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Abstract: Electric vehicles (EVs) are recognized as promising options, not only for the decarbonization
of urban areas and greening of the transportation sector, but also for increasing power system
flexibility through demand-side management. Large-scale uncoordinated charging of EVs can impose
negative impacts on the existing power system infrastructure regarding stability and security of power
system operation. One solution to the severe grid overload issues derived from high penetration
of EVs is to integrate local renewable power generation units as distributed generation units to the
power system or to the charging infrastructure. To reduce the uncertainties associated with renewable
power generation and load as well as to improve the process of tracking Pareto front in each time
sequence, a predictive double-layer optimal power flow based on support vector regression and
one-step prediction is presented in this study. The results demonstrate that, through the proposed
control approach, the rate of battery degradation is reduced by lowering the number of cycles in
which EVs contribute to the services that can be offered to the grid via EVs. Moreover, vehicle to grid
services are found to be profitable for electricity providers but not for plug-in electric vehicle owners,
with the existing battery technology and its normal degradation.

Keywords: electric vehicles; plug-in electric vehicles; renewable energy sources; forecasting renewable
power generation; vehicle-to-grid; grid-to-vehicle

1. Introduction

Despite the Paris Agreement, pursuing efforts to limit the global temperature rise to less than
2 ◦C through a technological transition from a hydrocarbon-based economy to a post-petroleum era,
there is little tangible evidence of the success such efforts. Recent studies indicate that energy demand
will increase to 736 from 663 quadrillion Btus between 2015 and 2040, and that annual carbon dioxide
(CO2) emissions will increase to 45.5 billion metric tons in 2040 [1]. As seen in Figure 1, the energy use
of the US transportation sector has risen significantly since 1950.
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Figure 1. Energy consumption of industrial, transportation, residential and commercial sectors in the 
US since 1950 [2]. 

The global combined contribution of the transportation and power generation sectors to the 
increasing demand is expected to grow by 56% from 2011 to 2035 [3]. Furthermore, it is estimated 
that a significant proportion of hydrocarbon resources is consumed by transportation machinery [4]. 
As a consequence of increasing energy demand and CO2 emissions, interest in renewable energy 
sources (RESs) has increased, as a means for reducing the dependency on fossil fuels. However, the 
technological evolution and a smooth transition from a hydrocarbon-based economy to a post-
petroleum era is challenged by the inherent variability and intermittency of renewable energy sources 
[5]. In this regard, energy storage systems, such as stationary battery systems, can improve and 
facilitate the integration of viable renewable energy sources into the power system. Supplying battery 
electric vehicles (BEVs) or pure electric vehicles and plug-in hybrid electric vehicles (PHEVs) with 
renewable energy sources is recognized as a promising and effective option for reducing carbon 
dioxide emissions. This is due to the use of an environmentally friendly power source and the low 
fossil fuel consumption in PHEVs. The internal combustion engine in PHEVs is downsized, which 
enables a higher operating efficiency compared to the pure internal combustion engine. 

Renewable power generation units can also play a prominent role in power sector de-
carbonization. Due to the uncertainty and intermittency of renewable energy sources, stationary 
energy storage systems are required to reduce the fluctuation of RESs. This typically leads to extra 
infrastructure costs. Hence, the rise in penetration of EVs as an alternative option to stationary energy 
storage systems has been attracting much attention in both academia and industry due to the 
stabilization of the electric grid and de-carbonization of urban areas that EVs can offer through 
vehicle-to-grid (G2V) and grid-to-vehicle (G2V) technologies. Therefore, the primary driver for most 
of the research on the integration of electric vehicles and renewable power generation units with 
power systems (PSs) can provide multiple benefits: facilitating ancillary services, and reducing 
infrastructure cost and environmental concerns through V2G and G2V technologies [3,6]. This 
integration requires a bi-directional power flow controller as a decision-making mechanism to adapt 
the power systems to different power source structures and improve the acceptability of intermittent 
renewable energy generation units. Yet the flexibility of V2G concept is entirely dependent on the 
state of the renewable power generation units and the state of charge (SoC) of each EV. As the energy 
content of batteries is limited to their state of charge and power generation from renewable sources 
is limited to the weather condition. 

Due to the challenges of intermittent energy source integration into the grid, robust scheduling 
and control strategies have become indispensable to enhance electric grid stability [7]. Moreover, due 
to the expected uptake of EVs into the power system in the near-future, modeling of this new load is 
vital to power system planning [8]. Thus, new directions are required to manage, control, and 
estimate or predict the available amount of electrical power that is generated from renewable energy 

Figure 1. Energy consumption of industrial, transportation, residential and commercial sectors in the
US since 1950 [2].

The global combined contribution of the transportation and power generation sectors to the
increasing demand is expected to grow by 56% from 2011 to 2035 [3]. Furthermore, it is estimated that
a significant proportion of hydrocarbon resources is consumed by transportation machinery [4]. As a
consequence of increasing energy demand and CO2 emissions, interest in renewable energy sources
(RESs) has increased, as a means for reducing the dependency on fossil fuels. However, the technological
evolution and a smooth transition from a hydrocarbon-based economy to a post-petroleum era is
challenged by the inherent variability and intermittency of renewable energy sources [5]. In this regard,
energy storage systems, such as stationary battery systems, can improve and facilitate the integration
of viable renewable energy sources into the power system. Supplying battery electric vehicles (BEVs)
or pure electric vehicles and plug-in hybrid electric vehicles (PHEVs) with renewable energy sources is
recognized as a promising and effective option for reducing carbon dioxide emissions. This is due to
the use of an environmentally friendly power source and the low fossil fuel consumption in PHEVs.
The internal combustion engine in PHEVs is downsized, which enables a higher operating efficiency
compared to the pure internal combustion engine.

