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Abstract: Although the group method of data handling (GMDH) is a self-organizing metaheuristic
neural network capable of developing a classification function using influential input variables, the
results can be improved by using some pre-processing steps. In this paper, we propose a joint principal
component analysis (PCA) and GMDH (PCA-GMDH) classifier method. We investigated well log
data pre-processing techniques composed of dimensionality reduction (DR) and wavelet analysis
(WA), using the southern basin of the South Yellow Sea as a case study, with the aim of improving the
lithology classification accuracy of the GMDH. Our results showed that the dimensionality reduction
method, which is composed of PCA and linear discriminant analysis (LDA), minimized the complexity
of the classifier by reducing the number of well log suites to the relevant components and factors. On
the other hand, the WA decomposed the well log signals into time-frequency wavelets for the GMDH
algorithm. Of all the pre-processing methods, only the PCA was able to significantly increase the
classification accuracy rate of the GMDH. Finally, the proposed joint PCA-GMDH classifier not only
increased the accuracy but also was able to distinguish between all the classes of lithofacies present in
the southern basin of the South Yellow Sea.

Keywords: group method of data handling; principal component analysis; linear discriminant
analysis; wavelet analysis; lithology

1. Introduction

Lithology identification is a fundamental process in reservoir characterization and formation
evaluation. Usually, lithofacies are determined by either direct visualization of core samples or manual
interpretation of well logs, by correlating similar physical characteristics of reservoir formations.
These conventional methods for determining the lithology of the heterogeneous reservoir are
time-consuming, labor intensive, and unreliable, since it is as a consequence of the intuition of
geologists and log analysts [1–4].

To overcome these challenges, researchers have tried to introduce cross-plotting as a statistical
method on well logs [5–8]. However, cross-plotting was found to be unable to fully expose the
relationship that may exist within well log data [9]. Interpretation from the cross-plot is similarly
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reliant on the experience of log analysts [10,11]. With the current computational power and the
increasing number of well log tools, it has become necessary to automate the process of lithology
determination, by minimizing the impact of human interference that can lead to biased and multiple
interpretations [12–14].

To achieve this, the application of machine-learning algorithms has proven to be a reliable and
adaptive approach in identifying lithofacies in the subsurface [15]. To date, the notably common
algorithms employed in classifying lithology include the artificial neural network (ANN) and the
support vector machine (SVM). The capability of the ANN and the SVM have been evidently portrayed
by Al-Anazi and Gates [16,17], Deng et al. [18], Sebtosheikh et al. [19], and, Xie et al. [15]. In addition,
an attempt was made by 20. Konaté et al. [20] to improve the accuracy of the ANN and the SVM
classifiers using the dimensionality reduction techniques of principal component analysis (PCA) and
linear discriminant analysis (LDA). Tian et al. [21] presented a lithology recognition approach using
extreme learning machine (ELM).

It is important to mention that, in order to achieve the desired outcome for the ANN, SVM, and
ELM machine-learning algorithms, both constant model parameter adjustments and a form of human
interference are required. Therefore, there is a high possibility of the model to converge at local minima.
Authors, such as Saporetti et al. [22], have avoided this limitation by combining differential evolution
search algorithms with ELM to select the optimal learning parameters of ELM lithology classification.

The group method of data handling (GMDH) algorithm has been identified in the literature to be
a promising alternative to address this shortcoming. The reason is that the GMDH algorithm does not
rely on a constant adjustment of training parameters, before generating an optimal result. That is, there
is little manual tasking in the GMDH modelling process. This is because the iterative tuning of the
network parameters, optimum model structure, and number of layers and neurons in the hidden layers,
are determined automatically due to its self-organizing nature. In effect, the GMDH model generates a
polynomial functional structure using a selection of influential input variables [23,24]. Therefore, it
must be acknowledged that the outcome from the GMDH model is significantly dependent on the
nature of the inputs.

