3 is in the form of a data window, we 338
plotted the most recent values using a red line, as shown in Figure 20. From this point forwards, the 339
instantaneous current value will be plotted in this way. 340

 341

Figure 18. Performance test result on DC offset in the positive direction (time constant: 0.0210 s, fault 342
inception angle: 0˚): (a) input current signal; (b) DNN3 output; (c) DC-offset filter output. 343

 344

Figure 19. Performance test result on DC offset in the negative direction (time constant: 0.0210 s, fault 345
inception angle: 180˚): (a) input current signal; (b) DNN3 output; (c) DC-offset filter output. 346

Figure 19. Performance test result on DC offset in the negative direction (time constant: 0.0210 s, fault
inception angle: 180◦): (a) input current signal; (b) DNN3 output; (c) DC-offset filter output.

Energies 2019, 12, 1619 14 of 19Energies 2019, 12, x FOR PEER REVIEW 14 of 19

 347

Figure 20. DNN3 response to the transient state. 348

4.1.2. Results and Comparisons of Instantaneous Current 349
Figures 21 and 22 show the phasor analysis results for two different cases. Original signal (green 350

waveform), signal after using DNN (red waveform), and signal after using DC-offset filter (blue 351
waveform) in Figure 19 are used to simulate their performances using the full-cycle DFT algorithm. 352

While applying DFT to the three signals, the DNN signal gave the fastest convergence speed. 353
Table 4 summarizes the amplitude convergence time for each method in three different cases. 354
According to the table, the DNN method has the best convergence time for all cases studied. 355

 356

Figure 21. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 357
1. 358

 359
Figure 22. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 360
2. 361

Figure 20. DNN3 response to the transient state.

4.1.2. Results and Comparisons of Instantaneous Current

Figures 21 and 22 show the phasor analysis results for two different cases. Original signal (green
waveform), signal after using DNN (red waveform), and signal after using DC-offset filter (blue
waveform) in Figure 19 are used to simulate their performances using the full-cycle DFT algorithm.

Energies 2019, 12, x FOR PEER REVIEW 14 of 19

 347

Figure 20. DNN3 response to the transient state. 348

4.1.2. Results and Comparisons of Instantaneous Current 349
Figures 21 and 22 show the phasor analysis results for two different cases. Original signal (green 350

waveform), signal after using DNN (red waveform), and signal after using DC-offset filter (blue 351
waveform) in Figure 19 are used to simulate their performances using the full-cycle DFT algorithm. 352

While applying DFT to the three signals, the DNN signal gave the fastest convergence speed. 353
Table 4 summarizes the amplitude convergence time for each method in three different cases. 354
According to the table, the DNN method has the best convergence time for all cases studied. 355

 356

Figure 21. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 357
1. 358

 359
Figure 22. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 360
2. 361

Figure 21. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 1.

Energies 2019, 12, x FOR PEER REVIEW 14 of 19

 347

Figure 20. DNN3 response to the transient state. 348

4.1.2. Results and Comparisons of Instantaneous Current 349
Figures 21 and 22 show the phasor analysis results for two different cases. Original signal (green 350

waveform), signal after using DNN (red waveform), and signal after using DC-offset filter (blue 351
waveform) in Figure 19 are used to simulate their performances using the full-cycle DFT algorithm. 352

While applying DFT to the three signals, the DNN signal gave the fastest convergence speed. 353
Table 4 summarizes the amplitude convergence time for each method in three different cases. 354
According to the table, the DNN method has the best convergence time for all cases studied. 355

 356

Figure 21. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 357
1. 358

 359
Figure 22. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 360
2. 361

Figure 22. Comparison of phasor estimation between DNN3 output and DC-offset filter output: CASE 2.

While applying DFT to the three signals, the DNN signal gave the fastest convergence speed.
Table 4 summarizes the amplitude convergence time for each method in three different cases. According
to the table, the DNN method has the best convergence time for all cases studied.

Energies 2019, 12, 1619 15 of 19

Table 4. Amplitude convergence time [ms]. DNN—deep neural network.

