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Abstract: There are many uncertain factors that contribute to process faults and this make it is hard
to locate the assignable causes when a process fault occurs. The fuzzy relational equation (FRE)
is effective to represent the uncertain relationship between the causes and effects, but the solving
difficulties greatly limit its practical utilization. In this paper, the relation between the occurrence
degree of abnormal patterns and assignable causes was modeled by FRE. Considering an objective
function of least distance between the occurrence degree of abnormal patterns and its assignable
cause’s contribution degree determined by FRE, the FRE solution can be obtained by solving an
optimization problem with a genetic algorithm (GA). Taking the previous optimization solution as
the initial solution of the following run, the GA was run repeatedly. As a result, an optimal interval
FRE solution was achieved. Finally, the proposed approach was validated by an application case and
some simulation cases. The results show that the model and its solving method are both feasible
and effective.
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1. Introduction

Uncertainty refers to the difficulty in accurately forecasting a complex object due to the limited
cognition of individuals. There are a large number of uncertain problems in manufacturing process
control and diagnosis. Especially for complex product manufacturing systems, because of their high
degree of customization and integration, the manufacturing process deals with complex body structures
and tens of thousands of pieces of parts and components, which have many varieties, and also has
greater vagueness and uncertainty in process control and diagnosis.

Membership functions and the fuzzy relationship matrix of fuzzy set theory can well describe the
fuzzy and uncertain environment information of a manufacturing process [1,2]. The fuzzy relational
equation is widely applied in many fields, such as abnormity diagnosis [3], rule-based expert systems [4],
signal processing [5], similarity measuring [6], image processing [7] and causal reasoning [8], etc. But,
in general, the fuzzy relational equation can only have a determinate feasible solution under strict
constraints [9–11]. The complexity of solving the fuzzy relational equation limits the application of
inverse fuzzy logic reasoning [12].

Therefore, to obtain all its solutions is the basic problem. In recent years, many researchers have
discussed the problem of equation solving and solution representation. Higashi et al. proposed a
general scheme for solving fuzzy relational equations with finite sets, and also proved that the solution
set of max-min fuzzy relational equation was completely determined by its maximum and minimal
solutions [13], so from then on, there have been many papers mainly focused on the effective algorithm
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to find the minimal solutions. Bartl et al. proposed a greedy algorithm-based approach to determine
the minimal solutions of generalized fuzzy relational equations [14]. Also concept lattices-based
approaches were adopted by many researchers. Díaz et. al described the definition, properties and
solutions of multi-adjoint relational equations by use of concept lattices theory, obtained the solutions
set using concept lattices [15,16], and also developed an algorithm to obtain solutions for fuzzy
relational equations using the theory of fuzzy property-oriented concept lattices [17]. Lin et.al and
Markovskii analyzed the relation between fuzzy relational equations (FREs) and a covering problems,
and also proposed a procedure to solve FREs with procedure for solving the covering problem [18,19].
Shivanian proposed a new simplification technique to accelerate the resolution of the problem by
removing the components having no effect on the solution process [20]. Zhou et al. transformed the
problem of minimizing a nonlinear objective function subject to a system of bipolar fuzzy relational
equations as a system of 0-1 mixed integer inequalities, and obtained the solutions by solving a 0-1
mixed integer optimization problem [21]. Chang and Shieh provide an accelerated approach for
finding the optimal objective value constrained by fuzzy max–min relational equations [22]. Shieh
solved a optimization problem of minimizing a linear objective function subject to a max-t fuzzy
relational equation constraint by following three steps, decomposition, solving the sub-problem with
non-positive coefficients and obtaining the optimal variables by solving covering problem [23].