Generally, input variables of well logs can exhibit relationships between each other. This leads
to the presence of multiple collinearities, which must be removed from the model development to
improve the accuracy of the model. In this regard, dimensionality reduction methods are capable of
reducing the set of well logs and the complexity of the model by transforming well logs into relevant
or principal components, and discriminant factors. Here, all redundant well logs are removed when
the dimensionality reduction technique is employed. Furthermore, the time-frequency information
can be extracted from well log signals, using wavelet analysis by decomposing the signals into a series
of wavelets having a different scale and position to improve the learning capacity of the model.

In this paper, we initially developed a GMDH model that can detect the various lithofacies of the
southern basin of the South Yellow Sea, using well logs. In addition, the well log data pre-processing
techniques of wavelet analysis, principal component analysis (PCA), and linear discriminant analysis
(LDA), as dimensionality reduction methods, were presented with the aim of improving the accuracy
of GMDH classification.

2. Data Description

The South Yellow Sea basin is a south-west oriented rift depression basin, located between the
Subei basin and Korea peninsular [25–27], as shown in Figure 1a. The Southern basin was created from
a central uplift, dividing the South Yellow Sea basin into two (Figure 1b). A 1350–2750 m exploratory
well having a suite of five well logs and 10,127 core lithology data elements of the southern basin
of the South Yellow Sea were considered for this research (Figure 1b). The lithology of the southern
basin is composed of sandy conglomerate, siltstone, muddy limestone, mudstone, and coal [28,29],
as represented in Figure 1c. Table 1 summarizes the details of the core lithofacies identified, and
considered as the output variable. The log suite that served as the input variables—consisting of
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bulk density (RHOB), gamma ray (GR), spontaneous potential (SP), compensated neutron (CN), and
resistivity (RT)—were used in the development of the GMDH classifiers (Figure 2). In this study, the
well log data were sampled at an approximate interval of 0.14 m.

Energies 2019, 12, x FOR PEER REVIEW  3 of 16 

 

of the southern basin is composed of sandy conglomerate, siltstone, muddy limestone, mudstone, 
and coal [28,29], as represented in Figure 1c. Table 1 summarizes the details of the core lithofacies 
identified, and considered as the output variable. The log suite that served as the input variables—
consisting of bulk density (RHOB), gamma ray (GR), spontaneous potential (SP), compensated 
neutron (CN), and resistivity (RT)—were used in the development of the GMDH classifiers (Figure 
2). In this study, the well log data were sampled at an approximate interval of 0.14 m. 

Table 1. Details of the lithology data used in this study. 

Lithology Total Sample Data Class Assigned 
Sandy conglomerate 98 1 

Sandstone 548 2 
Siltstone 1118 3 

Mudstone 8276 4 
Muddy limestone 52 5 

Coal 35 6 

 
Figure 1. (a) The map showing the location of the South Yellow Sea. (b) The location of the well in 
the southern basin of the South Yellow Sea. (c) The lithology of the southern basin of the South 
Yellow Sea. 

Figure 1. (a) The map showing the location of the South Yellow Sea. (b) The location of the well in the
southern basin of the South Yellow Sea. (c) The lithology of the southern basin of the South Yellow Sea.

Table 1. Details of the lithology data used in this study.

Lithology Total Sample Data Class Assigned

Sandy conglomerate 98 1
Sandstone 548 2
Siltstone 1118 3

Mudstone 8276 4
Muddy limestone 52 5

Coal 35 6
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Figure 2. Geophysical well logs of SP: spontaneous potential; GR: gamma ray; RHOB: bulk density; CN:
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3. Methods

3.1. Group Method of Data Handling (GMDH)

GMDH is based on the search algorithm that sorts out the optimal representation of a polynomial
support function, which describes the functional form of the given data according to a specified
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criterion [23,24]. The structure of GMDH comprises of an input layer, which receives the input
variables, multiple hidden layers, and an output layer, which in this case represents the lithology.

Given a set of data with input and output variables of xi = (xi1, xi2, . . . , xiN) and yi =

(yi1, yi2, . . . , yiM), GMDH can create a relationship between the output and inputs represented as
Equation (1).

yi = f (xi1, xi2, . . . , xiN) (1)

The GMDH algorithm is trained to classify the observed values for each input variable.