Method Case 1 Case 2 Case 3

Input 140.956 138.495 69.277
DNN3 15.934 16.158 17.727
Filter 17.339 17.285 20.533

4.1.3. Comparison Using Inaccurate Time Constants

We have discussed the test results in the case in which the time constant is predicted accurately;
however, when an inaccurate time constant is used in a DC-offset filter, its performance is adversely
affected, as shown in Figure 23.

Energies 2019, 12, x FOR PEER REVIEW 15 of 19

Table 4. Amplitude convergence time [ms]. DNN—deep neural network. 362
Method Case 1 Case 2 Case 3

Input 140.956 138.495 69.277
DNN3 15.934 16.158 17.727
Filter 17.339 17.285 20.533

4.1.3. Comparison Using Inaccurate Time Constants 363
We have discussed the test results in the case in which the time constant is predicted accurately; 364

however, when an inaccurate time constant is used in a DC-offset filter, its performance is adversely 365
affected, as shown in Figure 23. 366

 367

Figure 23. Phasor estimation with inaccurate time constants (the accurate time constant of 0.0210 s): 368
(a) 20%: 0.0042 s; (b) 150%: 0.0315 s. 369

In the case of the DC-offset filter, some oscillations appear in the current amplitude after fault 370
inception depending on the extent of the inaccuracy in the time constant. On the other hand, the DNN 371
shows robust characteristics and has less convergence time. 372

4.2. Case Study 373
For further performance analysis of the proposed DNN3, we will discuss three case studies in 374

this section. 375

4.2.1. Case A (Line to Line Fault) 376
Up to this point, we have performed tests based only on the single line to ground fault simulated 377

by PSCAD/EMTDC. In this case, the fault type is changed to a line to line fault. In addition, harmonics 378
and noise are considered simultaneously. 379
• Voltage level: 154 kV 380
• Time constant: 0.0210 s 381
• Harmonics: 2nd = 11%, 3rd = 7%, 4th = 3%, 5th = 0.5% 382
• Noise: 25 dB 383
• Fault type: line to line fault (phase A and phase B short circuit) 384
• Fault inception angle: 30˚ 385

Figure 24 shows the test results of CASE A, which are summarized in Table 5. DNN3 has a faster 386
convergence speed and lower standard deviation compared with the DC-offset filter. Compared with 387
the original input (where DC offset was not removed), the DC-offset filter shows remarkable 388
improvement, though it still performs slightly less effectively than the DNN3. However, Figure 24(a) 389
shows at a glance that the performance of the DC-offset filter is very poor in estimating the 390
instantaneous current waveform. As a result, it was found that the DNN3 performed much better, 391
even though the test was conducted with the DC-offset filter given a precise time constant. Thus, in 392

Figure 23. Phasor estimation with inaccurate time constants (the accurate time constant of 0.0210 s):
(a) 20%: 0.0042 s; (b) 150%: 0.0315 s.

In the case of the DC-offset filter, some oscillations appear in the current amplitude after fault
inception depending on the extent of the inaccuracy in the time constant. On the other hand, the DNN
shows robust characteristics and has less convergence time.

4.2. Case Study

For further performance analysis of the proposed DNN3, we will discuss three case studies in
this section.

4.2.1. Case A (Line to Line Fault)

Up to this point, we have performed tests based only on the single line to ground fault simulated
by PSCAD/EMTDC. In this case, the fault type is changed to a line to line fault. In addition, harmonics
and noise are considered simultaneously.

• Voltage level: 154 kV
• Time constant: 0.0210 s
• Harmonics: 2nd = 11%, 3rd = 7%, 4th = 3%, 5th = 0.5%
• Noise: 25 dB
• Fault type: line to line fault (phase A and phase B short circuit)
• Fault inception angle: 30◦

Figure 24 shows the test results of CASE A, which are summarized in Table 5. DNN3 has a
faster convergence speed and lower standard deviation compared with the DC-offset filter. Compared
with the original input (where DC offset was not removed), the DC-offset filter shows remarkable
improvement, though it still performs slightly less effectively than the DNN3. However, Figure 24a
shows at a glance that the performance of the DC-offset filter is very poor in estimating the instantaneous

Energies 2019, 12, 1619 16 of 19

current waveform. As a result, it was found that the DNN3 performed much better, even though the
test was conducted with the DC-offset filter given a precise time constant. Thus, in the case of line to
line fault, the proposed method is better than the DC-offset filter in both factors, convergence time and
standard deviation.