Based on the above references, this paper established a fuzzy relational equation between the
assignable causes and abnormal patterns, and proposes a genetic algorithm-based approach to solve the
FRE. The solution can quantify the causes contributing to current abnormities for known membership
degrees of fuzzy abnormal patterns. The rest of the article is organized as follows: Section 2 describes
the model of the fuzzy relational equation for uncertain process abnormity diagnosis. The solving
scheme for the fuzzy relational equation using the genetic algorithm is presented in Section 3. The
performance of the proposed system is studied in Section 4 on the basis of an application case study.
Section 5 ends with a summary and conclusions.

2. Uncertain Process Abnormity Diagnosis Model of Fuzzy Relational Equation

Assume that set X = (X1, X2, · · · , Xm) is the collection of all possible assignable causes in a
manufacturing process, where m is the number of causes category, and set Y = (Y1, Y2, · · · , Yn) is
the collection of possible abnormal patterns caused by m kinds of causes, where n is the number of
abnormal patterns categories.

Let (y1, y2, · · · , yn) be an observed sample of abnormal symptoms characteristics, where µYi(yi)

denotes the membership degree of component yi in pattern Yi. Then the abnormal patterns can be
represented as a fuzzy vector Y = (µY1(y1),µY2(y2), · · · ,µYn(yn)) = (b1, b2, · · · , bn).

Suppose that the above abnormity is caused by cause x, and µX j(x) is the membership degree of x
to every element X j of set X = (X1, X2, · · · , Xm), Then the assignable causes set can also be expressed as
a fuzzy vector X = (µX1(x),µX2(x), · · · ,µxm(x), ) = (a1, a2, · · · , am).

Because of the causal relationship between the assignable causes and abnormal symptoms, the
following fuzzy relational equation of Y and X can be established according to Zadeh’s composite
inference rule:

Y = X ◦R (1)

where ◦ denotes a composition operator of max-min; and:

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

rm1 rm2 · · · rmn

 = (ri j)m×n

is a fuzzy relation matrix, where ri j ∈ [0, 1], (i = 1, 2, · · · , m; j = 1, 2, · · · , n), represents the contribution
degree of i-th cause to the j-th process fault or abnormal symptom, i.e., ri j = µxi(y j)



Energies 2019, 12, 1580 3 of 14

According to the known fuzzy relation matrix R and fuzzy abnormal symptom vector Y, the
solving of fuzzy cause vector is equal to the solving of the following fuzzy relational equation:

b1 = (a1 ∧ r11)∨ (a2 ∧ r21)∨ · · · ∨ (am ∧ rm1)

b2 = (a1 ∧ r12)∨ (a2 ∧ r22)∨ · · · ∨ (am ∧ rm2)

. . . . . .
bn = (a1 ∧ r1n)∨ (a2 ∧ r2n)∨ · · · ∨ (am ∧ rmn)

where operators ∧ and ∨ are min and max, respectively. The above equation can then be simplified as:

b j = max
i=1,2,··· ,m

(min(ai, ri j)), i = 1, 2, · · · , m; j = 1, 2, · · · , n (2)

3. Solving Scheme for Fuzzy Relational Equation by Use of GA

The fuzzy relational equation proposed above has a special form, i.e., the equation consists of
a series of set operation expressions, so it does not have a uniquely determined solution from the
perspective of parsing, but has a changeable solution within a certain range. This means that different
combinations of variables, which take values in their respective value range, can satisfy the equation.
Most solving methods can only find one or several solutions, so the key is how to determine the
variable scope of solutions and its different combinations.

The problem of solving the fuzzy equation can be changed equivalently into a problem of searching
for the optimal solution of complex optimization problems with many local minima in [24–26]. As the
increase of causal relationship items number, the solution space will expand exponentially. A genetic
algorithm (GA) can evaluate multiple solutions in a search space at the same time, reduce the risk of
getting trapped in a local optimal solution and be implemented easily for parallel computing, so a GA
is a good choice for solving such problems.

3.1. Fitness Function

The fitness function is determined according to the objective function, and is used as a criterion to
judge the goodness of a population individual. The iterative loop of a GA is driven by the differences in
successive values of the fitness function. As a kind of evaluation scale of individuals, a fitness function
is always non-negative, and can be transformed by the objective function according to optimization
problem type.

