
Article

Least Mean Squares and Recursive Least Squares
Algorithms for Total Harmonic Distortion Reduction
Using Shunt Active Power Filter Control

Radek Martinek *,† , Jaroslav Rzidky † , Rene Jaros *,† , Petr Bilik † and Martina Ladrova †

Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer
Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic;
jaroslav.rzidky@vsb.cz (J.R.); petr.bilik@vsb.cz (P.B.); martina.ladrova@vsb.cz (M.L.)
* Correspondence: radek.martinek@vsb.cz (R.M.); rene.jaros@vsb.cz (R.J.); Tel.: +420-721-009-971 (R.M.)
† These authors contributed equally to this work.

Received: 22 March 2019; Accepted: 17 April 2019; Published: 24 April 2019
����������
�������

Abstract: This paper deals with the use of least mean squares (LMS, NLMS) and recursive least
squares (RLS) algorithms for total harmonic distortion (THD) reduction using shunt active power
filter (SAPF) control. The article presents a pilot study necessary for the construction of our own
controlled adaptive modular inverter. The objective of the study is to find an optimal algorithm for the
implementation. The introduction contains a survey of the literature and summarizes contemporary
methods. According to this research, only adaptive filtration fulfills our requirements (adaptability,
real-time processing, etc.). The primary benefit of the paper is the study of the efficiency of two
basic approaches to adaptation ((N)LMS and RLS) in the application area of SAPF control. The study
examines the impact of parameter settings (filter length, convergence constant, forgetting factor)
on THD, signal-to-noise ratio (SNR), root mean square error (RMSE), percentage root mean square
difference (PRD), speed, and stability. The experiments are realized with real current and voltage
recordings (consumer electronics such as PC source without power factor correction (PFC), HI-FI
amplifier, etc.), which contain fast dynamic transient phenomena. The realized model takes into
account a delay caused by digital signal processing (DSP) (the implementation of algorithms on field
programmable gate array (FPGA), approximately 1–5 µs) and a delay caused by the reaction time of
the proper inverter (approximately 100 µs). The pilot study clearly showed that the RLS algorithm is
the most suitable for the implementation of an adaptive modular inverter because it achieved the
best results for all analyzed parameters.

Keywords: shunt active power filter (SAPF) control; least mean squares (LMS) algorithm; normalized
least mean squares (NLMS) algorithm; recursive least square (RLS); total harmonic distortion (THD);
control methods for SAPF; non-linear load; higher harmonic components

1. Introduction

This paper deals with the topic of shunt active power filter (SAPF) control [1–4]. The aim of the
study is to present a review of the methods of SAPF control used in practice. SAPFs are specially
controlled voltage or current inverters, and they have to contain a very powerful computing unit
that is able to react to the presence of higher harmonics immediately and reliably compensate these
higher harmonics and reactive powers in the network.

Contemporary industrial enterprises usually have several types of electric equipment and loads,
which can be separated into linear (heating, lamps, active loads, AC machine) and nonlinear (inverters,
uninterruptible power supply (UPS) or LED lighting systems). Semiconductor inverters are the main
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source of negative effects on voltage quality in electricity distribution systems. These effects include
the strain on the electric network from higher harmonics and reactive power.

Nowadays, two types of power filters are commonly used: passive [5] and active [6]. A passive
power filter (PPF) consists of inductors and capacitors, and its circuit design is simple, but it has the
following disadvantages [7]:

• An individual PPF is suitable only for a specific harmonic component since the harmonics
are high or low enough to be eliminated. Designing a group of PPFs for various harmonics
is uneconomical.

• Improving the power factor is less effective using a PPF, and in the case of change in the system
architecture, the original design is not applicable.

• PPF implementation can lead to equipment damage due to the production of series of resonance
parallel with the circuit impedance.

• The source impedance substantially affects PPF filtering properties.
• If a low-resistance circuit generates additional current harmonics, PPF becomes ineffective.
• The PPF takes more space.

Active filters can be classified as series active filters, shunt active filters, or a combination of
these types. A series active filter solves problems related to voltage harmonics, such as voltage
flicker, balancing, or sag. Conversely, a shunt active filter is used for solving current-related issues
and reactive power compensation. For active power filter (APF) implementation, power switches,
inductors, capacitors, and a control circuit are used. The control circuit calculates the compensation
current necessary to prevent resonance by the elimination of current harmonics. The disadvantage of
the APF is its greater switching loss than in the case of the passive filter. In addition, the complicated
design of the APF controller results in low reliability. However, it is easy to develop microprocessors of
power electronic components used in APF implementation, thanks to the modern level of technological
advancement, so that these disadvantages can be overcome. The effectiveness of APFs is mainly
influenced by determining the current harmonic, which can be obtained from either the frequency or
time domain. The frequency domain calculation is based on Fourier analysis, and the time domain
approach requires the use of instantaneous reactive power theory [7,8]. Using APFs, which are able
not only to compensate harmonics but also improve the power factor and voltage regulation under
different loads and unbalanced supply conditions, is the most effective solution. This fact has led
researchers to develop and implement cost-effective control methods. Today, techniques such as
instantaneous reactive power theory (d-q [9,10], p-q [11], modified d-q [12], p-q-r [13], vector [12]) are
implemented to compensate current in the electrical grid [14].

The primary objective of the authors is to develop a controlled adaptive modular inverter,
which will reflect the advantages of the adaptive systems. In the SAPF control area, these are
new, still unused approaches. The adaptive systems are characterized by the ability to change their
parameters according to information about the controlled system or processed signal. The real-time
identification (adaptive) algorithm is the core of the adaptive system. Modern adaptive systems have
already succeeded in many areas and industries (e.g., biological signal processing [15–19]; speech signal
processing [20–24]; control and regulation area [25–28]; etc.), and current practice suggests that the
same trend will continue in the future. For the practical use of these methods in real applications,
theoretical and practical research of both new and current methods is needed. The application areas
of these new approaches to digital signal processing are not very developed yet and are missing in
some areas. This can also be said of the area of SAPF control. For this reason, there is a wide scope for
further research and development. This paper presents a pilot study in this area.