Energies 2019, 12, x FOR PEER REVIEW 16 of 19

the case of line to line fault, the proposed method is better than the DC-offset filter in both factors, 393
convergence time and standard deviation. 394

 395

Figure 24. Test results of CASE A: (a) instantaneous current; (b) amplitude. 396

Table 5. Case A: analysis of current amplitude (phasor). 397
Method Convergence [ms] Average [A] Standard deviation

Input 123.362 16,659.86 289.72
DNN3 33.085 16,645.36 29.28
Filter 36.253 16,648.87 43.47

4.2.2. Case B (Different Power System Situation) 398
To verify the generality of the proposed DNN3, we performed a test using a fault current in a 399

different power system model. 400
• Voltage level: 22.9 kV 401
• Time constant: 0.0402 s 402
• Harmonics: 2nd = 18%, 3rd = 12%, 4th = 8%, 5th = 4% 403
• Noise: 25 dB 404
• Fault type: single line to ground fault 405
• Fault inception angle: 0˚ 406

The generality of the proposed DNN3 is verified through this test, as the results are close to those 407
of CASE A, as shown in Figure 25 and summarized in Table 6. Even under the increased level of 408
harmonics, as compared with former test cases, DNN3 exhibited robust performance with less 409
convergence time and lower standard deviation, while a different power system model is used for the 410
simulations. 411

 412

Figure 25. Test results of CASE B: (a) instantaneous current; (b) amplitude. 413

Figure 24. Test results of CASE A: (a) instantaneous current; (b) amplitude.

Table 5. Case A: analysis of current amplitude (phasor).

Method Convergence [ms] Average [A] Standard Deviation

Input 123.362 16,659.86 289.72
DNN3 33.085 16,645.36 29.28
Filter 36.253 16,648.87 43.47

4.2.2. Case B (Different Power System Situation)

To verify the generality of the proposed DNN3, we performed a test using a fault current in a
different power system model.

• Voltage level: 22.9 kV
• Time constant: 0.0402 s
• Harmonics: 2nd = 18%, 3rd = 12%, 4th = 8%, 5th = 4%
• Noise: 25 dB
• Fault type: single line to ground fault
• Fault inception angle: 0◦

The generality of the proposed DNN3 is verified through this test, as the results are close to those of
CASE A, as shown in Figure 25 and summarized in Table 6. Even under the increased level of harmonics,
as compared with former test cases, DNN3 exhibited robust performance with less convergence time and
lower standard deviation, while a different power system model is used for the simulations.

Energies 2019, 12, x FOR PEER REVIEW 16 of 19

the case of line to line fault, the proposed method is better than the DC-offset filter in both factors, 393
convergence time and standard deviation. 394

 395

Figure 24. Test results of CASE A: (a) instantaneous current; (b) amplitude. 396

Table 5. Case A: analysis of current amplitude (phasor). 397
Method Convergence [ms] Average [A] Standard deviation

Input 123.362 16,659.86 289.72
DNN3 33.085 16,645.36 29.28
Filter 36.253 16,648.87 43.47

4.2.2. Case B (Different Power System Situation) 398
To verify the generality of the proposed DNN3, we performed a test using a fault current in a 399

different power system model. 400
• Voltage level: 22.9 kV 401
• Time constant: 0.0402 s 402
• Harmonics: 2nd = 18%, 3rd = 12%, 4th = 8%, 5th = 4% 403
• Noise: 25 dB 404
• Fault type: single line to ground fault 405
• Fault inception angle: 0˚ 406

The generality of the proposed DNN3 is verified through this test, as the results are close to those 407
of CASE A, as shown in Figure 25 and summarized in Table 6. Even under the increased level of 408
harmonics, as compared with former test cases, DNN3 exhibited robust performance with less 409
convergence time and lower standard deviation, while a different power system model is used for the 410
simulations. 411

 412

Figure 25. Test results of CASE B: (a) instantaneous current; (b) amplitude. 413 Figure 25. Test results of CASE B: (a) instantaneous current; (b) amplitude.