In order to obtain the solution of the fuzzy relational equation of (2), it can be converted into the
following optimization problem.

Search for vector A = (a1, a2, · · · , am), ai ∈ [0, 1], i = 1, 2. · · ·m satisfying the standard of minimum
distance (see [27–29]):

minF(A) =
n∑

j=1

[b j −max( min
i=1,2,···m

(ai, ri j))]
2 (3)

Let us select F(A) as the fitness function and the individual fitness value is the value of fitness
function at each individual point. For minimization problems, the best individual of the population is
the individual with the lowest fitness value.

3.2. Coding Scheme

Before searching for the solution by GA, the phenotype data in solution space are mapped into
genotype data in genetic structure. This mapping from phenotype to genotype is called encoding.
In addition to deciding the chromosome arrangement of individuals, the encoding method also
determines the decoding method from the genotype data of the search space to phenotype data of the
solution space, and also affects the genetic operators.
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For some multidimensional continuous function optimization problems requiring high precision,
the binary encoding scheme has weak scalability, and is not straightforward. Also, if the encoding
string is too long, the search space will be too large and the optimization time become very long; if the
encoding string is too short, the solution accuracy will be reduced. This paper chooses float encoding
according to the feature of fuzzy relational equation. In the float encoding scheme, each gene value of
an individual is denoted by a float number in a particular range. The length of encoding string is equal
to the number of decision variables.

For example, suppose that there are five elements in a cause vector of a fuzzy abnormity diagnosis
problem, i.e., five decision variables of optimization problem xi, i = 1, . . . , 5, the value limit of each
variable is [xmin,xmax] = [0,1]. A code of solution or a chromosome for this problem is as follows
(Figure 1):

Energies 2019, 12, x FOR PEER REVIEW 4 of 14 

 

determines the decoding method from the genotype data of the search space to phenotype data of 
the solution space, and also affects the genetic operators. 

For some multidimensional continuous function optimization problems requiring high 
precision, the binary encoding scheme has weak scalability, and is not straightforward. Also, if the 
encoding string is too long, the search space will be too large and the optimization time become 
very long; if the encoding string is too short, the solution accuracy will be reduced. This paper 
chooses float encoding according to the feature of fuzzy relational equation. In the float encoding 
scheme, each gene value of an individual is denoted by a float number in a particular range. The 
length of encoding string is equal to the number of decision variables. 

For example, suppose that there are five elements in a cause vector of a fuzzy abnormity 
diagnosis problem, i.e., five decision variables of optimization problem xi, i = 1,…,5, the value limit 
of each variable is [xmin,xmax] = [0,1]. A code of solution or a chromosome for this problem is as 
follows (Figure 1): 

0.593 0.845 0.364 0.263 0.694
. 

Figure 1. A float-coding chromosome for solution with 5 variables. 

In above string, each gene position is represented by a floating number in [0,1] and each 
individual is expressed as a genome with length of 5. 

3.3. The Determination of Initial Population  

According to given coding method, the initial population is formed by randomly generating 
prescriptive number of individuals in their respective value range. For the individual ai  of this 

paper, it is the membership degree ranging in [0,1] and can be generated as follows:  

(0,1), 1,2a Random i mi = = ，   

where m is the individual number of population. 

3.4. Selecting Function  

As for the selection of the parent generation for genetic operation from population, it should be 
guaranteed that the individual with lower fitness has higher probability to be selected. 

Let m be the population size, the selected probability kp  of individual kv  is determined by 
the following expression: 

1,2,

1 1,2,

( ) min ( ( ))

[ ( ) min ( ( ))]

k jj m
k m

k jk j m

f v f v
p

f v f v
=

= =

−
=

−


  

(4) 

where 
1

1m
kk
p

=
= . 

