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Abstract: A multi-objective optimization scheme is proposed to save energy for a data center air
conditioning system (ACS). Since the air handling units (AHU) and chillers are the most energy
consuming facilities, the proposed energy saving control scheme aims to maximize the saved energy
for these two facilities. However, the rack intake air temperature tends to increase if the energy
saving control scheme applied to AHU and chillers is conducted inappropriately. Both ACS energy
consumption and rack intake air temperature stabilization are set as two objectives for multi-objective
optimization. The non-dominated sorting genetic algorithm II (NSGA-II) is utilized to solve the
multi-objective optimization problem. In order for the NSGA-II to evaluate fitness functions that
are both the ACS total power consumption and AHU outlet cold air temperature deviations from a
specified range, neural network models are utilized. Feedforward neural networks are utilized to
learn the power consumption models for both chillers and AHUs as well as the AHU outlet cold air
temperature based on the recorded data collected in the field. The effectiveness and efficiency of the
proposed energy saving control scheme is verified through practical experiments conducted on a
campus data center ACS.

Keywords: data center; chiller; air handling unit; multi-objective optimization; power usage
effectiveness (PUE), rack cooling index (RCI)

1. Introduction

Following the increasing demand for Internet of Things (IOT), big data, cloud computing,
artificial intelligence, etc., more information technology (IT) equipment such as servers, data storage,
and network communication devices as well as uninterruptible power systems have been placed into
data centers. In order to save limited data center space, the IT equipment is stacked into rows of
racks inside cabinets. A great deal of heat exhaust is generated as these IT equipment and facilities
operate. However, constant low temperature and humidity are required in the data center so that
the IT equipment and associated facilities can operate under normal conditions [1,2]. A delicate air
conditioning system (ACS) is installed in the data center to remove heat exhaust from every cabinet
rack containing IT equipment. In addition to heat removing from the racks, maintaining constant
indoor temperature and humidity in the data center is also a major function of ACS. A great deal of
power consumption is required in order for the ACS to provide these functions. The average power
consumption of ACS usually takes up as high as 40% of the total power [3,4]. The data center not
only runs 24 h a day, 7 days a week all year round, but it is also energy intensive with typical power
densities of 538–2153 W/m2 and sometimes can be as high as 10 kW/m2 [5]. It was reported in [6] that
data centers in the U.S. consumed an estimated 70 billion kWh, representing 1.8% of the total U.S.
electricity consumption. Over the past decade, saving energy consumption has become an important
technological effort for sustainable development of data centers. Since a big portion of data center
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power consumption is due to ACS, various effective energy saving techniques for ACS have been
proposed by engineers and scientists in the past several decades.

There are guidelines and standards for building energy-efficient data centers [7]. In [8], the power
usage effectiveness (PUE) was proposed as the metric evaluating power utilization efficiency for
data centers. Recently, PUE has become a prevailing international standard comparing power usage
effectiveness among different data centers. Different levels of PUE for data center have also been
proposed [9,10]. PUE is defined as the ratio of total power consumption in a data center to the power
consumption of the IT equipment in that data center. Since ACS power consumption could occupy as
high as 40% of the total data center power consumption, minimizing ACS power consumption is an
effective approach to minimizing PUE. Minimizing PUE has become a big challenge for scientists and
engineers in this area. The ACS is thus the main target for PUE minimization due to its high power
consumption. The ACS consists mainly of a chilled water loop and airflow loop. Both loops are greatly
affected by each other. The greatest energy-consuming facilities in chilled water loop and airflow loop
are the chiller and air handling unit (AHU), respectively. Chillers and AHUs are thus the primary
targets conducting energy saving control techniques proposed in this paper to minimize PUE of data
center. However, if the energy saving control scheme applied to ACS saves too much energy, the rack
intake temperature may rise and affect heat exhaust removal for servers. The optimization is thus
designed to maintain the rack intake temperature within a specified range in addition to saving energy
for both chillers and AHUs. The metric called rack cooling index (RCI) [11,12] is utilized to evaluate
the performance of rack intake temperature control for data center. The RCI is ideally maximized
if the best control of rack intake temperature control is achieved. A multi-objective optimization
approach is proposed in this paper minimizing PUE and maximizing RCI simultaneously. For practical
control of ACS in data center, variants for minimizing PUE and maximizing RCI are developed for
multi-objective optimization. It will be shown in the paper that the minimization of PUE is achieved
by power consumption minimization of chillers and AHUs. Similarly, it is impractical to monitor and
control intake temperature of every rack inside cabinets. Since AHU outlet cold air temperature directly
influences the intake temperature of every rack, the maximization of RCI is achieved by optimal control
of AHU outlet cold air temperature.