Energies 2019, 12, 1619 17 of 19

Table 6. Case B: analysis of current amplitude (phasor).

Method Convergence [ms] Average [A] Standard Deviation

Input 115.907 2843.29 53.81
DNN3 33.127 2839.76 9.68
Filter 35.811 2840.58 13.80

4.2.3. Case C (Different Power System Situation)

In this section, we have observed how the proposed DNN3 and the DC-offset filter responded to
the presence of fault resistance. The details of the studied system are given bellow:

• Voltage level: 345 kV
• Time constant: 0.034 s
• Harmonics: 2nd = 12%, 3rd = 4%, 4th = 2%, 5th = 0.2%
• Noise: 25 dB
• Fault type: single line to ground fault (fault resistance 1 ohm)
• Fault inception angle: 0◦

In Figure 26a, it is seen that the oscillations appear in the result of the DC-offset filter when a fault
resistance exists. This oscillation is caused by the fault resistance, which affects the time constant of the
DC offset. As summarized in Table 7, the oscillation had an adverse effect on the convergence time of
the filter. In contrast, DNN3 was not influenced by the fault resistance, which has shown its potential
to solve this problem.

Energies 2019, 12, x FOR PEER REVIEW 17 of 19

Table 6. Case B: analysis of current amplitude (phasor). 414
Method Convergence [ms] Average [A] Standard deviation

Input 115.907 2843.29 53.81
DNN3 33.127 2839.76 9.68
Filter 35.811 2840.58 13.80

4.2.3. Case C (Different Power System Situation) 415
In this section, we have observed how the proposed DNN3 and the DC-offset filter responded to 416

the presence of fault resistance. The details of the studied system are given bellow: 417
• Voltage level: 345 kV 418
• Time constant: 0.034 s 419
• Harmonics: 2nd = 12%, 3rd = 4%, 4th = 2%, 5th = 0.2% 420
• Noise: 25 dB 421
• Fault type: single line to ground fault (fault resistance 1 ohm) 422
• Fault inception angle: 0˚ 423

In Figure 26(a), it is seen that the oscillations appear in the result of the DC-offset filter when a 424
fault resistance exists. This oscillation is caused by the fault resistance, which affects the time constant 425
of the DC offset. As summarized in Table 7, the oscillation had an adverse effect on the convergence 426
time of the filter. In contrast, DNN3 was not influenced by the fault resistance, which has shown its 427
potential to solve this problem. 428

 429

Figure 26. Test results of CASE C: comparison between two cases: (a) fault resistance: 1 Ω; (b) no fault 430
resistance. 431

Table 7. Case C: analysis of current amplitude (phasor). 432

Method Convergence [ms] Average [A] Standard deviation
Resistance 1 ohm 0 ohm 1 ohm 0 ohm 1 ohm 0 ohm

Input 65.631 117.102 30,588.60 31,683.76 309.66 371.09
DNN3 33.121 33.091 30,588.03 31,659.30 64.81 62.09
Filter 49.332 35.301 30,557.72 31,675.29 176.84 108.77

5. Conclusions 433
In this paper, we developed a DNN to effectively remove DC offset. Autoencoders were used to 434

determine the optimal size of the DNN. Subsequently, intensive training for the DNN was performed 435
using both the supervised and unsupervised training methodologies. 436

Even under harmonics and noise distortion, the DNN showed good and robust accuracy in 437
instantaneous current reconstruction and phasor estimation, compared with the DC-offset filter. It 438
was also confirmed that the errors due to inaccurate time constants of the DC offset were significantly 439

Figure 26. Test results of CASE C: comparison between two cases: (a) fault resistance: 1 Ω; (b) no
fault resistance.

Table 7. Case C: analysis of current amplitude (phasor).