3.5. Crossover and Mutation Operators  

As a genetic operator, the crossover operation combines the genetic information of two parents 
to generate new offspring stochastically. Data structures to store genetic information determine the 
suitable manner to apply a genetic operator. As mentioned in Section 3.2, we adopted floating-point 
coding, a feasible solution or a chromosome represented by a bit array and there is a float number 
in [0,1] on each bit, so two-point crossover is suitable.  

Two point crossover approach selects two random integers 1c  and 2c between 1 and the 
number of variables. Then, it selects vector entries numbered less than or equal to 1c  from the first 
parent, vector entries numbered from 1c +1 to 2c , inclusive, from the second parent, and vector 

Figure 1. A float-coding chromosome for solution with 5 variables.

In above string, each gene position is represented by a floating number in [0,1] and each individual
is expressed as a genome with length of 5.

3.3. The Determination of Initial Population

According to given coding method, the initial population is formed by randomly generating
prescriptive number of individuals in their respective value range. For the individual ai of this paper,
it is the membership degree ranging in [0,1] and can be generated as follows:

ai = Random(0, 1), i = 1, 2, · · ·m

where m is the individual number of population.

3.4. Selecting Function

As for the selection of the parent generation for genetic operation from population, it should be
guaranteed that the individual with lower fitness has higher probability to be selected.

Let m be the population size, the selected probability pk of individual vk is determined by the
following expression:

pk =

f (vk) − min
j=1,2,···m

( f (v j))

∑m
k=1

[
f (vk) − min

j=1,2,···m
( f (v j))

] (4)

where
∑m

k=1 pk = 1.

3.5. Crossover and Mutation Operators

As a genetic operator, the crossover operation combines the genetic information of two parents
to generate new offspring stochastically. Data structures to store genetic information determine the
suitable manner to apply a genetic operator. As mentioned in Section 3.2, we adopted floating-point
coding, a feasible solution or a chromosome represented by a bit array and there is a float number in
[0,1] on each bit, so two-point crossover is suitable.

Two point crossover approach selects two random integers c1 and c2 between 1 and the number of
variables. Then, it selects vector entries numbered less than or equal to c1 from the first parent, vector
entries numbered from c1+1 to c2, inclusive, from the second parent, and vector entries numbered
greater than c2 from the first parent. Finally it concatenates these genes to form a single gene (as shown
in Figure 2).
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Figure 2. Two-point crossover operation.

The crossover operation is completed by swapping the bits of two parents between two crossover
points. Suppose pc is the crossover factor that determines the probability that crossover will occur at a
particular matching of two individuals. For every two individuals of the current population, a random
number r1 that obeys standard uniform distribution is generated and the crossover operation will be
applied between the two individuals if r1 < pc. Let m be the population size, there statistically will be
m · pc/2 new offspring or solutions added into the population after each crossover operation. In order
to keep the population size fixed, we choose the first m individuals according to their fitness value as
new population and m · pc/2 individuals with worse fitness value will be discarded in every circulation.

Mutation alters one or more gene values in a chromosome from its initial state and it can change
entirely from the previous solution, so it can provide genetic diversity and enable the genetic algorithm
to search a broader space. As a result, it can make GA come to a better solution.

As for floating-coding, we adopted Gaussian mutation operator. Firstly a position of a chromosome
is selected randomly and then a standard Gaussian distributed random value r2 is added to the chosen
gene. If it falls outside of the pre-set lower or upper bounds for gene, the new gene value is clipped to
the boundary value (as shown in Figure 3).
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In order to improve the convergence of the algorithm, an adaptive mutation method was adopted,
i.e., the standard deviation of Gaussian distribution becomes small with the increase of generations.