Renewable power generation units can also play a prominent role in power sector de-carbonization.
Due to the uncertainty and intermittency of renewable energy sources, stationary energy storage
systems are required to reduce the fluctuation of RESs. This typically leads to extra infrastructure
costs. Hence, the rise in penetration of EVs as an alternative option to stationary energy storage
systems has been attracting much attention in both academia and industry due to the stabilization
of the electric grid and de-carbonization of urban areas that EVs can offer through vehicle-to-grid
(G2V) and grid-to-vehicle (G2V) technologies. Therefore, the primary driver for most of the research
on the integration of electric vehicles and renewable power generation units with power systems
(PSs) can provide multiple benefits: facilitating ancillary services, and reducing infrastructure cost
and environmental concerns through V2G and G2V technologies [3,6]. This integration requires a
bi-directional power flow controller as a decision-making mechanism to adapt the power systems
to different power source structures and improve the acceptability of intermittent renewable energy
generation units. Yet the flexibility of V2G concept is entirely dependent on the state of the renewable
power generation units and the state of charge (SoC) of each EV. As the energy content of batteries
is limited to their state of charge and power generation from renewable sources is limited to the
weather condition.

Due to the challenges of intermittent energy source integration into the grid, robust scheduling
and control strategies have become indispensable to enhance electric grid stability [7]. Moreover, due to
the expected uptake of EVs into the power system in the near-future, modeling of this new load is vital



Energies 2019, 12, 1525 3 of 24

to power system planning [8]. Thus, new directions are required to manage, control, and estimate
or predict the available amount of electrical power that is generated from renewable energy over
time. Such systems can play an important role in the successful integration of EVs, RESs, and PSs [3].
For instance, estimation and prediction of RES supply and SoC in a fleet of EVs can determine how
much power can be injected or drawn from the controllable sources such as stationary energy storage
systems or EVs. For instance, Rekioua et al. [9] pursued the objective of producing electricity without
interruption when the grid architecture consists of a hybrid power generation unit: photovoltaic-fuel
cell (PV-FC). The result demonstrate how the control strategy can affect the optimal sizing of the hybrid
components. A successful integrated design procedure requires both cost minimization and a proper
control logic design, representing a highly reliable and cost-effective framework. For example, a PV
generation unit was connected to a feeder, supported by a fleet of EVs [10]. The results show that the
integration can reduce load fluctuation in the urban grid and that EVs can stabilize the electric grid
when the load reaches the maximum amount of power.

Recent EV research revolves around EV charging optimization, EV service provision quantifications,
and owner-cost-benefits. For instance, a decision algorithm has been proposed to explore costs of
different electrification technology alternatives in Ghana [11]. Peterson et al. modeled economic losses
associated with battery capacity degradation for feeding EVs from the generated power at off-peak
hours, referred to as a peak-shaving strategy [12]. The results showed that EV owners are not likely to
receive proper incentives from the power system. Note that stability corresponding to the frequency
and voltage deviations was not taken into consideration regardless the high proportion of EVs possible
in the near future. In [13], two algorithms were proposed to address the uncoordinated large scale of
EVs. The first algorithm optimized EV charging based on owner-requirements and ancillary services,
and was included in the second algorithm. The results demonstrated that smart charging reduces daily
electricity costs for driving from $0.43 to $0.2. Moreover, it has been demonstrated that the battery is the
best alternative to the quick-response services corresponding to different kinds of deviations rather than
baseload power [13]. For instance, a study on operational implications of the integration of EVs and
variable RESs at the city level has been conducted [8]. The results showed that EV charging strategies
have significant cost implications, while decentralization and renewable energy have profound effects
on managing GHG emissions.

The effect of intermittent RESs in conjunction with EVs on the distribution system has been
discussed [14]. Different EV fleets augmented with a RES were employed to maximize the share of
electricity generated from RES through the defined EV fleets. The results demonstrated that stochastic
programming that is supported by the prediction of the generated power from PV leads to a cost
reduction. In Ref. [15], a mixed-integer optimization problem was proposed to minimize the power
generation of conventional power plants by employing variable RESs (e.g., solar and wind generation
units) and a fleet of EVs. The study demonstrated that a coordinated charging strategy can double the
usage of RESs in comparison to an uncoordinated charging strategy. Further, a smart parking lot was
considered as an aggregation of PEVs equipped with RESs to control fluctuations in the RES power
generation by optimal charging of PEVs [16]. The results showed that the proposed infrastructure can
benefit PEV owners financially. In [17], a cost-emission framework was proposed to schedule power
flow in an aggregation of PEVs with broad travel patterns. A significant reduction in power losses of
the system was observed via employing the proposed PEV scheduling method, as were reductions in
operating costs of DG resources.

The present authors proposed an intelligent optimization framework in an EV aggregation to
optimize the charge allocation of EVs and to stabilize the electric grid through reducing the power
losses and voltage deviation [18,19]. They also proposed an optimal versatile control approach to
regulate the voltage profile and reduce the power losses through V2G and G2V systems [3]. But the
computational effort and response time for severe operating conditions remained challenging with
such control strategies. For instance, as the proposed controller (ANFIS) is updated and retuned by an
optimal power flow algorithm according to the new observation, the controller keeps EVs connected to
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the grid on standby for 45 s to retune the modifiable ANFIS parameters. This gap can be addressed
by predictor algorithms. To achieve successful coordination, a bi-directional communication was
suggested. This means that the architecture consists of a data collective section, collecting data on
the state of power sources, including renewable distributed generation options and EV aggregation,
and a predicting and optimizing section [20]. Indeed, an energy management system can utilize
forecasted renewable power generation and demand information to schedule in advance the power
flow of controllable resources such as PHEVs and/or EVs. Hence forecasting renewable energy sources
such as solar energy (SE) and/or wind energy (WE), as well as demand characteristics, can be an
important tool in activities of energy managers and electricity traders to overcome the risks related to
energy planning and energy storage policies and to address economic dispatch or technical aspects.
Furthermore, these steps provide valuable information regarding the time of operation, repair, and
replacement of the system’s generators and conversion lines, which can be utilized to shift towards
optimum electricity production.