Ci = fC(xi1, xi2, . . . , xiN) (2)

The difference in the square between yi and Ci is minimized [30] as:

E =
N∑

i=1

[ fC(xi1, xi2, . . . , xiN) − yi]

2

. (3)

An input-output variable equation based on the Volterra–Kolmogorov–Gabor (VKG) polynomial
can be built by GMDH [24].

Ci = ao +
N∑

i=1

aixi+
N∑

i=1

N∑
j=1

ai jxix j+
N∑

i=1

N∑
j=1

N∑
k=1

ai jkxix jxk + . . . (4)

Equation (4) can be simplified using the partial quadratic polynomial system as [31]:

Ci = G
(
xi, x j

)
= ao + a1xi + a2xi + a3xi + a4xi + a5xix j (5)

where Ci is the classified lithology, a is the coefficient of the polynomial set by the algorithm, and x is
the well log parameter function. From Equation (3), the objective of GMDH is to minimize the value of
E by solving for the parameters from multiple regression, using the least squares method to determine
the following matrix A [32].

A = YTY (6)

whereby,
Y =

(
1 xi x j xix j x2

i x2
j

)
(7)

then matrix A becomes

A =



1
xi
x j

xix j
x2

i
x2

j

xi
x2

i
xix j
x2

i x j
x3

i
xix2

j

x j
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x2

j
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j
x2

i x j
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j
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i x j
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i x j
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i x2
j

x3
i x j
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j

x2
i

x3
i
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i x j
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i x j

x4
j

x2
i x2

j

x2
j

xix2
j

x3
j

xix3
j

x2
i x2

j
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j


(8)

assuming
X =

(
ao a1 a2 a3a4 a5

)
(9)

and
b = (yY)T (10)

then,
N∑

i=1

AX =
N∑

i=1

b. (11)
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3.2. Principal Component Analysis

Principal component analysis (PCA) is a statistical technique introduced by Pearson [33] as a
tool for simplifying the complexity of high-dimensional data, while maintaining its variance. This is
achieved through an orthogonal projection or transformation of the data, which is having correlated
variables into uncorrelated variables known as principal components (PC). When performing PCA, a
covariance matrix of the well log data was initially constructed and the eigenvectors of the matrix were
then computed. The eigenvectors having the largest eigenvalues were used in place of the original
well log data, as they represent the greater portion of the variance of the original well log data. The
first PC minimizes the distance between the data set and its transformation while maximizing the
variance of the transformed data points. The succeeding PCs are similarly computed and they have
to be uncorrelated with the previous PC. In this paper, PCA was performed in IBM SPSS Statistics
software v24.0.

3.3. Linear Discriminant Analysis

The linear discriminant analysis (LDA) method performs dimensionality reduction by finding a
linear combination of features, which characterizes or separates two or more classes of object, while
preserving as much of the class discriminatory information as possible. LDA explicitly attempts to
model the difference between the classes of data, while PCA does not consider the differences, but
considers the similarities in class instead. LDA was also conducted in IBM SPSS Statistics software
v24.0.

3.4. Discrete Wavelet Transform

The wavelet transform is the process applied on signals to obtain details in the form of frequency
and time. The time-frequency transform of a signal f (t) is represented as [34]:

f (t)↔ ψ(a, b) =
∫
∞

−∞

ψab · f (t)dt (12)

where a is the frequency or the scale factor that determines the wavelength, b is the position or the shift
of the signal, ψab is the analyzing function, ψab is the complex conjugate, and f (t) is the original well
log signal. In this study, discrete wavelet transform (DWT) was used instead of continuous wavelet
transform because it requires less computation time, is simpler to develop, and it is more efficient for
practical cases.

In the wavelet transform, the analyzing function can be expressed as [34]:

ψab(t) = a
−1
2 ψ

(
t− b

a

)
. (13)

A DWT is a type of wavelet transform where shifts and dilations are not constantly varied [35].
This is expressed in Equation (14) [34].