The idea of adaptation is based on the properties of a living mass, so that we can talk about
the so-called bio-inspired approach. It refers to inspiration from the ability of living organisms to
adapt their behavior to changes in the environment, even though these changes are unfavorable.
This phenomenon is called learning. Among systems that are capable of adaptation (learning),
in addition to natural systems, we can now also include technical systems. Learning ability is
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sometimes considered as a definition of intelligence. It is natural that great effort is dedicated to
equipping technical systems with this feature. Technical adaptive systems are characterized by the
ability to adjust their parameters to current information about the controlled system or processed signal.

Currently, it is possible to observe a fast development of the methods of adaptive signal processing,
e.g., various modifications of the basic adaptive algorithms with stochastic gradient [29–31] and
recursive optimal adaptation [32–34], artificial neural networks [35,36], fuzzy systems [37,38], and their
combination, known as fuzzy-neuro systems [38,39]. The area of adaptive signal processing is one
of the fastest developing scientific/technical subjects. With the development of this area, there is
often, and especially in technical practice, a question of how these new methods can be used to solve
established goals in real applications. This paper focuses on the application of these methods in
SAPF control.

In this study, currently used control methods for SAPF are analyzed in detail. The experimental
part of the paper is focused primarily on adaptive methods for SAPF control. This progressive method
of control has been increasingly applied over the last few years. Several basic approaches have evolved:

• Artificial intelligence techniques and soft computing techniques (adaptive neuro-fuzzy inference
systems (ANFIS), adaptive linear neuron (ADALINE) ) [40–45]

• Adaptive algorithms (least mean squares (LMS) algorithm, normalized least mean squares
(NLMS), recursive least mean squares (RLS) algorithm, etc.) [46–48].

This study deals with the implementation of LMS, NLMS, and RLS algorithms. The goal is to
improve their behaviour for dynamically changing currents, where the nonlinear loads are quickly
connected and disconnected. The experimental results are evaluated by total harmonic distortion
(THD), signal-to-noise ratio (SNR), root mean square error (RMSE), and percentage root mean square
difference (PRD).

2. Shunt Active Power Filter

The parallel active filter forms the controlled current generator connected in parallel to a load.
It can remove the unwanted higher harmonic components by generating the same components with
the inverse phase and introducing them into the network. Thus, the current carried from the network is
filtered and the deformations of the voltage, caused by non-sinusoidal voltage drops on power network
impedance, are corrected. In this way, the compensation of the harmonic components can be carried
out without the danger of unwanted resonance. Due to the generation of phase-shifted fundamental
current harmonics, the filter is able to compensate the reactive power very quickly, eventually altering
the asymmetric load to a symmetric one. The parallel filter is connected to the network via a coupling
passive filter since the inverter of the active filter itself is the source of higher harmonics. The passive
filter is a low-pass LC filter [6].

The current or voltage generator can consist of a bridge connection of semiconductor switches
(insulated gate bipolar transistor (IGBT)). This generator in the three-phase system contains six switches
and the current or voltage source. In practice, a solution with a voltage-source variant was proved.
The desired shape of the current flowing to the filter can be obtained by the appropriate switching of
transistors on the bridge. Figure 1 shows a simplified block diagram of a SAPF [6].
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Figure 1. Block diagram of a shunt active power filter (SAPF).

3. Control Methods for SAPF

Nowadays, SAPF control algorithms can be divided into two basic types of control: control in the
time domain [1,49,50] and control in the frequency domain [49,51]. The control can be used both for
one-phase [52] and three-phase connections [49,50,53] of SAPFs.

The control methods in the time domain can be separated according to a calculation of the
compensation quantities (voltages or currents) using techniques working with the instantaneous
powers in the power grid: p-q, unity power factor (UPF), perfect harmonic cancellation (PHC), and the
synchronous detection method (SDM), or with the components of the instantaneous current values:
synchronous reference frame (SRF), Id-Iq [49].

The control algorithm in the frequency domain uses a Fourier analysis, such as discrete Fourier
transform (DFT), fast Fourier transform (FFT), or recursive discrete Fourier transform (RDFT), to obtain
the reference values. This has the disadvantage of a long computing time and the generation of a time
delay. One period of the signal is needed for the computation of FFT. Some publications compute FFT
only from a half or a quarter of a period. This is suitable when the signal shape is symmetric over
these stages [49].

3.1. Control in the Time Domain

Methods using an instant value of the current or powers of the load are often used for this purpose.
Some techniques employ suitable algebraic transformations (Clarke transform [9], transformation 3/2).
The axis coordinates for these methods are shown in Figure 2.

c - axis

a - axis
α - axis

d - axis

b - axis β - axis

q - axis

Θ
uq

uα

Us

ud

uβ

Figure 2. Axis coordinates used in transformations.
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3.2. Instantaneous Inactive Filter Control (p-q Theory)

The p-q method works with instant values in the three-wire or four-wire three-phase power
system. It is suitable for the steady-state signals but also for a transition state. This theory is based on
the Clarke transformation [9] of the three-phase voltages and currents in coordinates a-b-c into the
coordinates α-β-0, with a successive calculation of the instantaneous power components of p-q theory.
After transformation, the following voltages and currents in coordinates α-β-0 [11] are obtained: u0

uα

uβ

 =

√
2
3
·


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2
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 ·
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·
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2
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2 −
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 . (2)

p = uα · iα + uβ · iβ instantaneous real power. (3)

q = uα · iβ + uβ · iα instantaneous imaginary power. (4)

The power components p and q are related to the same α-β voltages and currents, and they can
be written down together: [

p
q

]
=

[
uα uβ

−uβ −uα

]
·
[

iα

iβ

]
. (5)

For detailed information, see [54,55].