Three real-time control approaches with V2G and G2V functionalities and fed with renewable
power generation units were introduced by the present authors [3,18,19]. In those, demand and power
generation information was provided to the energy management system in real-time, which can reduce
their capability to optimize the bi-directional power flow for a short-time period if the variable space
changes suddenly according to the dynamic environment. Indeed, the optimum power flow is a
non-linear and non-convex problem, having multiple optimal points. This can cause the algorithm
to find a feasible solution in the immediate neighborhood of the obtained value [21]. This leads the
present authors to employ a predictive optimal power flow algorithm to deal with the computational
requirement of the real-time control strategy and to ensure a global solution for each time sequence.
In this regard, the PV power supply and the demand must be known in advance. Through considering
grid and battery characteristics in V2G and G2V technologies, the primary objective of the present
article is to enhance understanding of EV charging optimization throughout the predictor optimal
power flow problem and its effect on battery capacity degradation. In this regard, a robust predictive
algorithm is essential. By utilizing a support vector regression (SVR), programmed in the environment
of MATLAB® software, the present article seeks to predict solar power generation by forecasting solar
irradiance and predicting demand one-step ahead to optimize power flow among non-dispatchable
and dispatchable sources.

The remainder of the article is organized as follows: Section 2 describes the proposed technique,
introducing the support vector machine and the optimal bi-directional power flow algorithm,
in Section 2.1, and Section 2.2, respectively. Section 3 provides the results of applying the proposed
technique, and conclusions are given in Section 4.

2. Materials and Methods

In real-world application areas, problems such as constrained optimization and planning can
be classified under dynamic multi-objective optimization problems, because such problems whose
objective space and/or variable space can vary widely according to changes in the environment over
the time [22]. Therefore, several challenges need to be addressed for the successful integration of EVs
into the electric grid since the power production of renewable energy sources is directly dependent on
weather conditions and each EV’s SoC and SoH. As discussed in [23], the benefits of V2G services are
outweighed if the degradation mechanism of the battery can be reduced through cycling, recognized
as stress factors contributing to battery degradation. Generally, demand-side management strategies
can be classified into two categories: (1) decision making on charging and discharging of controllable
resources based on the real-time state of the PS, and (2) decision making on charging and discharging of
controllable resources based on the forecasted estimation of the future power generation and the future
state of the PS. The latter is important as the primary objective is to maintain the normal operation of
the PS or nano-grid.
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To deal with such challenges, one-step prediction can ensure that the optimal power flow algorithm
responds effectively and quickly to severe operation time when the environment or search space
changes, thereby tracking the correct Pareto front for each time sequence as a centralized control.
Then the optimal bi-directional power flow is shared among EVs by a decentralized control or low
level control based on SoC and the capacity of each EV. Figure 2 describes the proposed hierarchical
control structure, which consists of two layers.Energies 2019, 12, x FOR PEER REVIEW 5 of 24 
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The upper or high level layer defines the required energy from dispatchable sources such as
EVs as well as the electric grid and non-dispatchable sources. Renewable power generation units are
known as the non-dispatchable cluster. By predicting characteristics of both non-controllable demand
and non-dispatchable sources, the top-level optimal power flow estimates the required energy that
should be supplied by the aggregator and grid to non-controllable loads at each long sampling time, or
the injected energy from non-dispatchable sources to the aggregator. The low-level control algorithm
allocates the required energy, optimized by the top-level control, to non-controllable loads to maintain
normal operation of the nano-grid. In the low-layer, EVs are individually controlled according to their
SoC and capacity.

Figure 3 shows how the EVs are controlled individually by the low-layer of the controller.
For instance, if an EV has a high SoC compared to other vehicles, it has the priority for V2G service if
its relative capacity degradation is less than 20% of nominal capacity. Hence, a robust technique-based
predictor is combined with an optimal power flow problem to estimate the required energy needed for
grid stabilization. Then in the bottom layer, a controller schedules charging and discharging of a fleet
of EVs based on the energy requested by the top-layer.
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2.1. Support Vector Machine

Support vector machines (SVMs) have gained the attention of researchers owning to their excellent
empirical successes and strong theoretical foundations. Further, the SVM is capable of being applied to
a wide variety of tasks from financial time series to bioinformatics [24]. The technique has also been
widely used for classification and regression problems. A support vector machine is able to model
effectively non-linear systems by means of mapping the input vector space into a higher dimensional
feature space [25]. The idea behind the SVM technique is to map a low-dimensional space of the
historical time series data into a higher dimensional feature space through a nonlinear mapping ϕ;
then the high-dimensional feature space, still describing the behavior of the system, is solved via liner
regression to predict the defined horizon. This procedure, mapping low-dimensional feature space to
high-dimensional feature space, is equivalent to a nonlinear regression problem with a low-dimensional
space [26]. In SVMs, the target value, which is known as the class label, usually consists of (−1 or 1).
The support vector regression (SVR) is the SVM utilization for function approximation and regression.
SVR employed to estimate a function, where xi, and yi represent the input vector and the target value.
The total number of data sets is n. in this regard, the linear regression function can be as follows:

f (x) = ωT.φ(x) + b (1)

The effort then focuses on finding a function f (x), returning the true output yi. Note that the above
equation is the function for a linear case. φ(x) is the high-dimensional feature spaces, ω is weight
coefficient, x is a set of training parameter, and b is the deviation value. As mentioned before, to obtain
ω, Equation (2) should be minimized as follows:

min

1
2
ω2 + C

n∑
i=1

(
ξi + ξ

(∗)
i

) (2)

where ξi and ξ(∗)i are the positive slack variables, and C is the error penalty. A kernel function can be
employed for mapping nonlinearly separable data into a higher dimensional feature space, with low
computational cost. However, different kernel functions can be implemented, and the Gaussian Radial
Basis Function (GRBF) kernel has proven to be reliable. It is described in detail elsewhere [27].
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2.2. Optimal Power Flow Problem