Wx(a, b) =
1
√

a j

∫
∞

−∞

ψ

(
t− b

a j

)
· f (t)dt (14)

In DWT, a and b can be defined as functions of level j and position k and t is time.

a = 2 j, b = a · k (15)

Analyzing the function ψ becomes

ψ j,k =
1
√

2 j
ψ
(
2 j
· t− k

)
(16)
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where ψ is the mother wavelet and ψ j,k becomes the daughter wavelet [34]. The results from DWT
decomposition generate an approximation wavelet coefficient (cA) and detailed wavelet coefficients
(cD), with the aim of extracting additional information from the well log signals to improve the learning
capacity of the GMDH algorithm [35].

4. Results and Discussion

4.1. Principal Component Analysis

The results from the PCA as shown in Table 2 indicate that component 1 and component 2 can
retain and interpret a greater portion of the total variance of the entire well logs considered in this
study. This assertion is based on the Kaiser criterion [36], which reveals that components having
eigenvalues of more than 1 can preserve and represent the total information of the data being reduced.
Therefore, components 1 and 2 were selected since their eigenvalues are more than 1. From Table 2,
component 1 and component 2 observed an eigenvalue of 81.858% of the total variance of the well
log suite. Component 1 accounted for 60.99%, while component 2 represented 20.87% of the total
variance. An observation made from the scree plot in Figure 3 revealed a change in the direction of
the line after component 2. This confirms the fact that only component 1 and component 2 are the
meaningful variance from the suite of considered well logs. The selected PCs were further rotated
to assess their correlation to each well log parameter in Figure 4. Details of the linear relationship
between the well logs and the principal components extracted are listed in Table 3. RHOB, CN, and SP
had high correlation values with component 1, while GR observed a high correlation value of 0.768
with component 2 (Table 3). Therefore, components 1 and 2 replaced the well log parameters as inputs
for the hybrid PCA-GMDH lithology classifier.

Table 2. Performance of principal component analysis (PCA) on well log data of the southern basin of
the South Yellow Sea.

Component Eigenvalues % of Variance Cumulative %

1 3.049343 60.98685 60.98685
2 1.043544 20.87087 81.85773
3 0.560054 11.20109 93.05881
4 0.240918 4.818351 97.87716
5 0.106142 2.122836 100
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Table 3. Correlation between well logs and selected principal components.

Well Log Component

1 2

RHOB 0.935 0.049
CN −0.911 0.239
SP −0.868 −0.186
RT 0.6 −0.599
GR 0.482 0.768

4.2. Linear Discriminant Analysis

Table 4 summarizes the results from LDA on the five well logs and the core lithology data. It was
found that three discriminant factors had eigenvalues greater than 1. Specifically, factor 1, 2, and
3 obtained eigenvalues of 4.5939, 2.2632, and 1.5648 respectively (Table 4). The three discriminant
factors explained 97.6% variance of the entire well logs considered. Factor 1 accounted for 75.4%, factor
2 explained 15.2%, and factor 3 explained 7% of the total variance of the well logs. The coefficient
of the well logs in each discriminant function is listed in Table 5. It is important to note that the
larger the coefficient in the discriminant function, the more that well log parameter will contribute to
discriminating between the various classes. Therefore, it can be seen from Table 5 that the CN well log
contributed significantly to all of the three discriminant functions. The joint LDA-GMDH classification
model was generated from discriminant function 1, 2, and 3 input variables.

Table 4. Performance of Linear Discriminant Analysis (LDA) on well log data of the southern basin of
the South Yellow Sea.

Discriminant Function Eigenvalue % of Variance Cumulative %

1 4.5939 75.4 75.4
2 2.2632 15.2 90.6
3 1.5648 7.0 97.6
4 0.8895 2.3 99.9
5 0.0217 0.1 100
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Table 5. The coefficient of discriminant factors.