3.3. Synchronous Reference Frame Method

Within the SRF method, the source currents (ia, ib, ic) are first detected and transformed into
two-axis stationary coordinates α-β-0 from the three-axis stationary coordinate a-b-c according to
Equation (6) [10].  iα

iβ

i0

 =

√
2
3
·

 1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2

 ·
 ia

ib
ic

 . (6)

Two direct Park transformations [9] are used there. They enable the evaluation of the specific
harmonic component of the input signals and low-pass filter. Next, the two-axis current quantities iα

and iβ of the stationary axis α-β are transformed into a two-axis synchronous (rotating) coordinate d-q
according to Equation (7), where cosΦ and sinΦ represent a synchronous unit of the vectors, which
can be generated using a phase locked loop (PLL) [10].[

id
iq

]
=

[
cosΦ sinΦ
sinΦ cosΦ

]
·
[

iα
iβ

]
. (7)

The currents id and iq contain both AC and DC components. The primary component of the
current is the fixed DC part, and the AC component represents a harmonic part. This harmonic
component can be easily extracted using the high-pass filter. The current id is the combination of the
fundamental active current (id_DC) and the harmonic current of the load (idh). The primary component
of the current rotates synchronously with the rotating axis, and it can be considered as the direct
current. By the filtering of id, the current representing the fundamental component of the current of
the load in the synchronous axis is gained. Thus, the AC component idh can be obtained by subtracting
id_DC from the total current id, which leaves behind the harmonic component present in the current of
the load. In the rotating axis, the current of axis q (iq) represents a sum of the fundamental reactive
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current and of the harmonic currents of the load. The current in axis q can be used for the calculation
of the reference compensation current. The inverse transformation is made for the transformation of
the currents from the two-axis synchronous axis d-q into a two-axis stationary axis α-β according to
Equation (8) [10]. [

iα

iβ

]
=

[
cosΦ −sinΦ
sinΦ cosΦ

]
·
[

idh
iq

]
. (8)

In the end, the current transformed from the two-axis stationary axis α-β-0 back into the three-axis
stationary axis a-b-c according to Equation (9) and the compensation reference currents i∗ca, i∗cb, and i∗cc
are obtained [10].  i∗ca

i∗cb
i∗cc

 =

√
2
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·
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1 0 1√
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− 1
2
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3

2
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2
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2
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2
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 . (9)

3.4. Control of Instant Values of Current Components (ID-IQ Method)

This method uses the same system of coordinates as SRF, but unlike SRF, there is no need
for a phase-locked loop (PLL) and synchronization. The currents id and iq can be obtained from
Equation (10) [50].

[
id
iq

]
=

√
2
3
·
[

cosΦ cos(Φ− 2π
3 ) cos(Φ− 4π

3 )

−sinΦ −sin(Φ− 2π
3 ) −sin(Φ− 4π

3 )

]
·

 ia
ib
ic

 , (10)

where
cosΦ =

uα√
u2

α + u2
β

, sinΦ =
uβ√

u2
α + u2

β

, (11)

where uα and uβ are from p-q theory. This method is also suitable for three-phase systems [50].
The conversion from coordinates d-q to coordinates a-b-c is the same as in the case of SRF.

For detailed information see [56].

3.5. Control of Instantaneous Inactive Power in Coordinates p-q-r

This theory is characterized by a double transformation process: a first conversion of the voltages
and currents from the coordinates a-b-c into coordinates α-β-0 and a second conversion from the
coordinates α-β-0 to coordinates p-q-r according to the following equations [13]: iα

iβ

i0

 =

√
2
3
·

 1 − 1
2 − 1
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 , (12)
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 ·
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 . (13)

The physical importance of the coordinate transformation of the equations mentioned above is
shown in Figure 3. The vertical angles from the plane α-β into coordinates a-b-c are the same, namely
Φ = tg−1(1/

√
2), and axis a is located above axis α [13].

As shown in Figure 4a, the new coordinate α′-β′-0 is made by rotating axis 0 of the coordinate
α-β-0 using angle Φ1, which results in the alignment of axis α with a vector of the instantaneous spatial
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voltage (eαβ) into the plane α-β. The current of the spatial vector in coordinate α′-β′-0 can be expressed
as [13]  iα′

iβ′

i0

 =

 cosΦ1 sinΦ1 0
−sinΦ1 cosΦ1 0

0 0 1

 ·
 iα

iβ

i0

 =


eα
eαβ

eβ

eαβ
0

− eβ

eαβ

eα
eαβ

0

0 0 1

 ·
 iα

iβ

i0

 , (14)

where
eαβ =

√
e2

α + e2
β. (15)

α - axis

b - axis

β - axis

0 - axis

c - axis

a - axis

Θ

Figure 3. The physical importance of the coordinate transformation between a-b-c and α-β-0.

Similarly, the coordinates p-q-r can occur by the rotation of axis β′ of the coordinate α′-β′-0
using angle Φ2, as shown in Figure 4b. This results in the alignment of axis α′ with a vector of
the instantaneous spatial voltage (eαβ0). The current of the spatial vector in the coordinate p-q-r
is expressed as [13]

 ip
iq
ir

 =

 cosΦ2 0 sinΦ2

0 1 0
−sinΦ2 0 cosΦ2

 ·
 iα′

iβ′

i0

 =


eα β
eαβ0

0 e0
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0 1 0
− e0

eαβ0
0 eα β

eαβ0

 ·
 iα′

iβ′

i0

 , (16)

where
eαβ0 =

√
e2

α + e2
β + e2

0. (17)

α - axis

β - axis

e

Θ

a) b)

β' - axis α' - axis

1

α

eβ

0 - axis

(q - axis)
eαβ

Θ1

α' - axis

0 - axis

e

Θ

r - axis p - axis

2

αβ

e0

q - axis

eαβ0

Θ2

Figure 4. The physical importance of the coordinates p-q-r; (a) the relation between coordinates α′-β′-0
and α-β-0 (a view from the top of axis 0); and (b) the relation between coordinates α′-β′-0 and p-q-r (a
bottom view of axis 0).
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The axes β′ and q are identical. By the combination of Equations (16) and (18), the transformation
from coordinate α-β-0 into coordinate p-q-r occurs [13]:

 ip
iq
ir

 =


eα

eαβ0

eβ

eαβ0

e0
eαβ0

− eβ

eαβ

eα
eαβ

0

− e0·eα
eαβ0·eαβ

− e0·eβ

eαβ0·eαβ

eαβ

eαβ0

 ·
 iα

iβ

i0

 . (18)

3.6. Unity Power Factor

The UPF method requires that the load and active power filter are considered as a linear load.
If this is fulfilled, the source current after compensation is expressed as

isref = K · us, (19)

where K according to Equation (20) is the conductivity of the nonlinear load and the power active filter.
After compensation, the source current is sinusoidal with the same shape as the source voltage, and
they are in phase. No higher harmonics are present in the current source, and the power factor is equal
to one [1,52].