Airflow management imposes a pronounced effect on energy saving of ACS. The airflow cooling
systems in the data center can be categorized as long distance and short distance [13]. Research on
improving long-distance airflow management for ACS is as follows. The chilled airflow is driven by
AHU to the IT equipment piled up on racks through a longer distance for a long-distance cooling
system. The airflow cooled down at AHU is sent to racks mitigating the heat generated by the IT
equipment through cold aisles. The heated airflow is then circulated back to the AHU through hot
aisles. In order to avoid or reduce hot airflow recirculation, short-distance cooling systems are designed
where the airflow is circulated close by or among racks. Long-distance cooling systems are generally
more commonly used, and are mainly the focus of this paper. There are several ways to improve
long-distance airflow cooling. The flowrate uniformity is affected by frictional resistance, which can be
improved by increasing the plenum depth [14]. The plenum depth is recommended to be 600 mm
and 1080 mm, respectively, in [15,16]. The cold air is sent to computer racks through perforated tiles.
Therefore, perforated tiles and a raised floor are essential parts of cold aisles. It is obvious that the cold
air flowrate can be improved if porous tiles are used on the raised floor. However, it was found in [17]
that flow rate uniformity is affected if the tile porosity is increased above certain limits. The guidelines
in selecting perforated tiles for data centers were recommended in [18]. It was shown in [19,20] that
as the pore size is reduced from 6.35 mm to 3.18 mm, the flow field was influenced to an extent that
cannot be overlooked. Another way to enhance the airflow uniformity is to install induced bypass fans
in the plenum. It was shown in [21] that the energy consumption can be reduced by as much as 60% if
the bypass fans along with the proposed optimized tiles are utilized in cold aisles. The fans in AHU can
operate at lower running speed if the bypass fans are installed. As much as 52% power consumption can
be saved in the cooling system with lower running fans [22,23]. A mathematical model was proposed
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in [24,25] for numerical performance evaluation on fan-assisted perforations in data centers. Apart
from the mathematical model, bypass fans integrated with modified perforated tiles were proposed
in [26] to experimentally study the effect on temperature and airflow distribution improvement.

Different from the aforementioned long-distance airflow management techniques that mainly
focus on the airflow from AHU through plenum to IT equipment cabinets, the short-distance airflow
management is conducted among racks inside a cabinet. The rack-level heat exchangers were installed
beside servers and studied in [27,28] to further improve PUE. The modeling and transient response
of a rack-level heat exchanger were studied in [27] while the energy-saving improvement compared
with conventional long-distance cooling system were analyzed in [28]. Heat pipe technology has lately
been applied to data center short-distance cooling systems. The airflow is drawn into the rack cabinet
by fans and the heat exhaust in the cabinet is taken away by the heat pipes. A thermal bus system
composed of thermosyphon was proposed and analyzed in [29], showing that the significant thermal
resistance reduction was achieved. A novel system integrating two hybrid cooling systems combining
dew-point evaporative coolers with heat pipes for data center was installed and investigated in [30]. It
was shown in [30] that the coefficient of performance (COP) of the hybrid cooling system was as high
as 34, leading to annual energy savings of nearly 90% compared with conventional vapor compression
cooling system.

There are not too many research articles that have investigated energy saving approaches for
ACS other than airflow management in data centers. The outside air, direct wet-side evaporative
heat exchangers, and indirect wet-side chilled water loops for cooling were proposed to improve
ACS energy efficiency in data centers [31]. An indirect-heat-exchanger-based water-side economizer
system was installed in [32] to improve ACS energy efficiency. It was shown in [32] that the proposed
water-side economizer could achieve a maximum energy performance improvement of about 16.6%
over the reference base cooling system. Another easy and straightforward approach to improve data
center energy efficiency is to adjust the indoor temperature setting. The impact of raising data center
temperature on the servers was investigated in [33,34]. In fact, raising the supply air temperature in
data centers does not necessarily reduce the energy consumption because the airflow rate might be
increased leading to increasing AHU energy consumption. In [35], an integrated water side economizer
was proposed to optimize the energy performance by adjusting the air temperature and the airflow
rate settings through simulations using the software TRNSYS. A mathematical model calculating
energy consumption in data centers at different temperature settings was proposed in [36]. The energy
consumptions calculated using the proposed model were compared with the measured data and
achieved satisfied results.