Well Log
Discriminant Function

1 2 3

RHOB 0.067 1.931 0.048
GR 0.318 −0.527 −0.386
SP −1.23 −0.055 −0.153
CN 1.146 1.831 1.078
RT −0.192 0.62 0.127

4.3. Discrete Wavelet Transform

This study performed DWT using wavelet functions of Daubechies (db), ReverseBior (rbio),
and Symlets (sym) to decompose the well log signals [34,35] in the wavelet toolbox in Matlab
R2016a. A two-level decomposition using the db-2, rbio-2.2, and sym-2 wavelet function generated an
approximation wavelet (cA2) and two detailed wavelets (cD1 and cD2). The well log signals were
initially decomposed into low- and high-frequency components. The approximation value from the
initial decomposition (cA1) is the low-frequency component, while the detail value of the signal (cD1)
is the high-frequency component. From Figure 5, the two-level decomposition is a further breakdown
of the low-frequency component. The low-frequency component of most signals is the most important;
however, the high-frequency component plays the role of an “additive” [37]. Figures 6 and 7 compare
the various well log signals and their corresponding approximation (cA2) and detailed (cD1 and cD2)
wavelet coefficients. Therefore, each well log was replaced by the generated three wavelet signals
as inputs.
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4.4. GMDH Classifiers

In this section, GMDH classifiers were developed by selecting 60% of the 10,127 lithology data
elements and their corresponding well log signals, principal components, discriminant factors, and
wavelet signals as training data. Forty percent (40%) of the data became the benchmark used to assess
the trained classifiers, i.e., the testing dataset. The inputs of GMDH were the five well log sets (i.e.,
RHOB, GR, SP, CN, and RT) trained to identify the various lithofacies. Similarly, component 1 and
component 2 were used as inputs to build the PCA-GMDH lithology classifier. For LDA-GMDH,
discriminant factors 1, 2, and 3 were the input variables, while 15 wavelet signals comprised of the
cA2, cD1, and cD2 for all five well log signals were the input variables for db2-GMDH, rbio2.2-GMDH,
and sym2-GMDH. GMDH classification models were coded and implemented in MATLAB R2016a.

The performance of GMDH lithology classification models was assessed based on how accurate
they were able to identify the various lithofacies. The optimal GMDH structure was made up of five
input neurons, 15 hidden layers with a varying number of hidden neurons in each layer, and lithology
as the output (Table 6). The polynomial equations used to develop the optimal GMDH classification
model are summarized in Table 6. It was observed that GMDH using the suite of five well logs achieved
a classification accuracy rate of 82.488% and 81.806% for training and testing, respectively.

As explained earlier, we conducted a comparative study with PCA-GMDH, LDA-GMDH,
db2-GMDH, rbio2.2-GMDH, and sym2-GMDH to see whether the results of the GMDH classification
model can be improved. As illustrated in Figure 8A, PCA-GMDH successfully improved the results
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of GMDH, as it produced classification results having an accuracy rate of 82.75% and 82.745% for
training and testing, respectively. When analyzing the outcome from the LDA-GMDH, db2-GMDH,
rbio2.2-GMDH, and sym2-GMDH classifiers, it was identified that, for the data used in this study, the
LDA and DWT pre-processing techniques accounted for a decrease in the performance of GMDH.
This means that LDA-GMDH, db2-GMDH, rbio2.2-GMDH, and sym2-GMDH could not perform
better than GMDH. From Figure 8B, LDA-GMDH obtained an accuracy rate of 81.353% and 81.09% for
training and testing, respectively. According to Figure 8C–E, db2-GMDH and sym2-GMDH had a
similar accuracy output of 80.266% and 79.561%, while rbio2.2-GMDH achieved 79.888% and 79.338%
for training and testing, respectively.

Energies 2019, 12, x FOR PEER REVIEW  10 of 16 

 

of GMDH, as it produced classification results having an accuracy rate of 82.75% and 82.745% for 
training and testing, respectively. When analyzing the outcome from the LDA-GMDH, db2-GMDH, 
rbio2.2-GMDH, and sym2-GMDH classifiers, it was identified that, for the data used in this study, 
the LDA and DWT pre-processing techniques accounted for a decrease in the performance of 
GMDH. This means that LDA-GMDH, db2-GMDH, rbio2.2-GMDH, and sym2-GMDH could not 
perform better than GMDH. From Figure 8B, LDA-GMDH obtained an accuracy rate of 81.353% 
and 81.09% for training and testing, respectively. According to Figure 8C–E, db2-GMDH and sym2-
GMDH had a similar accuracy output of 80.266% and 79.561%, while rbio2.2-GMDH achieved 
79.888% and 79.338% for training and testing, respectively. 