Method Convergence [ms] Average [A] Standard Deviation

Resistance 1 ohm 0 ohm 1 ohm 0 ohm 1 ohm 0 ohm

Input 65.631 117.102 30,588.60 31,683.76 309.66 371.09
DNN3 33.121 33.091 30,588.03 31,659.30 64.81 62.09
Filter 49.332 35.301 30,557.72 31,675.29 176.84 108.77

5. Conclusions

In this paper, we developed a DNN to effectively remove DC offset. Autoencoders were used to
determine the optimal size of the DNN. Subsequently, intensive training for the DNN was performed
using both the supervised and unsupervised training methodologies.

Energies 2019, 12, 1619 18 of 19

Even under harmonics and noise distortion, the DNN showed good and robust accuracy in
instantaneous current reconstruction and phasor estimation, compared with the DC-offset filter. It was
also confirmed that the errors due to inaccurate time constants of the DC offset were significantly
reduced compared with the DC-offset filter. These results confirmed that the method of determining
the DNN size using the autoencoder was appropriate. Therefore, the optimal DNN size in other deep
learning applications could be determined based on this methodology. As the performance of the
DNN is largely affected by the quality of the training datasets, it would be possible to train the DNN
more precisely if more sophisticated training datasets could be prepared.

Furthermore, it is expected that it would be possible to reconstruct the secondary current waveform
of the current transformer distorted by saturation, by modeling the current transformer mathematically
and applying the methodology used in this paper.

Author Contributions: S-B.K. prepared the manuscript and completed the simulations. S-R.N. supervised the
study and coordinated the main theme of this paper. V.S. developed the simulation model in the study and revised
the manuscript. S-H.K. and N-H.L. discussed the results and implications, and commented on the manuscript.
All of the authors read and approved the final manuscript.

Funding: This research was supported in part by the Human Resources Program in Energy Technology of the
Korea Institute of Energy Technology Evaluation and Planning (KETEP), and granted financial resources from the
Ministry of Trade, Industry & Energy, Republic of Korea (No. 20154030200770). This research was also supported
in part by Korea Electric Power Corporation (Grant number: R17XA05-2).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, J.S.; Hwang, S.-H. DC Offset Error Compensation Algorithm for PR Current Control of a Single-Phase
Grid-Tied Inverter. Energies 2018, 11, 2308. [CrossRef]

2. Jyh-Cherng, G.; Sun-Li, Y. Removal of DC offset in current and voltage signals using a novel Fourier filter
algorithm. IEEE Trans. Power Deliv. 2000, 15, 73–79. [CrossRef]

3. Sun-Li, Y.; Jyh-Cherng, G. Removal of decaying DC in current and voltage signals using a modified Fourier
filter algorithm. IEEE Trans. Power Deliv. 2001, 16, 372–379. [CrossRef]

4. Soon-Ryul, N.; Sang-Hee, K.; Jong-Keun, P. An analytic method for measuring accurate fundamental
frequency components. IEEE Trans. Power Deliv. 2002, 17, 405–411. [CrossRef]

5. Yong, G.; Kezunovic, M.; Deshu, C. Simplified algorithms for removal of the effect of exponentially decaying
DC-offset on the Fourier algorithm. IEEE Trans. Power Deliv. 2003, 18, 711–717. [CrossRef]

6. Kang, S.; Lee, D.; Nam, S.; Crossley, P.A.; Kang, Y. Fourier transform-based modified phasor estimation
method immune to the effect of the DC offsets. IEEE Trans. Power Deliv. 2009, 24, 1104–1111. [CrossRef]

7. Nam, S.; Park, J.; Kang, S.; Kezunovic, M. Phasor Estimation in the Presence of DC Offset and CT Saturation.
IEEE Trans. Power Deliv. 2009, 24, 1842–1849. [CrossRef]

8. Silva, K.M.; Kusel, B.F. DFT based phasor estimation algorithm for numerical digital relaying. Electron. Lett.
2013, 49, 412–414. [CrossRef]

9. Zadeh, M.R.D.; Zhang, Z. A New DFT-Based Current Phasor Estimation for Numerical Protective Relaying.
IEEE Trans. Power Deliv. 2013, 28, 2172–2179. [CrossRef]