Let sp be a parameter to determine the standard deviation at the first and vector v with two rows
and number of variables columns, the initial standard deviation σi,1 for the i-th individual in first
generation is given by:

σi,1 = sp× (v(i, 2) − v(i, 1))

Let sf as a parameter to determines the shrink degree of standard deviation as generations go
by, the standard deviation for the i-th individual in the kth generation, σi,k, is given by the recursive
formula as follows:

σi,k = σi,k−1(1− s f ×
k

generations
)

where generations is the total number of algorithm iterations. We also use a user-definable mutation
factor pm to determine the probability that an individual will mutate. A random number r2 that obeys
standard uniform distribution is generated and the mutation operation will occur on the corresponding
individual if r2 < pm.



Energies 2019, 12, 1580 6 of 14

3.6. Algorithm Flow

The optimal solution of fitness function will be obtained by use of GA. Each solution set will be
taken as the initial population for new iteration of GA in order to achieve the minimal and maximum
value of solution. The detailed flow is shown as Algorithm 1.

Algorithm 1: <Solving fuzzy relational equation by GA>

Input: e (error criterion of GA), F(A)(objective function optimized by GA), Pk, Pc, popu_size, n(number of
possible assignable causes)
Output: ai = [ai, ai](i = 1, 2, . . . , n)
1. k = 0;
2. if F(n+1)(A) − F(n)(A) < e (% F(n)(A) denotes the fitness function of nth generation)
3. A(0) = (a1

(0), a2
(0), · · · , an

(0))← running result of GA with initial population
4. end if
5. if F(A(k+1)) − F(A(k)) < e
6. A(k+1) = (a1

(k+1), a2
(k=1), · · · , an

(k+1))← running result of GA with A(k)

7. if ai
(k−1) <= ai

(k)

8. ai = ai
(k−1), ai = ai

(k)

9. else ai = ai
(k), ai = ai

(k−1)

10. end if
11. end if

There is no accurate solution for aforementioned optimization problem, but an interval solution
ai = [ai, ai], where ai and ai are the upper and lower bound of element ai belonging to fuzzy cause
factor A:

Step one: Find the initial solution A(0) = (a1
(0), a2

(0), · · · , am
(0)) of the optimization problem,

where ai
(0)
∈ [ai, ai], i = 1, 2, · · · , m, the upper bound ai and lower bound ai took value in [ai

(0), 1] and
[0, ai

(0)] respectively.
Step two: Let A(k) = (a1

(k), a2
(k), · · · , am

(k)) is the kth solution, satisfying ai
(k)
∈ [ai, ai], i = 1, 2, · · · , m

and for given error range F(A(k)) � F(A(0)). Suppose that ai
(k)
≥ ai

(k−1) to find the upper bound ai
and that ai

(k)
≤ ai

(k−1) to find the lower bound ai. If A(k) , A(k−1), let ai = ai
(k) or ai = ai

(k) and then
continue to search the solution; if A(k) = A(k−1), the solution is obtained as ai = ai

(k) or ai = ai
(k) and

then stop the search.

4. Case Study

4.1. Problem Description

In this section, we take the form and position error abnormity diagnosis of precision shaft
machining as an example. In the cylindrical grinding process of that shaft, there are five kinds of
geometric error abnormity and twenty kinds of assignable causes according to the statistical information
of the monitoring results. Based on the experience of quality experts and production engineers, the
fuzzy relation matrix of abnormity and causes can be built:

The process abnormity of shaft or roundness can be classified into five types as follows:

(1) Elliptical deformation of workpiece;
(2) Drum deformation of workpiece;
(3) Tape of workpiece;
(4) Bending deformation of workpiece;
(5) Bulge of lapped shoulder;

It is known that the machining accuracy class is IT1 and the size specification is 20±0.001. During
quality inspection, the sample size is 30 and there are 20 inspection points for each individual. Grouping
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by inspection point, the statistical data of measurement of every group is plotted in a quality control
chart, so the monitoring window size of the control chart is 20. In order to control the geometric error
of shaft, such as shape and position error, the distribution of 20 measuring points along the shaft is
shown as Figure 4.
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Figure 4. Measuring schematic diagram.