 
Figure 6. Decomposed wavelet signals for (A) RHOB; (B) GR; (C) SP; (D) CN; and (E) RT well log 
using the db-2 and sym-2 wavelet functions. 

Figure 6. Decomposed wavelet signals for (A) RHOB; (B) GR; (C) SP; (D) CN; and (E) RT well log
using the db-2 and sym-2 wavelet functions.



Energies 2019, 12, 1509 11 of 16
Energies 2019, 12, x FOR PEER REVIEW  11 of 16 

 

 
Figure 7. Decomposed wavelet signals for (A) RHOB; (B) GR; (C) SP; (D) CN; and (E) RT well log 
using the rbio-2.2 wavelet function. 

A detailed assessment of how each model misclassified the various lithofacies is summarized 
in Table 7. According to Table 7, all the GMDH models performed significantly well when 
identifying siltstone and mudstone facies. This is attributed to the large amount of siltstone and 
mudstone that were present in the study area. Lithofacies, such as sandy conglomerate, muddy 
limestone, and coal, were often misclassified by db2-GMDH, sym2-GMDH, and rbio2.2-GMDH. 
GMDH and LDA-GMDH failed to recognize coal facies. Furthermore, PCA-GMDH was able to 
distinguish between all the present classes of lithology, as shown in Table 7. 

Figure 7. Decomposed wavelet signals for (A) RHOB; (B) GR; (C) SP; (D) CN; and (E) RT well log
using the rbio-2.2 wavelet function.

A detailed assessment of how each model misclassified the various lithofacies is summarized in
Table 7. According to Table 7, all the GMDH models performed significantly well when identifying
siltstone and mudstone facies. This is attributed to the large amount of siltstone and mudstone that
were present in the study area. Lithofacies, such as sandy conglomerate, muddy limestone, and coal,
were often misclassified by db2-GMDH, sym2-GMDH, and rbio2.2-GMDH. GMDH and LDA-GMDH
failed to recognize coal facies. Furthermore, PCA-GMDH was able to distinguish between all the
present classes of lithology, as shown in Table 7.
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Table 6. Network structure and equations from GMDH lithology classifier.