K =
−→p Lαβ +

−→p L0

(u2
0 + u2

α + u2
β)DC

. (20)

The power delivered by the source is

ps = us · isref = us · K · us = K(u2
0 + u2

α + u2
β). (21)

The reference current of the source is defined as is0ref

isαref

isβref

 = K ·

 u0

uα

uβ

 =
−→p Lαβ +

−→p L0

(u2
0 + u2

α + u2
β)DC

·

 u0

uα

uβ

 . (22)

3.7. Perfect Harmonic Cancellation

The result of these methods is the compensation of all of the harmonic currents and the
fundamental reactive power taken by the load. The current of the source is in phase with a fundamental
component of the voltage of the source at the point of common coupling (PCC) [1]. The reference
source current is defined as

isref = K · u+
1 , (23)

where u+
1 is the spatial vector of voltage with a fundamental harmonic of the source at the PCC.

The power delivered by the source is expressed as

ps = us · isref = us · K · u+
1 = K(uα · u+

α1 + uβ · u+
β1), (24)

where

K =
−→p Lαβ +

−→p L0

u+2
α1 + u+2

β1

. (25)

In the end, the reference current of the source is defined: is0ref

isαref

isβref

 = K ·

 0
uα1

uβ1

 =
−→p Lαβ +

−→p L0

u+2
α1 + u+2

β1

·

 0
u+

α1
u+

β1

 . (26)
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3.8. Synchronous Detection Method

This theory can work effectively in symmetric or asymmetric systems because the compensation
currents are calculated by taking into account the voltages of individual phases. This theory is used
to calculate the compensation currents, while the three-phase source powers a highly nonlinear load.
The method of the uniform distribution of the SDM current is used in this study to compute three-phase
compensation currents that are supplied by the active filter [53].

When calculating three-phase compensation currents using the method of equal distribution of
SDM current, the following assumptions are taken into account: the voltage is not distorted and the
loss in the neutral wire is negligible [53].

Assume that the maximal values of source currents are symmetric after compensation:

Iam = Ibm = Icm = Im. (27)

The maximal values of the active curents in each phase after compensation are

Iam =
2Pa

Uam
, Ibm =

2Pb
Ubm

, Icm =
2Pc

Ucm
, (28)

where Pa, Pb, and Pc are the real powers of each phase, and Uam, Ubm, and Ucm are the maximal values
of the voltages of each phase.

Overall average power is defined as

PTav = Pa + Pb + Pc. (29)

By adjusting, we get
Ut = Uam + Ubm + Ucm, (30)

Pa =
Uam

Ut
Pav, Pb =

Ubm
Ut

Pav, Pc =
Ucm

Ut
Pav. (31)

The currents of the reference active source are calculated as

iac c(t) =
2Pav

Uam ·Ut
uan(t), (32)

ibc c(t) =
2Pav

Ubm ·Ut
ubn(t), (33)

icc c(t) =
2Pav

Ucm ·Ut
ucn(t), (34)

where the compensation currents are defined as

ic an(t) = ian(t)− iac c(t), (35)

ic bn(t) = ibn(t)− ibc c(t), (36)

ic cn(t) = icn(t)− icc c(t). (37)

3.9. Selection of the Optimal Method

Revuelta et al. [12] analyzed the strategies gained from five formulations of the instantaneous
power theory (d-q [9,10], p-q [11], modified d-q [12], p-q-r [13], and vector [12]) applied on symmetrical,
asymmetrical, and non-sinusoidal symmetrical nonlinear systems. They compare the performance of
the compensation using two quantities measured in the source currents after compensation: the value
of THD and the effective value of the current in the neutral wire in a three-phase four-wire system.
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The methods p-q, p-q-r, d-q, and vector obtained a zero current through the neutral wire, but the
modified p-q methods did not obtain these results.

The vector and d-q methods only gained zero THD after compensation. The p-q and p-q-r
techniques reached distortion below 10%. The modified p-q method exceeds this value in both cases.

The effective value of the current through the neutral wire is zero in the case of the symmetric
system. Thus, when Equation (38) is valid,

I1 + I2 + I3 = 0. (38)

Since we work with a modular inverter that can work in both single-phase and three-phase
systems, there is a requirement that an algorithm also works in both systems. Neither of the
above-mentioned three-phase algorithms satisfies this requirement. Of course, there are different
variants for single-phase systems, e.g., p-q theory [57,58], but this requires modification of the algorithm
for each system. The next requirement is the real-time operating of the algorithms. Neither of the
former methods met both conditions, which led us to the idea of using adaptive filtration, with which
the authors have extensive experience in other areas. The advantage of the proposed concept is that
the adaptive algorithms could effectively work in non-symmetric system, thus a zero current could
be reached in the neutral wire. Its next benefit is the possibility of optimal settings of the adaptive
filters for the individual phases. It can be expected that these settings will be different for each phase,
resulting in better results than in the case of existing methods.

4. Adaptive Filtration

Adaptive filters are in practice used in an unknown environment, where the preliminary
identification is challenging, or in a time-variant environment, which is unpredictable. In these
cases, the digital finite impulse response (FIR) or infinite impulse response (IIR) filters with adaptive
coefficients, which vary in time, are used. These filters are named adaptive filters [59–63].

Figure 5 shows the general structure of an adaptive filter, where n is the number of iterations,
x(n) is the reference signal, d(n) is the input signal, e(n) is the output error signal, and y(n) is the
output desired signal. The error signal e(n) is defined as e(n) = d(n)− y(n) and is used to create
a purpose function ξ(n), which is needed in the adaptive algorithm to determine the appropriate
optimal adaptive filter coefficient. The result of the process is the gradual reduction of the purpose
function value to its minimum [59].