Optimum power flow (OPF) algorithms are widely used in operation and planning of active
distribution networks. Generally, the OPF is recognized as a non-convex and non-linear problem,
consisting of objective functions (OFs) that should be minimized or maximized by considering a set
of equality or inequality constraints. Indeed, an OPF algorithm is a technique for optimizing the
given OF by determining optimal settings for the controllable variables while satisfying the constraints
and without violating operational limits [21]. With the increasing penetration of EVs and renewable
power generation units, an OPF algorithm is indispensable for successful coordination between
non-dispatchable and dispatchable sources and PSs. The OPF algorithm can be used in controlling
and ensuring secure operation of a fleet of EVs and renewable energy sources. Indeed, the OPF
problem is a tool for taking into consideration constraints and objective functions. To solve the OPF
problem, wide linear convex relaxations and metaheuristic algorithms have been introduced in the
literature [28], including particle swarm optimization, bacterial foraging methods [29] and artificial bee
colony algorithms [30]. Nevertheless, metaheuristic algorithms generally have a substantial calculation
burden, creating a problem for the real-time management of power flow in power systems. In other
words, this computational requirement leads metaheuristic algorithms to be used in small networks,
e.g., micro-grid or nano-grid [29].

The three-phase optimal power flow (TOPF) is similar to the single-phase optimal power flow
problem. The single-phase OPF model is formed based on the use of the sole positive sequence
component model, while three-phase optimal power flow can adopt both multiphase models and
sequences. The OF of the TOPF can be formulated as follows:

Minimize : f (x, u) = ( f1(x, u), . . . , f2(x, u))
Subject to : gi(x, u) = 0→ i = 1, . . . , neq

hi(x, u) ≤ 0→ i = 1, . . . , nin−eq

(3)

Here, f is the objective function, and u and x are the control and state variable vectors, respectively.
The vector u consists of a set of optimal required powers that should be injected or drawn from
the grid to maintain the normal operating condition, which can be defined as u = [PV2G1, PG2V1 . . . ,
Pgrid, Qgrid]. Also, h, and g are a set of inequality constraints, and may consist of voltage boundaries,
capacity and thermal limits, maximum injected power, or other factors, and equality constraints,
respectively. In addition to inequality constraints, equality constraints include a set of load-flow
equations. To smooth and guarantee the feasibility of the solution for each sequence, inequality
constraints can be defined in the OF, acting as soft constraints. Nevertheless, some inequalities such as
voltage profile boundaries should be defined as hard constraints. In this regard, Equation (3) can be
rewritten as follows:

Minimize : f (x, u) = ( f1(x, u), . . . , f j(x, u)) +
nin−eq∑

i
hi(x, u)

Subject to : gi(x, u) = 0→ i = 1, . . . , neq

(4)

Here, hi is the ith penalty function and f is the overall OF. In this article, the overall objective
function is to maintain the normal operation of the nano-grid when its stability is challenged by the
inherent dependency of PV on weather conditions and by a fleet of EVs. In this regard, the first
objective function can be expressed as follows:

min f1(x) = min
Ph∑
j=1

 N∑
i=1

(Vk
i −Vk,spec

i )
2
 (5)
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where Ph is the total hours of the simulation, N is the number of buses, and Vi
k and Vi

k, space are voltage
magnitude at the ith of the jth time and specific voltage magnitude, respectively. The second OF is the
line losses, linked to the current of system topology. The total active power loss can be represented
as follows:

min f2(x) = min
N∑

i=1

N∑
j = 1
i , j

Ri j

 |Vi|
2 +

∣∣∣V j
∣∣∣2 − 2|Vi|

∣∣∣V j
∣∣∣ cos δi j∣∣∣Zi j

∣∣∣2
 (6)

Here, Zij and Rij are the impedance of the line between the ith and jth nodes or buses. Also, δi j and
|Vi| are the deference phase-angle between the ith and jth nodes, and the voltage magnitude at bus ith.
The equality and inequality constraints can be written as follows:

PPV,t + PGrid,t + Pdisch,t − Pch,t − PLoad,t = 0 (7)

Vmin
i ≤ Vi ≤ Vmax

i (8)

Pmin
Grid ≤ PGrid ≤ Pmax

Grid (9)

where PPV,t, Pdisch,t and PGrid,t are the active powers extracted from the PV farm, the aggregator
consisting a fleet of EVs in the discharge mode, and the main grid, respectively. Also, Pch,t, and PLoad,t
are respectively the active powers gained from the system by the aggregator and the load. Besides,
the introduced TOPF problem formulation, the PSO algorithm is described in a previous article by the
present authors [3], implemented and adapted to the introduced architecture to solve a TOPF problem.

2.3. Battery Pack Model

As stated before, price reduction of energy storage devices is needed to increase the penetration
of electrified vehicles in the marketplace. Due to the economics of the charging and cycling operations
that vehicle manufacturers need to take into consideration, aging models are important in research and
development. Modeling the capacity fade evolution over time can help provide effective strategies
to enhance battery durability and properly manage the warranty. In this regard, several practical
alternative explanatory methodologies for EV battery degradation modeling considering key aspects
have been introduced in the literature. They can be classified into three model groups: fatigue
approach [31], semi-empirical [32], and electrochemical [33].