Layer No of Neurons Equation

1 3
x1 = 2.9 − 3.4(RT) + 3.3(GR) + 0.9(RT × GR) + 3.1(RT)2

− 2.4(GR)2

x2 = 3.3 + 3.7(CN) − 3.8(CN) + 6.5(SP × CN) − 4.3(CN)2
− 1.2(SP)2

x3 = 3.9 + 4.7(RT) + 0.6(SP) − 67.4(SP × RT) + 3.2(RT)2
− 0.8(SP)2

2 2
x4 = 13.9 − 5.2(x3) − 1.7(x1) + 1.8(x1·x3) − 0.02(x3)2

− 0.6(x1)2

x5 = 4 − 5.8(x3) + 4.4(x2) + 1.9(x3·x4) − 0.03(x3)2
− 1.5(x4)2

3 2
x6 = − 4.6 + 2.6(x4) + 5.3(RHOB) − 1.6(RHOB·x4) − 0.09(x4)2 + 0.5(RHOB)2

x7 = − 3.6 + 2.3(x5) + 4.2(RHOB) − 1.2(RHOB·x5) − 0.09(x5)2 + 0.1(RHOB)2

4 2
x8 = 1.2 + 0.4(x7) − 2.4(SP) + 0.3(SP·x7) + 0.08(x7)2 + 1.7(SP)2

x9 = − 4.1 + 2.5(x6) + 5(CN) − 1.3(CN·x6) − 0.1(x6)2
− 0.02(CN)2

5 1 x10 = − 0.7 + 0.3(x9) + 0.9(x8) − 1.3(x8·x9) + 0.7(x9)2 + 0.6(x8)2

6 2
x11 = − 0.5 + 0.9(x10) + 1.6(RHOB) − 0.5(RHOB·x10) + 0.05(x10)2 + 0.2(RHOB)2

x12 = − 1.1 + 1.1(x10) + 5(GR) − 1.5(GR·x10) + 0.07(x10)2 + 1.04(GR)2

7 1 x13 = − 0.6 + 0.08(x12) + 1.2(x11) − 6.2(x11·x12) + 3.2(x12)2 + 3(x11)2

8 2
x14 = 0.9 + 0.62(x13) − 2(SP) + 0.3(SP·x13) + 0.04(x13)2 + 1.2(SP)2

x15 = − 1.7 + 1.6(x13) + 2.3(CN) − 0.6(CN·x13) − 0.04(x13)2 + 0.07(CN)2

9 1 x16 = − 0.3 − 4.8(x15) + 5.9(x14) − 10.8(x15·x14) + 6.2(x15)2 + 4.6(x14)2

10 1 x17 = − 2.1 + 1.8(x16) + 2.5(CN) − 0.7(CN·x16) − 0.06(x16)2 + 0.09(CN)2

11 1 x18 = − 0.7 + 0.9(x17) + 2.8(RHOB) − 0.7(RHOB·x17) + 0.07(x17)2
− 0.2(RHOB)2

12 1 x19 = 1.4 + 0.4(x18) − 2.3(SP) + 0.4(SP·x18) + 0.06(x18)2 + 0.9(SP)2

13 1 x20 = − 2.3 + 1.8(x19) + 2.9(CN) − 0.7(CN·x19) − 0.07(x19)2
− 0.2(CN)2

14 1 x21 = − 0.04 + 0.96(x20) + 4.4(RT) − 1.1(RT·x20) + 0.01(x20)2
− 1.4(RT)2

15 2
x22 = − 0.5 + 1.1(x21) + 1.7(GR) − 0.5(GR·x21) + 0.01(x21)2 + 0.2(GR)2

x23 = 0.6 + 0.8(x21) − 0.7(SP) + 0.2(SP·x21) + 0.02(x21)2
− 0.05(SP)2

output 1 Lithology = 0.09 + 13.8(x23) − 12.7(x22) + 94.3(x22·x23) − 49(x23)2
− 45.4(x22)2

Table 7. Misclassification of the lithofacies.

Classifiers
% Misclassification

Sandy
Conglomerate Sandstone Siltstone Mudstone Muddy

Limestone Coal

GMDH 74.49 67.88 18.34 3.89 92.31 100.00
PCA-GMDH 66.33 67.52 21.29 3.33 90.38 94.29
LDA-GMDH 98.98 84.67 14.04 5.91 96.15 100.00
db2-GMDH 98.98 84.67 14.04 5.91 96.15 100.00

rbio2.2-GMDH 100.00 91.24 17.53 5.91 100.00 100.00
sym2-GMDH 98.98 84.67 14.04 5.91 96.15 100.00

5. Conclusions

The self-organizing ability of the GMDH algorithm, whereby it does not rely on any human
interference to adjust its model parameters, was successfully implemented to identify lithofacies present
in the southern basin of the South Yellow Sea. This study explored the impact of the pre-processing
techniques of PCA and LDA as dimensional-reduction methods, and wavelet analysis, regarding the
performance of GMDH lithology classification.

The well log sets of five parameters were reduced to two principal components and three
discriminant factors by PCA and LDA, respectively, while maintaining most of the total variance of the
well log data. The discrete wavelet transform decomposed each well log signal into approximation
(cA2) and detailed wavelet (cD1, cD2) signals.

Evaluating the GMDH lithology classification models revealed that PCA-GMDH achieved an
improved accuracy rate, when compared with GMDH. For the purpose of this study, however,
LDA-GMDH, db2-GMDH, sym2-GMDH, and rbio2.2-GMDH were unable to improve the results
of GMDH.

Among the facies present in the southern basin of the South Yellow Sea, siltstone and mudstone
were the accurately identified facies. Siltstone and mudstone were easily detected as a consequence of
their large quantities. In the study area, PCA-GMDH presented the ability to differentiate between the
various classes.
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To conclude, based on the findings of this study, PCA is the well log data pre-processing technique
that can improve the performance of GMDH, and can be adopted as the lithology classification model
for the rest of the wells in the southern basin of the South Yellow Sea.
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