10. Rahmati, A.; Adhami, R. An Accurate Filtering Technique to Mitigate Transient Decaying DC Offset.
IEEE Trans. Power Deliv. 2014, 29, 966–968. [CrossRef]

11. Silva, K.M.; Nascimento, F.A.O. Modified DFT-Based Phasor Estimation Algorithms for Numerical Relaying
Applications. IEEE Trans. Power Deliv. 2018, 33, 1165–1173. [CrossRef]

12. Nam, S.-R.; Kang, S.-H.; Sohn, J.-M.; Park, J.-K. Modified Notch Filter-based Instantaneous Phasor Estimation
for High-speed Distance Protection. Electr. Eng. 2007, 89, 311–317. [CrossRef]

13. Mahari, A.; Sanaye-Pasand, M.; Hashemi, S.M. Adaptive phasor estimation algorithm to enhance numerical
distance protection. IET Gener. Transm. Distrib. 2017, 11, 1170–1178. [CrossRef]

14. Gopalan, S.A.; Mishra, Y.; Sreeram, V.; Iu, H.H. An Improved Algorithm to Remove DC Offsets From Fault
Current Signals. IEEE Trans. Power Deliv. 2017, 32, 749–756. [CrossRef]

15. Benmouyal, G. Removal of DC-offset in current waveforms using digital mimic filtering. IEEE Trans.
Power Deliv. 1995, 10, 621–630. [CrossRef]

http://dx.doi.org/10.3390/en11092308
http://dx.doi.org/10.1109/61.847231
http://dx.doi.org/10.1109/61.924813
http://dx.doi.org/10.1109/61.997907
http://dx.doi.org/10.1109/TPWRD.2003.813894
http://dx.doi.org/10.1109/TPWRD.2009.2014032
http://dx.doi.org/10.1109/TPWRD.2008.2002972
http://dx.doi.org/10.1049/el.2012.3920
http://dx.doi.org/10.1109/TPWRD.2013.2266513
http://dx.doi.org/10.1109/TPWRD.2013.2288011
http://dx.doi.org/10.1109/TPWRD.2017.2738621
http://dx.doi.org/10.1007/s00202-006-0006-6
http://dx.doi.org/10.1049/iet-gtd.2016.0911
http://dx.doi.org/10.1109/TPWRD.2016.2615045
http://dx.doi.org/10.1109/61.400869

Energies 2019, 12, 1619 19 of 19

16. Cho, Y.; Lee, C.; Jang, G.; Lee, H.J. An Innovative Decaying DC Component Estimation Algorithm for Digital
Relaying. IEEE Trans. Power Deliv. 2009, 24, 73–78. [CrossRef]

17. Pazoki, M. A New DC-Offset Removal Method for Distance-Relaying Application Using Intrinsic Time-Scale
Decomposition. IEEE Trans. Power Deliv. 2018, 33, 971–980. [CrossRef]

18. Gosselin, P.; Koukab, A.; Kayal, M. Computing the Impact of White and Flicker Noise in Continuous-Time
Integrator-Based ADCs. In Proceedings of the 2016 MIXDES—23rd International Conference Mixed Design
of Integrated Circuits and Systems, Lodz, Poland, 23–25 June 2016; pp. 316–320.

19. Nagamine, T.; Seltzer, M.; Mesgarani, N. On the Role of Nonlinear Transformations in Deep Neural Network
Acoustic Models. In Proceedings of the INTERSPEECH 2016, San Francisco, CA, USA, 8–12 September 2016;
pp. 803–807.

20. Hu, W.; Liang, J.; Jin, Y.; Wu, F.; Wang, X.; Chen, E. Online Evaluation Method for Low Frequency Oscillation
Stability in a Power System Based on Improved XGboost. Energies 2018, 11, 3238. [CrossRef]

21. Sun-Bin, K.; Sun-Woo, L.; Dae-Hee, S.; Soon-Ryul, N. DC Offset Removal in Power Systems Using Deep
Neural Network. In Proceedings of the Innovative Smart Grid Technologies Conference, Washington, DC,
USA, 17–20 February 2019; pp. 1–5.