Fatigue approach models are based on the Palmgren-Miner theory, which is generally applied
to mechanical components. Although the merit of the approach is compatible with the cumulative
degradation technique, the approach is not able to describe the calendar aging part due to its
inconsistency when stress factors are constant [34]. Contrary to the fatigue approach, modeling
of the aging mechanism based on electrochemical reaction represents the perspective of chemical
kinetics. In this approach, many parameters must be determined and most of them cannot be measured
or validated. In addition, the most challenging issue regarding electrochemical modeling is that
the electrochemical models cannot be evaluated in terms of long-term aging performance due to
time-consuming and facility limitations. As a consequence of the merits and drawbacks of the
aforementioned models, a semi-empirical long-term cycle life is developed based on an empirical cycle
life model with 20 Ah NMC cells, whose information is summarized in Appendix A. Note that capacity
degradation represents the total available discharging or charging capacity, while the cell is subjected
to various operating conditions (different stress factors) that can affect its performance. An aging test
is necessary to consider several stress conditions, known as external parameters, the most important of
which are taken to be the following in this article:

• Depth of discharge (DOD), quantified as a percentage (%)
• Number of full equivalent cycles (FECs)
• Temperature (◦C)
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• Current rate (C-Rate)

NMC-type lithium-ion cells with a 20 Ah capacity are used to gain experimental data, which can
consequently be used to develop a battery model. For this purpose, aging tests have been done to reach
the “end of life,” which can be defined as 80% of the beginning-of-life, in automotive applications,
determined by discharge capacity test at 25 ◦C. To model the stress factors on battery lifetime estimation,
extensive testing is required; therefore, as can be seen in Table 1, various combinations of cycling
conditions are quantified and considered. As the effect of capacity loss is of greater interest than the
aging mechanism at the system level, the focus of the authors is mainly on capacity loss instead of
aging mechanism. Nevertheless, further details and information on aging mechanisms and modeling
can be found in our previous articles [32,35,36].

Table 1. Cycle aging test matrix, with the number of cells assigned to each test condition [32].

T (◦C) C-Rate
DOD (%)

100 80 65 50 35 20 10

50 C/3-1C - 3 - - - - -
45 C/3-1C 3 8 3 3 3 3 3
35 C/3-2C 3 8 3 14 3 15 9
25 C/3-1C 3 8 3 3 3 3 -
0 C/3-1C - 3 - - - - -
−10 C/3-1C - 3 - - - - -

To extend the experimental data of the cell level to the battery pack level, the battery pack is
modeled by the first-order model and its parameters were extracted from the Hybrid Pulse Power
Characterization (HPPC) test by the recursive least square method. Figure 4 shows the behavior of
internal Ohmic and activation resistances through different SoC windows. Afterwards the extracted
parameters are embedded in the lookup tables, enabling simplification of the modeling of battery pack
behavior and reducing the time use if a fleet of EVs is intended to be considered.
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3. Results and Discussion

All simulations were run on a PC with 2.70 GHz Internal Core i7-6820HQ CPU and 16 GB of
internal memory. The measured received solar irradiance on the horizontal surface for one year (8785
data points) are utilized. Figure 5 shows the solar irradiance dataset of the study located in Brussels,
plotted in 24 h throughout the year. For the first step, the SVR was trained with the experimental data,
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depicted in Figure 5. Thereafter the SVR network was tested and evaluated via applying the common
statistical indicators, the root mean square error (RMSE) with the forecasted and the actual test data.
The inputs for the network are the temperature, relative humidity, and previous step irradiance data,
collected from [37].Energies 2019, 12, x FOR PEER REVIEW 10 of 24 
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The size of input sample data for training the network and the data which was not used in the
training process (test data, for validation) are 7028, and 1757, respectively. In the SVR, polynomial
functions were adopted as the kernel functions to predict solar irradiance and demand one-step ahead.
Considering the predicted and the actual test data, which were not utilized in the training process,
this section compares the results of applying the SVR with actual data.

According to the results, the algorithm performs efficiently in forecasting of the solar irradiance
from the input parameters described previously. As illustrated in Figure 5, the forecasted values
(outputs) follow the complexities and nonlinearities of the actual test data (targets), even when sudden
changes occur. Along the same line and as shown in Table 2, favorable RMSE values support efficient
performance of the predictor system.

Figure 6 shows the prediction results of four days (1st, 50th, 100th, and 150th) of 2017, indicated
by a,b,c, and d, respectively. The actual irradiance is highlighted by the red color, and the blue color
indicates one-step-ahead prediction of irradiance. The horizontal axis is time, and vertical axis is solar
irradiance (in W/m2). Figure 6 demonstrates that the SVR can predict irradiance accurately, showing
its robustness and accuracy.

Table 2. Performance comparison of predictor systems using predicted and actual data.

Error Solar Power Generation Predicted via SVR

Day 1st 50th 100th 150th
RMSE 1.6693 2.2721 3.6625 0.5565
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In order to assess the performance of the technique described in Section 2.2 and to show the
effect of the predictive optimal power flow strategy on the characteristics of the power system and to
demonstrate that the proposed strategy has the capability to handle the integrated fleet of EVs and
PV farm to stabilize and deal with the aforementioned uncertainty, two scenarios are defined in this
section to evaluate its capability. In the first scenario, EVs are individually charged based on their
SoCs and discharged based on the availability of PV power generation to decrease the fluctuation
of its output. For the second scenario, one-step-ahead solar irradiance is predicted, and thereafter
bi-directional power flow between uncontrollable and controllable resources is optimized, and EVs are
individually charged or discharged based on their SoC and capacity to stabilize voltage deviation.

As mentioned before, the primary objective of prediction of renewable energy sources for near
future is to determine how much power can be utilized from the controllable resources such as
stationary energy storage systems or electric vehicles to stabilize the power system. As a consequence,
an energy management system can attain the optimum solution for each time sequence in advance,
reducing computational efforts. In this regard, the introduced predictor evaluated previously is
implemented in the Matlab Simulink simulation platform. In the second step, the predictor model
is connected to the grid architecture, as depicted in Figure 7. The OPF problem of the nano-grid has
six decision variables; three of them represent the active power schedule of V2G, G2V, and grid bus,
and two decision variables are allocated to the voltages of the grid and the aggregation of EVs. After,
the controllable resources can be adjusted to the new operating conditions to reach the Pareto front
for each sequence. In this step the OPF algorithm is known as the centralized controller. Indeed,
the OPF is employed to predict how much power should be injected or drawn from the aggregator.
Then the decentralized controller individually decides whether the EV should contribute to V2G, G2V,
or standby phase based on its SoC and capacity.
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Figure 8 shows four EVs, controlled individually by a decentralized controller. This infrastructure
enables engineers or designers to evaluate the effect of various EVs with different battery characteristics
on the grid architecture, as the initial SoC, the initial number of cycle, initial capacity, and ambient
temperature can be adjusted in this model. The output of the model is voltage, SoC, RCD, capacity,
number of cycles, and battery pack temperature, which can provide the users or decentralized
controller with valuable information as decision variables. Details on the degradation mechanism and
semi-empirical aging model can be found in reference [32].
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3.1. Scenario A