Adaptive
filter

algorithm
Adaptive

x(n) y(n)

d(n)

e(n)-
+

Σ

Figure 5. The structure of the adaptive filter.

The purpose function for the LMS algorithm is defined as

ξ(n) = E[e2(n)] = E[(d(n)− y(n))2], (39)

and the purpose function for the RLS algorithm is expressed as

ξ(n) =
n
∑

k=1
pn(k)e2

n(k),

pn(k) = λn−k,
(40)
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where k = 1, 2, 3, . . . n and parameter λ is denoted as a factor for forgetting in the range of 0 to 1, but it
is recommended to use values ranging from 0.95 to 1.

The block diagram of the adaptive filter is shown in Figure 6, where wi represents the coefficients
of the scale vector of the transversal FIR filter and Z−1 represents the delay. This block diagram is
valid both for LMS and RLS algorithms. In this study, the input signal is in the form of a column vector
defined by the following equation:

−→x (n) = [x(n)x(n− 1)x(n− 2) . . . x(n− N + 1)]T. (41)

W0 W2 WN-1W1

+ + +
y(n)

x(n-N+1)x(n-2)x(n-1)x(n)
Z-1 Z-1 Z-1

Figure 6. Block diagram of the adaptive filter.

The scale vector of the transversal filter is

−→w (n) = [w0(n)w1(n)w2(n) . . . wN−1(n)]T. (42)

The output signal of the adaptive filter is expressed as

y(n) =
N−1

∑
i=0

wi(n)x(n− i). (43)

More information about the adaptive filtration is provided in [62–67]. The algorithms used in
this study are further described from the point of view of proper implementation. In [68–71], the
algorithms are explained in detail. It is essential to state that all algorithms were implemented based
on virtual instrumentation in the LabVIEW development environment [72–74].

4.1. Least Mean Squares Algorithm

The LMS algorithm is the main performer in the class of stochastic gradient algorithms based on
the theory of Wiener filtration, stochastic averaging, and the least squares method [48].

Each iteration of the LMS algorithm requires three different steps, in this order:

1. Filter output y(n) is calculated according to Equation (43).
2. The value of the estimated error is calculated as e(n) = d(n)− y(n).
3. The weights of the filter vector are updated according Equation (44) [48].

−→w (n + 1) = −→w (n) + 2µe(n)−→x (n). (44)

The parameter µ is called the convergence constant or the step size of the LMS algorithm. It is a
low positive constant that influences the properties of algorithm adaptation (the speed of convergence,
filter stability, etc.) [48].
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4.2. Normalized Least Mean Squares Algorithm

If the input signal x(n) gets relatively high values, the use of the LMS algorithm results in
amplification of the noise. The normalized LMS (NLMS) algorithm employs a variable convergence
constant for each iteration, which is calculated using the input signal power [75–77].

−→w (n + 1) = −→w (n) +
µ

‖−→x (n)‖
−→x (n)e(n), (45)

where
µ(n) =

µ

‖−→x (n)‖2 . (46)

4.3. Discussion of the Choice of Coefficient µ Value

A quantity µ represents a step size. This constant has a significant influence on the speed and
stability of the adaptive algorithm convergence. Substitution of the correct value (typically a small
positive constant) for µ is necessary for the proper operation of the LMS algorithm:

• If the selected value of µ is too small, the time required to find the optimal solution by an adaptive
filter is too long.

• If the chosen value of µ is too high, the adaptive filter becomes unstable, and the output brings
deviations.

In Figure 7 , the red line shows the optimal trajectory corresponding to the steepest process.
Black (LMS algorithm) and green lines (RLS algorithm) represents a way for the coefficients estimation
to get closer to the right (optimal) value. It takes several number of iterations n to get to optimal
value. Also, it is evident that the given optimization process has its beginning provided by the initial
estimation and its ending given by the terminal (optimized) estimation, i.e., P = [w(opt,0), w(opt,1)].

wopt,1

wopt,0

LMS algorithm

Isoline of the

Initial estimate

cost function

Trajectory of the
steepest descent

RLS algorithm

w
 (

n)
 

1^

w (n) 2
^

Figure 7. Illustration of the coefficient optimization process.
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4.4. Recursive Least Squares Algorithm

The RLS algorithm is a primary performer in the class of recursive algorithms, which are based
on the theory of Kalman filtration, time averaging, and the least squares method. In contrast to the
LMS algorithm, the RLS algorithm has its own statistic conception. It works with average values of
quantities, which are calculated from time outputs [48].

For RLS algorithm implementation, the following steps have to be taken in this order:

1. The filter output is calculated using filter weights from the previous iteration and the present
input vector:

−→y n−1(n) =
−→w T(n− 1)−→x (n). (47)

2. The vector of the mean gain is estimated using the following equation:

−→u (n) = ψ̃−1
λ (n− 1)−→x (n),

−→
k (n) = 1

λ+−→x T(n)−→u (n)
−→u (n).

(48)

3. The value of the estimated error is calculated according to following equation:

−→e n−1(n) = d(n)−−→y n−1(n). (49)

4. The filter weights vector is updated using Equation (49) and the vector of the gain is calculated
from Equation (47):

−→w (n) = −→w T(n− 1) + k(n)−→e n−1(n). (50)

5. The inverse matrix is computed according to following equation:

ψ̃−1
λ (n) = λ−1(ψ̃−1

λ (n− 1)−
−→
k (n)[xT(n)ψ̃−1

λ (n− 1)]). (51)

4.5. Discussion of the Choice of Coefficient λ Value

In [78], the coefficient λ is labeled as the so-called forgetting coefficient, taking values λ ∈ (0, 1〉.
If λ = 1, then we talk about the estimation without forgetting. Due to the form λn−i, we can speak of
weighting. The input values of the individual signal before i = 1 are considered as zero; the values
from the last n sets of values are significant. So, the previous autocorrelation matrix or correlation
vector tends to be weighted, adding a correction for the actual values of the autocorrelation matrix or
the correlation vector.