22. Huang, X.; Hu, T.; Ye, C.; Xu, G.; Wang, X.; Chen, L. Electric Load Data Compression and Classification Based
on Deep Stacked Auto-Encoders. Energies 2019, 12, 653. [CrossRef]

23. Kim, M.; Choi, W.; Jeon, Y.; Liu, L. A Hybrid Neural Network Model for Power Demand Forecasting. Energies
2019, 12, 931. [CrossRef]

24. Cegielski, M. Estimating of computation time of parallel algorithm of computations of dynamic processes
in GPU systems. In Proceedings of the 2015 16th International Conference on Computational Problems of
Electrical Engineering (CPEE), Lviv, Ukraine, 2–5 September 2015; pp. 14–16.

25. IEEE Power and Energy Society. IEEE Recommended Practice and Requirements for Harmonic Control in Electric
Power Systems; IEEE Std 519-2014 (Revision of IEEE Std 519-1992); IEEE: Piscataway, NJ, USA, 2014; pp. 1–29.
[CrossRef]

26. Chiorboli, G.; Franco, G.; Morandi, C. Uncertainties in quantization-noise estimates for analog-to-digital
converters. IEEE Trans. Instrum. Meas. 1997, 46, 56–60. [CrossRef]

27. Xie, Y.; Jin, H.; Tsang, E.C.C. Improving the lenet with batch normalization and online hard example mining
for digits recognition. In Proceedings of the 2017 International Conference on Wavelet Analysis and Pattern
Recognition (ICWAPR), Ningbo, China, 9–12 July 2017; pp. 149–153.

28. Bilbao, I.; Bilbao, J. Overfitting problem and the over-training in the era of data: Particularly for Artificial
Neural Networks. In Proceedings of the 2017 Eighth International Conference on Intelligent Computing and
Information Systems (ICICIS), Cairo, Egypt, 5–7 December 2017; pp. 173–177.

29. Shibata, K.; Yusuke, I. Effect of number of hidden neurons on learning in large-scale layered neural networks.
In Proceedings of the 2009 ICCAS-SICE, Fukuoka, Japan, 18–21 August 2009; pp. 5008–5013.

30. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504. [CrossRef]

31. TensorFlow. API r1.13. Available online: https://www.tensorflow.org/api_docs/python (accessed on
23 October 2018).

32. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.69802015.
33. Almotiri, J.; Elleithy, K.; Elleithy, A. Comparison of autoencoder and Principal Component Analysis followed

by neural network for e-learning using handwritten recognition. In Proceedings of the 2017 IEEE Long Island
Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 5 May 2017; pp. 1–5.

34. GE Multili. Manual P/N: 1601-0089-F5 (GEK-106440D); GE Multili: Toronto, ON, Canadan, 2009.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRD.2008.2005682
http://dx.doi.org/10.1109/TPWRD.2017.2728188
http://dx.doi.org/10.3390/en11113238
http://dx.doi.org/10.3390/en12040653
http://dx.doi.org/10.3390/en12050931
http://dx.doi.org/10.1109/IEEESTD.2014.6826459
http://dx.doi.org/10.1109/19.552157
http://dx.doi.org/10.1126/science.1127647
https://www.tensorflow.org/api_docs/python
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data Acquisition
	Data Generation
	Exponentially Decaying DC Offset
	Harmonics
	Additive Noise
	Simulation

	Pre-Processing

	Design of a DNN and Its Training
	Autoencoder
	Training Scenario of a DNN
	Pre-Training Hidden Layers
	Pre-Training Output Layer
	Supervised Fine Tuning

	Determination of the DNN Size
	Number of Neurons in Each Layer
	Number of Hidden Layers

	DNN3 Training Result

	Performance Tests and Discussions
	Response to Curents without Harmonics and Noise
	Instantaneous Current
	Results and Comparisons of Instantaneous Current
	Comparison Using Inaccurate Time Constants

	Case Study
	Case A (Line to Line Fault)
	Case B (Different Power System Situation)
	Case C (Different Power System Situation)

	Conclusions
	References