For the first scenario, the EVs are individually controlled, charged and discharged based on their
SoC and practical capacity to stabilize voltage profile of the aggregator. In this regard, the predictive
OPF is disabled. By an underlying assumption, there is always 10% of charge in the battery for
emergency trips. Therefore, the EVs are not discharged below 10% SoC.

As shown in Figure 7, the system is three phases, and each EV equipped with a lithium-ion battery
pack containing lithium-nickel-manganese-cobalt-oxide (NMC) cells with a capacity of 60 Ah, base
voltage for the aggregator is 220 V, and 380 V in one and three phases, respectively. The capacity of
each EV is 22.8 kWh, maximum power generation of PV is 1.2 MWp, and voltage is 380 V. Figure 9
shows the results of scenario A for a 24 h simulation. In (A4), it is seen that the total demand of active
power is 1.282 MW at the start of the simulation. As the initial SoCs are randomly set from 80% to 10%,
they contribute to the V2G and G2V phases, as can be seen in Figure 9(A3–A5). Figure 10 shows the
number of EVs that can contribute to the V2G and G2V. After 30 min, the number of EVs in the V2G
phase is reduced to 20 EVs. It means that 10 EVs are transited to G2V phase and the total number of
G2V is 30. Indeed, only 10 EVs reach the SoC limitation after 30 min. For clarification, Figure 11 shows
the results of EVs with IDs 1 and 11, for which the initial SoCs are set to 80% and 15%, respectively.
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Figure 9. Time-based active power and voltage profile through the architecture (Scenario A): (A1)
voltage profile of the aggregator, (A2) generated active power from PV, (A3) injected active power from
the aggregator (V2G), (A4) Demand side, (A5) the drawn active power from the architecture to the
aggregator (G2V).
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Figure 11. Comparison of the 1st and 11st EVs with different initial SoCs and cycles: (B1) current
profile of EV1, defined by the decentralized controller, (B2) time-based SoC of EV1, (B3) rate of
capacity degradation of EV1, (B4) number of cycles of EV1, (B5) current profile of EV11, defined by the
decentralized controller, (B6) time-based SoC of EV11, (B7) rate of capacity degradation of EV11, and
(B8) number of cycles of EV11.

During hours 00:00–02:00, the total energy stored in EV1 in the aggregator is depleted and reaches
the minimum allowable discharge level. In this regard, the grid is supposed to provide the required
power for the load. Since the SoC of 40 EVs reached to the minimum value, the local controller starts to
charge from 01:00 to 03:00. At 03:00, 50 EVs are standby to be discharged by different SoCs. Since the
non-dispatchable source (PV) started injecting power from 10:00 to 18:00, none of EVs are discharged
to the grid as the voltage is stable at 1 p.u. value. As can be seen in Figure 11(B1–B5), EV1 was charged
from 16:45 to 17:30 and EV11 was discharged during this time; thereafter from 19:00 to 20:00, all EVs
were charged to reach the desirable value which is 100 % SoC. As a consequence of not having an
interactive controller between the decentralized and the centralized systems, it concludes that the



Energies 2019, 12, 1525 15 of 24

injected and drown power to the system are not controlled. It means that controlling EVs in a local
bus may lead to an undesirable charge and discharge in the aggregator. Indeed, it can be concluded
that active power losses play an important role in V2G and G2V concept. Therefore, the number of
cycles in this scenario is three based on the Ah throughput calculation. Also, with such charging and
discharging profiles, the relative capacity degradation increases from 2% to 2.134% based on the initial
number of cycles, which is set to 300 for EV1. Moreover, it is shown that charging and discharging EVs
by the dependent voltage profile without considering the top state of system, a lack of information
from top-system, can increase di-directional power flow. This means that uncoordinated charging and
discharging strategies can lead to a reduction in penetration of PV and EVs.

3.2. Scenario B

In this scenario, the predictive OPF algorithm is connected to the decentralized EVs’ controller.
It is expected that the charge and discharge behavior could be smoother than for the previous profile.
This means that charging and discharging decisions should prevent the nano-grid voltage from
violating the defined upper or lower limits, and can be achieved by making a decision on charging
and discharging at the proper time or by adjusting the current rate. Moreover, the active power
losses should be minimized in this scenario. Indeed, scenario B can describe the importance of the
bi-directional communication between different generation units and the load. The results of scenario
B are depicted in Figures 12–14.Energies 2019, 12, x FOR PEER REVIEW 16 of 24 
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profile of EV1, defined by the decentralized controller, (D2) time-based SoC of EV1, (D3) rate of
capacity degradation of EV1, (D4) number of cycles of EV1, (D5) current profile of EV11, defined by
the decentralized controller, (D6) time-based SoC of EV11, (D7) rate of capacity degradation of EV11,
(D8) number of cycles of EV11.