During practical implementation, we usually take into account values from λ = 0.98 to λ = 1.
For small values of the coefficient λ, a small contribution of the previous samples into the covariance
matrix exists. The filter is more sensitive to the actual samples. When i − n, i.e., λn−n = λ0 = 1,
the mathematical description of the RLS algorithm is reduced to the description of LMS algorithm
[∆(n) = λn−(i=n) = 1].

4.6. Comparison of Mathematical Requirements

From the point of view of the implementation of the adaptive algorithms into digital signal
processing (DSP), the computational cost and the memory requirements are especially important.
These parameters are shown in Table 1, where M is the filter order.

Table 1. Computational cost of the least mean squares (LMS) and recursive least mean squares
(RLS) algorithms.

Algorithm Plus/Minus in One Iteration Multiplication in One Iteration Memory Requirements

LMS M + 1 2M 2M
RLS M2 + M 2M2 + 3M + 50 M2 + 3M
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By comparing the mathematical requirements, we can conclude that the RLS algorithm,
which obtains better results than the LMS algorithm, has a high computational cost, which has
an impact on the hardware requirements (processor and memory) the algorithm works on.

5. Experiments

Figure 8 shows the block diagram of the experiments, which were made with measured data (PFC
is power factor correctio). During the experiments, both voltage and current on one-phase load were
measured using National Instruments data acquisition hardware. The voltage was measured by an NI
9225 voltage input module and the current was measured by an NI 9227 current input module. Both
NI 9225 and NI 9227 modules were plugged into a cDAQ 9185 chassis, and the chassis was connected
to a PC by Ethernet. Voltage and current modules were configured to measure instant voltage and
current values using simultaneous sampling with a sampling rate of 50 kSamples/s per channel. The
software uses a time window Tw of 10 periods of the fundamental frequency (200 ms for a 50 Hz
frequency) according to the IEC 61000-4-30 Ed.2.0. The amplitude of the fundamental harmonic, which
serves as the amplitude of the reference sinus waveform, is settled using FFT.

The compensating current is obtained based on the sinusoidal reference current, the nonlinear
current of the load, and the settings of the adaptive filter. The compensating current, which is obtained
by the adaptive filter, is sent to the inverter, where the compensating current is generated, and then it
is sent in the opposite phase to the PCC. However, we did not use the inverter, and were working in
simulation mode when the delay of 100 µs was implemented. A 100 µs delay value was chosen because
this value will also be performed in our modular inverter. After injecting compensation current, the
sinusoidal waveform of the current in the electrical network should occur. Then, the parameters
evaluating the filtration quality are computed. Loading of loads from the recorded data was made as
if the loads were plugged into a socket. We did not work with the voltage because we are not able
to observe a reverse effect of the current after compensation, when a deformation adjustment would
occur, without the inverter.

Electrical
grid

Inverter
Control

unit

L ,RS     S

CDAQ 9185
NI-9225

L  ,RL       L

L  ,RC      C

POWER BLOCK I  S I  L

I  C

LOADS

PC source
without PFC

PC source
with passive PFC

PC source
with active PFC
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Standby

Audio-tape

FFT
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DSP
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PRD
RMSE
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 (
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Figure 8. Block diagram of the experiment.

Figure 9 shows the one-phase waveform of the current with a substantial distortion of six nonlinear
loads when each load has a time window length 100 ms. These loads were immediately changed for
the verification of the robustness of the adaptive algorithm. The THD of the signal shown in Figure 9
is 63.27%. Figure 10 shows the FFT and THD for each load, in lengths of 100 ms.
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Figure 9. The waveforms of the individual tested loads; (a) PC source without PFC, (b) HI-FI amplifier
on, (c) PC source with passive PFC, (d) HI-FI amplifier in standby mode, (e) PC source with active PFC,
(f) audio-tape recorder.
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Figure 10. FFT of the individual loads; (a) PC source without PFC, (b) HI-FI amplifier on, (c) PC
source with passive PFC, (d) HI-FI amplifier in standby mode, (e) PC source with active PFC,
(f) audio-tape recorder.
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Voltage input module NI 9225 has three direct voltage inputs. The incoming analog signal on
each channel was conditioned, buffered, and then sampled by a 24-bit Delta-Sigma AD converter.
The operating input range of NI 9225 is 850 Vpp (peak–peak). Loads were connected to a low-level
distribution system with a nominal voltage of 230 V, 50 Hz, and this voltage was measured.

Current input module NI 9227 has four direct current inputs using a 12 mΩ shunt resistor
as a current sensor. The incoming analog signal on each channel was conditioned, buffered, and
then sampled by a 24-bit Delta-Sigma AD converter. The operating input range of NI 9227 is 28
App(peak–peak). Thanks to the enormous dynamic range of the 24-bit AD converter, the typical
scaling coefficient (SC) was 1.785 µA/LSB.

SC =
Ipp

2N =
28
224 = 1.785 µA. (52)

From the set of loads presented in Figure 9, the smallest currents were measured for the following
two loads: (d) HI-FI amplifier in standby mode had a peak–peak current of 30 mA and (f) the audio-tape
recorderhad the peak–peak current of 80 mA. From the information above can be calculated the number
of AD converter levels used to represent the smallest measured current, 30 mApp:

30 mApp

1.785 µA
= 16806 levels. (53)

To calculate the AD converter output word width from the known number of AD converter levels,
the following formula can be used:

I = log216806 = 14.037 bit. (54)

From this formula, it is evident that even the measured current peak-to-peak value (30 mApp)
is very small in comparison with the input range of the current module (28 A). Thanks to the huge
dynamic range of the 24-bit AD converter used, the small signal is theoretically divided into 16806
levels and this corresponds to 14-bit AD converter.

For the measurement equipment, the effective number of bits (ENOB) has to be considered to
respect the whole signal-chain and the real AD converter parameters. In the documentation for NI 9227,
the ENOB cannot be found, but even subtracting 4 bits because of noise, the smallest measured signal
was converted into digital form using a 14−4 = 10 bit AD converter. Regular oscilloscopes use 8 bit
AD converters, the high-end oscilloscopes use 10 bit AD converters, and only the best oscilloscopes
use 12 bit AD converters [79].