During the process that the measured shaft rotates, the maximal size of diameter in each
measurement point was obtained by moving the measuring instrument along the shaft. Then, the
measurement data was plotted on the control chart. The abnormity of geometric error can be monitored
by observation-window with size of 20 points. The control chart abnormal patterns reflecting the five
types of quality abnormity is as follows:

(1) Shift of sample mean, i.e., Shift pattern (y1);
(2) Cycle of plotted point, i.e., Cycle pattern (y2);
(3) Upward or downward trend of plotted point, i.e., Trend pattern (y3);
(4) Freak of plotted point nearby the bending position, i.e., Freak pattern (y4);
(5) Out of control limit for plotted point nearby the lapped shoulder, i.e., OCL pattern (y5).

The detailed relationship between abnormal patterns and assignable causes is shown as Figure 5.
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For each abnormal pattern, the fuzzy relation can be obtained by pairwise comparison between
causes by use of the Saaty scoring method. After normalization processing (see [30]), the fuzzy relation
matrix R is as shown in Equation (5). Suppose the fuzzy abnormal patterns’ membership degree
of control chart be as follows: OCL_mf = 0.4412, Freak_mf = 0.8696, Shift_mf = 0.1853, Cycle_mf =
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0.8533, Trend_mf = 0.8016, so by taking the above data into the fuzzy relational equation Y = X ◦R, the
following equation was obtained:

R =



0.56 0.13 0.22 0.44 0.22
0.94 0.56 0.24 0.67 0.23
0.33 0.22 0.44 0.11 0.56
0.61 0.89 0.38 0.22 0.26
0.98 0.33 0.67 0.16 0.44

1 0.94 0.94 0.31 0.28
0.67 0.78 0.56 0.24 0.17
0.83 0.39 0.48 0.56 0.67
0.11 0.16 0.27 0.27 0.33
0.17 0.26 0.28 0.89 0.89
0.72 0.28 0.29 1 0.11
0.22 0.11 0.17 0.2 0.78
0.23 0.17 0.11 0.29 0.7
0.28 0.18 0.3 0.33 1
0.44 1 0.72 0.72 0.3
0.31 0.3 0.32 0.31 0.61
0.78 0.44 0.41 0.37 0.76
0.89 0.67 1 0.78 0.31
0.5 0.42 0.61 0.41 0.39

0.39 0.2 0.5 0.32 0.32



(5)

Y = (µShi f t1(n_Shi f t),µCycle(n_Cycle),µTrend(n_Trend),µFreak(n_Freak),µOCL(n_OCL))
= (0.1853, 0.8533, 0.8016, 0.8696, 0.4412)

The fuzzy relational equation waiting to be solved is as follows:

0.1853 = (a1 ∧ r11)∨ (a2 ∧ r21)∨ · · · ∨ (a20 ∧ r20,1)

0.8533 = (a1 ∧ r12)∨ (a2 ∧ r22)∨ · · · ∨ (a20 ∧ r20,2)

0.8016 = (a1 ∧ r13)∨ (a2 ∧ r23)∨ · · · ∨ (a20 ∧ r20,3)

0.8696 = (a1 ∧ r14)∨ (a2 ∧ r24)∨ · · · ∨ (a20 ∧ r20,4)

0.4412 = (a1 ∧ r15)∨ (a2 ∧ r25)∨ · · · ∨ (a20 ∧ r20,5)

4.2. GA Based Solution of Fuzzy Relational Equation

4.2.1. Fitness Function and Customer Functions

In terms of Equation (3), the fitness function of the above application case was built under Matlab
and the corresponding code was provided in Appendix A. During the running process, the running
results for each variable can be shown dynamically with the change of generations by use of the
customer functions of gaplotchange. For each variable, we defined a function named gaplotchange
plus variable number, so there are 20 similar functions. Taking the function for variable 1 as an example,
its definition code in Matlab was provided in Appendix B.

4.2.2. GA Parameter Setting

The GA parameters were set in the Matlab command window as shown in Table 1.
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Table 1. The parameters setting of GA in Matlab.