As can be seen in Figure 12, the EVs are being discharged to decrease power losses as the active
load is 1.282 MW. Thereafter, the optimized control variables are forwarded to the decentralized control
to transit the standby EVs to V2G phase to avoid a drop in voltage of the bus beyond the defined
range. In this regard, the voltage drops from 1 to 0.999 p.u. at 04:00–06:30. Nevertheless, the minimum
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voltage limitation is not violated. The reason is to predict the load and the PV production; consequently,
optimize charge and discharge rats. As soon as the load decreases to its minimum, the voltage of the
bus increases to 1.002 from 0.999 p.u. during 06:30–07:00, and the states of the EVs are changed from
standby to G2V phase as the demand increases to the maximum value at the time of 08:00, which can
be seen in Figure 13. As the load increases to the maximum value and the voltage decreases, EVs as
controllable energy sources are discharged to keep the voltage of the aggregator within the allowable
boundaries. Since the demand decreases to its minimum from 19:00 to 20:00 and this information was
provided by first layer of controller to the second layer, all EVs were charged as the total injected power
from system to the aggregator is 1 MW during the time. As can be inferred from Figures 9 and 12,
the bi-directional power flow decreases substantially due to having information on the state of the
system in advance.

Figure 14 shows the result of scenario B. As can be inferred from subplots D4–D8, the average
number of cycles is reduced from 3 in scenario A, to 1.2 in scenario B, demonstrating that the lifetime
of the battery can increase substantially with such a control strategy. The degradation rate decreases
from 2.134% in uncoordinated charging/discharging to 2.126% in the coordinated charging/discharging
strategies for EV1 by comparison of two scenarios. As shown in Figure 14, fluctuations in the charging
and discharging signals are lower than for scenario A due to the information on generation and demand
being provided in advance and making a decision at the proper time. Yet stress factors for battery
capacity degradation such as the number of cycles, average of current rate are lower in this scenario.
As can be inferred from the Figures 12 and 14, EVs are not charged or discharged when PV generation
is high and are discharged at high demand periods to reduce the active power losses from the grid to
the demand.

Figure 15 shows the active power of the grid, consumption, PV, G2V, and V2G of the scenario B.
For better visibility, Figure 15 is a close up of parts of Figure 12. As can be inferred from Figure 15,
by increasing active power demand, electric vehicles contribute to V2G phase, resulting the power
reduction from grid to the load. Then, as soon as the PV production is injected to the system, electric
vehicles are transited to G2V phases according to their SoC.
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3.3. Long-Term Simulation

Due to the additional cycling operation in V2G technology, additional battery degradation is
expected. Therefore, a long-term V2G and G2V analysis is of importance to the financial feasibility of
EV smart charging and discharging. Simplistically, it is required that PEV-owners be acquainted and
satisfied with the battery guarantee, as the battery plays a crucial role in PEV performance and the
total cost of ownership. Moreover, the automotive industry oversizes the capacity of on-board battery
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packs in the design phase to allow for some capacity degradation and still meet guarantee obligations.
This means that the total cost of ownership is consistently overestimated in the design and production
phases [38].

As can be seen in Figure 16, the United States Advanced Battery Consortium states that 20%
of battery capacity will fade if the battery cycles by 80% DOD over the lifetime of the vehicle.
By considering battery capacity degradation in the V2G application, some oversized battery capacity
may be acceptable for PEV owners and car manufacturers. Nevertheless, it still adds an additional cost
in the retail chain and an additional weight burden on the EVs.Energies 2019, 12, x FOR PEER REVIEW 19 of 24 
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This raises a question regarding what the battery capacity should be or on how often the battery
should be replaced, while the PEVs participate in V2G technology and meet warranty obligations.
This means that the impact of V2G service should quantify more clearly this technology and battery
replacement time. As stated before, the capacity degradation is the function of the number of cycles
which iterates based on the Ah-throughput/energy throughput measurement, which in this article
are DOD, temperature, and C-Rate. Unquestionably, the rate of PEVs contribution to V2G service
relies on the state of demand, renewable energy generation, voltage deviation, power losses. Therefore,
this subsection tries to answer the above question using reasonable assumptions, which are that
the PEVs are connected to the grid through an aggregation, equipped with 50 charging points, the
maximum PV generation is 1.2 MWp.

The simulation results demonstrate that the number of extra cycles for one-year is 400, and 350 for
EV1 and EV11, respectively. More precisely, the percentage of capacity degradation increases from
2.2% to 5.3% for EV1, and from 3.6% to 6.5% for EV11, as shown in Figure 17. This means that within
V2G technology extra cycles cause the battery to fade. Nevertheless, V2G strategies can assist the
electrical designer to increase PV penetration into the power system, which can affect CO2 emissions
reductions. Moreover, the simulation results show that in uncoordinated charging/discharging scenario,
the percentage of capacity degradation increases from 2.20% to 5.64% for EV1, and from 3.6% to 6.8%
for EV11. However, the results demonstrate that V2G technologies lead battery capacity degradation
to an increase, it is shown that coordination between EVs charging/discharging protocols and state of
power system can reduce the percentage of capacity degradation.
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To compare the present results regarding battery capacity degradation rate in the framework of a
smart gird environment, it is worth mentioning that the battery capacity degradation is dependent
on C-Rate, DOD, Ah throughput, battery chemistry, and how long the EVs have contributed to grid
services. Therefore, this comparison provides a general overview of how much different parameters
can affect the battery degradation rate in V2G and G2V services. Reference [40] showed that the
average EVs’ battery capacity degradation for grid services is 3.7% and 5.6% in “extreme” cases.
Nevertheless, based on the proposed architecture, the average EV battery capacity degradation for
EV1 and EV11 in the coordinated scenario is 3.1% and 2.9%, respectively. Furthermore, Ref. [23]
showed that the smart-grid formulation can reduce the battery capacity fade of EVs by up to 9.1%.
In comparison with the results of the C6/LiNiCoAlO2 battery degradation in the framework of a
smart-gird, the present research attains a 6.41% capacity improvement in a smart-grid environment
with NMC cell characteristics. Moreover, [41], proposed a distributed, multi-agent EV management
system requiring less than 55 s to converge to equilibrium independently of the size of the EV fleet.
Nonetheless, according to the proposed technique, the required information for the lower layer of
controller is provided in advance, hence there is not a 55-s delay in control signals for convergence at
a near optimal solution. Please refer to [42,43] for further information on multi-agent systems with
nonlinear dynamics and uncertainties and group consensus control of multi-agent systems under
directed topology.