6. Results

For the purpose of simulation, a delay of 100 µs was added, which corresponds to the delay of the
inverter, on which we will apply the algorithms. This delay resulted in the current after compensation
not having the clearly sinusoidal waveform that was obtained in the case of adaptive algorithms
without delay. However, from the view of the THD, this is a substantial improvement, namely from
63.27 % to 12.51 % when using LMS; to 14.3 % when applying NLMS, and to 6.43 % when utilizing the
RLS algorithm. Figures 11–13 show the waveform of the reference (green) and input (red) signals after
filtration. The overshoots in the first 100 ms are caused by the delay of the inverter and by the type of
compensated load. The overshoots are not so evident in the case of other types of load.

In Figure 14, the frequency spectras of the signal before and after filtration are shown. Before
filtration, there exists a significant level of the third and fifth harmonics in the spectra. Those harmonics
are suppressed by filtration using all three adaptive algorithms.
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Figure 11. Input signal after filtration using the LMS algorithm; filter length 10, step size 0.005,
delay 100 µs.
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Figure 12. Input signal after filtration using the NLMS algorithm; filter length 100, step size 0.005,
delay 100 µs.
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Figure 13. Input signal after filtation using the RLS algorithm; filter length 2, forgeting factor 0.999,
delay 100 µs.
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Figure 14. FFT of input signal from 0 to 600 ms; (a) before filtration, (b) after applying the LMS
algorithm with a filter length of 10 and a step size of 0.005, (c) after applying the NLMS algorithm with
a filter length of 100 and a step size of 0.005, (d) after applying the RLS algorithm with a filter length of
2 and a forgetting factor of 0.999.

In Figure 15, you can see that the effect of the inverter delay on the THD was tested as part of
adaptive filtration testing when the RLS algorithm was used. It was found that with a filter length of 2
and forgetting factor of 0.999, the delay set from 50 µs to 200 µs had an effect on the THD in the range
of ± 8 %. This range varies depending on the filter settings, so the correct adaptive algorithm settings
will be crucial for our application.
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Figure 15. Influence of inverter delay on shape and THD after applying the RLS algorithm with a filter
length of 2 and a forgetting factor of 0.999. (a) after applying a 50 µs delay, (b) after applying a 150 µs
delay, (c) after applying a 200 µs delay, (d) FFT after applying a 50 µs delay, (e) FFT after applying
a 150 µs delay, and (f) FFT after applying a 200 µs delay.
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6.1. Total Harmonic Distortion

The THD defines the distortion of the sinus signal, indicated as a percentage. It is defined as a ratio
of the sum of all powers of harmonic components and the power of the fundamental harmonic [80,81].

THD =

√
P2

2 + P2
3 + P2

4 + · · ·+ P2
n

P1
· 100, (55)

where P1 is the power of the fundamental harmonic, and P2, . . . , Pn are the powers of higher harmonics.

6.2. Signal-to-Noise Ratio

The SNR is defined as the useful signal standoff from the noise, and it is indicated in decibels (dB).
If the SNR is higher than 0 dB, the useful signal is greater than the noise. For the calculation, there is a
need to know the ideal (reference) signal [82].

SNROUT = 10 · log10

(
∑N−1

i=1 [sigideal(i)]
2

∑N−1
i=1 [sigout(i)− sigideal(i)]2

)
. (56)

6.3. Root Mean Square Error

The RMSE is defined as the mean quadratic error. It settles the difference between real and ideal
values. The unit is established according the measured quantity [83].

RMSEOUT =
1
n

√
n

∑
i=1

(
sigout(i)− sigideal(i)

)2
. (57)

6.4. Percentage Root Mean Square Difference

The PRD is defined as the percent difference of the mean quadratic error [84,85].

PRDOUT =

√√√√∑N
i=1[sigideal(i)− sigout(i)]2

∑N
i=1 sig2

ideal(i)
· 100. (58)

The filtration quality can be evaluated using the parameters THD, RMSE, and PRD when the
values should be as low as possible and the parameter SNR when the values should be as high
as possible.

The LMS and NLMS algorithms have a time of convergence under 100 ms with suitable settings
and the RLS algorithm takes approximately 10 ms to stabilize the initial overcoming oscillation. Thus,
we examined this time and the steady time separately.

From Tables 2 and 3, it can be seen that during the application of the LMS and NLMS algorithms,
the THD is lower with a smaller step size. However, there is a longer time of convergence. For this
reason, it is suitable to also compare the signal based on other parameters, such as SNR, RMSE, or
PRD. Therefore, the most suitable settings of the LMS algorithm are a filter length of 10 and a step size
of 0.001, and for the NLMS algorithm, a filter length of 100 and a step size of 0.001.

Tables 2 and 3 lead to the conclusion that in the case of the RLS algorithm, it is not appropriate to
set the value of the forgetting factor under 0.999 because these settings are non-stable or the parameters
of the electrical network get worse. The best results were obtained using a forgetting factor of 0.999.
The size of the filter length has an impact primarily in transitions where the amplitude changes, and
in the case of a large filter length, the overcoming oscillations, which can reach up to multiple of the
desired amplitude, occur.
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Table 2. Results of the experiment using adaptive algorithms for the initial stage (from 0 to 100 ms).

LMS Filter Length (-) = 10 Filter Length (-) = 30

µ THD SNROUT RMSEOUT PRDOUT THD SNROUT RMSEOUT PRDOUT
(-) (%) (dB) (A) (%) (%) (dB) (A) (%)

0.01 31.41 7.25 0.0012 43.42 70.68 2.09 0.0022 78.57
0.001 49.31 4.19 0.0018 62.02 31.92 6.55 0.0013 47.06
0.005 28.69 7.57 0.0012 41.83 41.48 5.41 0.0015 53.65

NLMS Filter Length (-) = 50 Filter Length (-) = 100

µ THD SNROUT RMSEOUT PRDOUT THD SNROUT RMSEOUT PRDOUT
(-) (%) (dB) (A) (%) (%) (dB) (A) (%)

0.01 56.43 4.38 0.0017 60.38 55.95 4.33 0.0017 60.78
0.001 52.16 4.07 0.0018 62.57 44.98 4.31 0.0017 60.85
0.005 42.34 5.61 0.0015 52.44 38.59 5.90 0.0014 50.70

RLS Filter Length (-) = 2 Filter Length (-) = 30

λ THD SNROUT RMSEOUT PRDOUT THD SNROUT RMSEOUT PRDOUT
(-) (%) (dB) (A) (%) (%) (dB) (A) (%)

0.99 84.37 1.41 0.0024 84.97 Unstable Unstable Unstable Unstable
0.999 29.63 8.41 0.0011 37.98 29.55 7.95 0.0011 40.06

0.9999 31.71 8.10 0.0011 39.36 31.29 7.71 0.0011 41.15
1 31.95 8.06 0.0011 39.52 31.52 7.68 0.0012 41.31

µ is the step size; λ is the forgetting factor.