Parameters of GA Setting in Matlab Parameters of GA Setting in Matlab

PopulationSize 200 CreationFcn @gacreationlinearfeasible
MigrationDirection ‘forward’ FitnessScalingFcn @fitscalingprop

Generations Inf CrossoverFcn @crossovertwopoint
StallGenLimit Inf MutationFcn @mutationgaussian

InitialPopulation [200 × 20 double] Display ‘off’
MaxGenerations 2000 FunctionTolerance 1 × 10−6

InitialScores [200 × 1 double] PlotFcns
@gaplotbestf

@gaplotbestindiv
@gaplotchange

4.2.3. Obtaining the Initial Solution by Running GA

According to the above parameters setting, the GA was run under Matlab environment. Figure 6
shows the variation of fitness value and the optimal individual with the iteration number N.
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Figure 6. Running process of GA.

The first sub-graph at the top left corner of Figure 5 shows the variation of fitness function with the
iteration number, the second sub-graph was the optimal individual fitness value of current iteration,
and the sub-graph from 3rd to 33rd illustrated the change of membership degree of causes a1~a20 with
the iteration number or generations. The fitness value reached steady state when F = 0.093911 and the
initial solution of fuzzy relational equation were obtained by GA as follows:

A(0) = (a1
(0), a2

(0), · · · , a20
(0))

= (0.2158, 0.1315, 0.3809, 0.2969, 0.1903, 0.2307, 0.2896, 0.2987, 0.5615, 0.0844, 0.3275, 0.1011,
0.4412, 0.02040, 0.8533, 0.1158, 0.2642, 0.4369, 0.1130, 0.2736)

4.2.4. Repeat Running of the GA

Taking A(0) = (a1
(0), a2

(0), · · · , a20
(0)) as a new starting point, the GA was run continuously.

Finally, the final solution A(k) = (a1
(k), a2

(k), · · · , am
(k)), ai and ai were obtained. Let k = 20, the running
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results of membership degree of causes shown as Figure 7, which shows the variation of causes’
membership degree during the searching for the lower and upper boundary.
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Figure 7. The changing curve between the causes’ membership degree (Y-axis) and k (X-axis) obtained
by GA.

4.2.5. Interval Solution Obtained by GA

For the results obtained by GA, the interval values for each cause were showed in Figure 8.
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Figure 8. Boxplot of Interval solution of causes membership degree.

There are many ways to make use of the results for decision making. The most common one is
max function, i.e., the cause with highest upper bound will be selected for checking when one or more
abnormal patterns’ membership degree is larger than 0.9. In this case, we say that there is a remarkable
abnormality on control chart. However, if all abnormal patterns’ membership degree are less than
0.5, i.e., there is no obvious abnormality on control chart, we can adopt the max-min criterion. The
basic attitude of this method is optimistic. It suggests that decision makers should choose the cuses
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whose lower bound is the highest as the possible factors to be checked. For the case that all abnormal
patterns’ membership degree are between 0.5 and 0.9, we can take use of operator max(mean(ai)), the
results can be ranked according to the average of each interval values. It can be seen that the lower
and upper boundary of a15 almost overlapped and had the greatest value, so cause a15 contributed
most to the current control chart abnormity and should be checked firstly. Cause a20 was inferior to
a15 and so on, so the checking order of the 20 causes is as follows: a15(0.853), a20(0.575), a9(0.535),
a18(0.320), a3(0.314), a16(0.294), a13(0.287), a12(0.263), a5(0.253), a10(0.247), a11(0.245), a1(0.243),
a4(0.241), a17(0.226), a14(0.223), a2(0.218), a19(0.217), a8(0.211), a6(0.210), a7(0.204). Also, the decision
maker can neglect the results if the maximum of all abnormal patterns’ membership degree is less than
0.2. In this case, although the proposed GA output the interval solution, we think there is no reliable
abnormal trend on control chart and the process is in control state.