4. Conclusions

A nano-grid, fed via photovoltaic panels and augmented with plug-in electric vehicles, acting
not only as load but also as a storage device, is described. According to the added uncertainty
caused by the intermittency and inconsistency of such integration, a double-layer control strategy
is introduced and implemented in Simulink software. The first layer employs the optimal power
flow algorithm to maintain the nominal operation of the nano-grid by predicting the PV output and
demand one-step ahead; the second layer controls each EV individually, based on its battery SoC and
capacity. The forecast-based renewable power generation can be perceived as more grid-friendly than
the simple relay-based operation. Forecasting the behavior of solar resources can provide valuable
information for energy managers, energy policy makers, and electricity traders, and can help identify
appropriate times of operation, repair, and replacement of the wind and/or solar generators. To address
the complexities caused by the stochastic nature of renewable energy sources, a robust method based
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on solar specifications of a given region is required. In this regard, the present paper utilizes measured
temperature, humidity, and solar irradiance data (at one hour intervals) from a ground meteorological
station to train and compare the performances of the robust artificial intelligence-based predictor
system, SVR. For evaluation of its prediction performance, the trained system is deployed to the
data that is not used in the training process. The proposed method is comprised of two levels:
the upper level, enabling the nano-grid to be adapted to different power source structures and to
deal with intermittent renewable energy generation units by optimizing the bi-directional power
flow of the nano-grid. Nevertheless, the lower layer reserves and controls the contribution of EVs
into V2G and G2V phases based on battery SoC and capacity. It is shown that the un-coordinated
aggregator as a node of EV connection to the nano-grid, driven via PV, degrades not only technical
characteristics of the power system such as voltage but also accelerates the battery aging mechanism.
The efficiency of the proposed technique is shown by comparing two scenarios, the present research
attains a 6.41% capacity improvement in a smart-grid. The results of scenario B demonstrates that,
by proper coordination between PSs, renewable generation sources, and the aggregator, achieving
high reliability of the grid is possible. But, it is inferred that, with the un-coordinated aggregator, with
existing power infrastructure, and with high penetration of EVs, the power system will ultimately
collapse due to the overloading (undesirable power flow); consequently, transformers thermal runaway.
By expanding the use of renewable energy sources, the role of the energy storage system in overcoming
power generation fluctuations is highlighted. Integrating PEVs and RESs is found to be profitable
for electricity providers but not for PEV owners, with the existing battery technology and its normal
degradation. Furthermore, as the grid consists of several nano-grids and micro-grids, due to the
distributed optimization, with which all agents cooperate to reach a global optimum, it is reasonable to
ask how vulnerable consensus-based distributed optimization algorithms are with respect to failure or
malicious behavior by certain nodes. Therefore, multiscale consensus needs to be addressed in a smart
grid environment.

Author Contributions: O.R. designed the study and mainly wrote the paper; N.O., J.V.M., M.A.R., T.C., and M.B.
revised and proofread the article.

Funding: This research received no external funding.

Acknowledgments: We acknowledge the support of our research team from “Flanders Make”.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

Acronyms
ANN Artificial neural network PS Power system
APF Adaptive particle filter PF Particle filter

ANFIS
Adaptive neuro-fuzzy inference
system

RMSE Root mean square error

ARCE absolute relative capacity error RBC Remaining battery capacity
ASMO Adaptive sliding mode observer SG Smart grid

MGP-PF
Mixture of Gaussian process and
particle filtering

TLBO Teaching-learning based optimization

CC Constant current TOPF Three-phase optimal power flow
CV Constant voltage SOC State of charge
DG Distributed generation SOH State of health

DHIF Dual H infinity filter SVR-PF
Support vector regression-particle
filter

ESS Energy storage system UDDS
Urban Dynamometer Driving
Schedule

EV Electric vehicle V2G Vehicle-to-grid
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EKF Extended Kalman filter Nomenclature

G2V Grid-to-vehicle PM10
Particulate matter of diameter less
than 10 micrometers

GHG Greenhouse gas Ok,i Output of kth layer for ith weight
GMDH Group method of data handling y(.) Output of system
GP Gaussian process k Sampling time step
GQ Gaussian quadrature u(.) Input to system
GR-PF Generic resampling particle filter nu Maximum delay in input
HRES Hybrid renewable energy system ny Maximum delay in output
H∞ H-infinite C Maximum practical capacity
ITDNN Input time-delayed neural network i(t) Battery current at time t

IM-PF
Interacting multiple model particle
filter

SoC(t)
Approximate practical state of charge
at time t

KF Kalman filter V(t) Measured voltage
LS Least squares n Number of learners or population

NN Neural network m or j
Number of decision making variables
or classes

NEDC New European Driving Cycle X j,k,best−i Result of best student in sequence i
NPF Nonlinear predictive filter x Control variable
MSE Mean square error β,γ, δ Weights of cost function

OF Object function ∆umin
Minimum fluctuation of manipulated
inputs

PEV Plug-in electric vehicle ∆umax
Maximum fluctuation of manipulated
inputs

PHEV Plug-in hybrid electric vehicle V̂ Estimated voltage
PSO Particle swarm optimization

Appendix A

Table A1. Characteristics of NMC cells.

Property Value

Electrical

Max discharge current (A) 100
Recommended charge current (A) 10

Nominal voltage (V) 3.65
End of charge voltage (V) 4.2

End of discharge voltage (V) 3
Nominal capacity (Ah) 20

Specific energy (W h/kg) 174
Energy density (W h/L) 370

Power density (DoD 50%, 10 s) (W/L) 4600
Specific power (DoD 50%, 10 s) (W/kg) 2300

Mechanical
Width of tabs (mm) 30
Length of tabs (mm) 40
Length of cell (mm) 217

Thickness of cell (mm) 7.1
Width of cell (mm) 130
Weight of cell (g) 428
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