Table 3. Results of the experiment using adaptive algorithms for a settled filter (from 100 to 600 ms).

LMS Filter Length (-) = 10 Filter Length (-) = 30

µ THD SNROUT RMSEOUT PRDOUT THD SNROUT RMSEOUT PRDOUT
(-) (%) (dB) (A) (%) (%) (dB) (A) (%)

0.01 19.33 8.65 0.00060 36.95 37.03 5.21 0.00089 54.89
0.001 5.96 18.08 0.00020 12.47 7.59 14.17 0.00032 19.57
0.005 10.86 12.69 0.00037 23.19 26.68 6.92 0.00073 45.09

NLMS Filter Length (-) = 50 Filter Length (-) = 100

µ THD SNROUT RMSEOUT PRDOUT THD SNROUT RMSEOUT PRDOUT
(-) (%) (dB) (A) (%) (%) (dB) (A) (%)

0.01 24.92 9.37 0.00055 33.99 24.03 9.93 0.00051 31.89
0.001 8.79 11.70 0.00042 26.00 8.50 11.92 0.00041 25.35
0.005 13.44 11.23 0.00044 27.44 12.58 12.76 0.00037 23.02

RLS Filter Length (-) = 2 Filter Length (-) = 30

λ THD SNROUT RMSEOUT PRDOUT THD SNROUT RMSEOUT PRDOUT
(-) (%) (dB) (A) (%) (%) (dB) (A) (%)

0.99 40.65 3.57 0.00107 66.32 Unstable Unstable Unstable Unstable
0.999 5.40 16.92 0.00023 14.26 7.55 16.44 0.00024 15.07

0.9999 7.11 18.23 0.00020 12.27 6.89 18.25 0.00020 12.24
1 7.50 18.08 0.00020 12.47 7.38 18.13 0.00020 12.41

µ is the step size; λ is the forgetting factor.

6.5. Discussion

The designed conception, “least mean squares and recursive least squares algorithms for total
harmonic distortion reduction using shunt active power filters control”, can also be used in a
three-phase system. It is obvious that the proposal of three independent adaptive systems is needed
for the three-phase design. The authors have solved the problematics in [40–42,46,48].
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The next objective of the research, which will continue on from this study, will be the construction
of a proper adaptive modular inverter. Different methods of SAPF control will be tested based on this
system. The authors will focus on the development of a current generator designed to inject harmonics
into the power grid and a set of nonlinear loads. The system will contain three independent one-phase
generators and a module with a separate chokefor the possibility of inserting a defined impedance in
the power grid. The generators can be used individually in a one-phase power grid or as a common
assembly in a three-phase power grid. It will then be possible to test on this system.

In the authors’ opinion, a comparative study of all methods mentioned above (traditional and
modern) should be the object of subsequent research (see Figure 16), where ANN is artificial neural
network, SRF is synchronous reference frame, SDFT is sliding discrete Fourier transform, and RDFT
is recursive discrete Fourier transform. Currently, only a limited amount of comparative studies
have been conducted, e.g., [86,87]. It is evident that the advanced techniques of signal processing are
beginning to be applied in the SAPF control area, where they are still new. Nowadays, no comparative
studies, which would compare the individual methods from the view of dynamic properties, THD
improvement, implementation complexity, etc., exist.

Reference current
estimation methods

ModernTraditional

Time 
domain

Frequency
domain

Soft computing
methods

P-Q
theory

SRF
theory

FFT SDFT RDFT Wavelet
transform

ANN Adaptive
filtering

Figure 16. Schematic diagram of current estimation methods.

Current trends in the domain of advanced methods of signal processing show that it would be
possible to use some of the soft-computing methods for SAPF control [86,88], namely

• Adaptive systems [89–93],
• Methods based on techniques of artificial intelligence [94–98].

7. Conclusions

Within the experiments conducted, the simulation of an adaptive system, which was used to
test the representatives of both basic families of adaptive algorithms, LMS and RLS, was undertaken.
This system was used for the suppression of higher harmonic components. The practical use may rest
in the suppression of higher harmonics and reactive power in an electrical network, primarily in an
industry where nonlinear loads are abundantly represented.

The system was tested using real data, which were measured on consumer electronics. In the
case of the LMS algorithm, the impact of the filter length and size of the convergence constant on the
properties of the examined system was evaluated, specifically the signal distortion and the convergence
time. It was shown that the requirements for these two properties are contradictory. By setting the
filter length and the convergence constant, we can get either a system with fast adaptation but with a
high distortion value, or the converse. In the case of the RLS algorithm, the impact of the filter length
and the forgetting factor, which determines how many samples the system remembers, were examined.
With an increasing filter length, higher overcoming oscillations occurred with changes in amplitude.
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With a decreasing value of the forgetting factor, the algorithm was more sensitive to recent samples,
and it did not reach the desired accuracy, or it did not become stable.

Thus, in general, the RLS algorithm was found to be faster, and it showed better filtration results
but at the expense of computational difficulty. The LMS algorithm did not have as good results as
the RLS algorithm, but due to its low computational cost, it is suitable for practical use. In the future,
we can expect an increase in computing power, which will lead to a more powerful DSP. Thus, the
requirement of low computational costs for individual algorithms will disappear, and it will be possible
to realize more powerful algorithms.
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