4.3. Other Simulating Application Cases

In order to further validate the effectiveness of the proposed method for other cases, we simulated
the convergence time of the proposed method for fuzzy relation equations with different variables. In the
simulation procedure, we change the variable number from 10 to 100 in intervals of 5. For each problem
with a fixed number of variables, a fuzzy relation matrix R and a fuzzy vector similar to the occurrence
degree of abnormal patterns were generated randomly, and these two groups of data also remain
unchangeable during the running of the GA to find the interval solution. The setting of parameters
is consistent with the data given in Table 1. The Matlab simulation code is provided in Appendix C.
The convergence time of the GA for different variable numbers is shown as Figure 9. The convergence
time fluctuates between 756.48 s and 912.92 s. Even for problems with 100 variables, the proposed
method can find the interval solution within 1000 s, so it is feasible and has higher effectiveness.
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5. Conclusions

This paper developed a fuzzy relational equation-based uncertain process abnormity diagnosis
model. The fuzzy relational equation was built by use of fuzzy relation matrix and abnormal patterns
membership degree. By transforming the fuzzy relational equation into an optimal problem, the
solution can be obtained by a GA under the Matlab environment. The proposed approach was applied
in a precise shaft machining process diagnosis and the detailed assignable causes precedence according
to their contribution to current abnormal pattern can be effectively obtained. The result also can
provide support for quality engineers to take measures to eliminate the abnormity.

There may be more variables in some process monitoring, so, the proposed solving approach by
use of GA should be improved in both coding method and design of the genetic operator in order
to make GA have good convergence performance. Furthermore, the application effectiveness of the
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solutions could be studied further in process operating cost or energy savings. The proposed model
could also be applied to other uncertain diagnosis problems.
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Appendix A

function z = obj_fun(x)
b = [0.1853 0.8533 0.8016 0.8696 0.4412];
r = R; %R is fuzzy relation matrix obtained from formula (4)
a = [x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) x(16) x(17)
x(18) x(19) x(20)];
c(1) = max(min(a,r(:,1)′));
c(2) = max(min(a,r(:,2)′));
c(3) = max(min(a,r(:,3)′));
c(4) = max(min(a,r(:,4)′));
c(5) = max(min(a,r(:,5)′));
z = sum((b-c).ˆ2)

Appendix B

function state = gaplotchange1(options, state, flag)
switch flag

case ’init’
[unused,i] = min(state.Score);
hold on;
set(gca,’xlim’,[0,options.Generations]);
xlabel(’Generation’,’interp’,’none’);
ylabel(’Variable value’,’interp’,’none’);
plotVv = plot(state.Generation,state.Population(i,1),’.k’);
set(plotVv,’Tag’,’gaplotchange’);

case ’iter’
[unused,i] = min(state.Score);
plotVv = findobj(get(gca,’Children’),’Tag’,’gaplotchange’);
newX = [get(plotVv,’Xdata’) state.Generation];
newY = [get(plotVv,’Ydata’) state.Population(i,1)];
set(plotVv,’Xdata’,newX, ’Ydata’,newY);

end

Appendix C

n = 10:5:100; %number of variable
t = zeros(1,length(n)); %record the running time for problem with n variables
for i = 1:length(n)

load(’options.mat’); nvars = n(i);
global s1; s1 = rng; global s2; s2 = rng;
t0 = cputime;
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ga(@fr_gaqiujie,nvars,[],[],[],[],zeros(1,nvars),ones(1,nvars),[],options);
t1 = cputime; t(i) = t1-t0;

end
function z = fr_gaqiujie(x)
global s1; rng(s1);
b = randi(length(x),1);
global s2; rng(s2);
r = rand(length(x),length(b));
for k = 1:length(x)

a(k) = x(k);
end
for j = 1:length(b)

c(j) = max(min(a,r(:,j)’));
end
z = sum((b-c).ˆ2);
end
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