Apart from approaches improving ACS energy efficiency in data centers on either the air or
water side, some intelligent control as well as multi-variable control schemes were applied to heating,
ventilation, and air conditioning (HVAC) systems that can also be applied to data center ACS. Various
complex controllers were designed to control AHU in [37–40] and chillers in [41–43] in order to improve
ACS energy efficiency for buildings. However, not too many researches were found applying those
complex controllers for HVAC to the ACSs in data centers. Since the multi-objective optimization
problem to be solved in this paper is a non-convex and nonlinear problem, random optimization
approaches such as simulated annealing [44], genetic algorithm (GA) [45], particle-swarm optimization
(PSO) [46,47], and evolutionary algorithm (EA) [48] are commonly utilized. The non-dominated
sorting genetic algorithm II (NSGA-II) [49] is applied in this paper for multi-objective optimization.
The technical novelty and main contribution of this paper are summarized as follows:

1. A multi-objective optimization approach that simultaneously optimizes power consumption
of chillers and AHUs as well as AHU outlet cold air temperature for the ACS in data center is
introduced. To the best of our knowledge, no similar works addressing this issue have ever been
proposed in the literature.

2. An optimal energy saving control technique for the ACS in data center is proposed so that the
most commonly used international standards PUE and RCI are both optimized.
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3. In order for NSGA-II to evaluate the fitness value corresponding to every chromosome,
feedforward neural network (FNN) models are constructed based on recorded data collected from
the field. NSGA-II has been successfully applied to on-line calculation along with constructed
neural network models.

4. The proposed NSGA-II based multi-objective optimization approach has been practically applied
to the ACS of a campus data center and the average energy saving ratios are 23.4% and 19.6% for
a typical winter and summer day, respectively.

This paper is structured as follows. The problem to be solved and the data center ACS are
introduced in Section 2. Section 3 defines the multi-objective optimization model. The multi-objective
optimization approach to be utilized in this paper, i.e., NSGA-II is described in Section 4. Along with
NSGA-II, the models including chillers, AHUs, and the prediction model for the AHU outlet cold
air temperature are constructed using FNN, which is also introduced in Section 4. The experiments
verifying the effectiveness and efficiency of FNN modeling as well as the performance of energy saving
control are shown in Section 5. Conclusions are made in Section 6.

2. Problem Statement and Data Center Air Conditioning System

The most energy-consuming facilities in the data center ACS are mainly AHUs and chillers.
The energy saving control for the ACS thus aims to save energy for these two main facilities. It is
shown in Figure 1 that the hot and cold air aisle configuration is used in the data center. The cold
air is driven by the AHU through the plenums under the floor. The hot air exhausted from the IT
equipment cabinets is circulated through hot air plenums above the data center ceiling back to the
AHUs. The hot air returned to the AHUs is cooled through the chilled water pumped from the chillers
to the AHUs. The IT equipment cabinets are lined up in alternating rows with cold air intakes facing
one side and hot air exhausts facing the other. The cold/hot air circulation in the data center depends
on the fan running speed in the AHU, while the cooling temperature of the returned hot air depends
on the chilled water temperature. Therefore, the energy saving control for the data center ACS relies
on the control of AHU fans and the output chilled water temperature from the chillers.
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It is straightforward to reduce AHUs and chiller power consumption to save data center energy.
However, the data center is an environment sensitive to temperature changes. It is easy to increase
rack intake air temperature with inappropriate energy saving control schemes applied to AHUs and
chillers. A real-time multi-objective optimization approach is to be implemented in an energy saving
controller as shown in Figure 1. This approach simultaneously reduces ACS energy consumption and
stabilizes the intake air temperature at every rack. Note that the intake temperature at every rack is
directly influenced by the AHU cold air outlet temperature.

A commonly used metric PUE [7–9] for measuring data center energy efficiency is adopted in this
paper that shows energy saving effectiveness. PUE is defined as the ratio of total energy consumed by
all facilities in the data center to the energy consumed by the servers and other computing facilities.
Denote Pi as the power consumption of the i-th facility in the data center, PAC as the ACS power
consumption and PIT as the power consumption due to all IT equipment, then

PUE =

∑
i

Pi

PIT
=

PAC +
∑

i,i,AC
Pi

PIT
. (1)

The energy saving control scheme focuses mainly on reducing chiller and AHU power consumption
leading to reducing PAC and thus reducing PUE according to Equation (1). Therefore, PUE is a suitable
metric to measure the energy saving effectiveness in this paper.

Let N be the total number of intakes in all servers, Tmax-all and Tmin-all be the maximum and
minimum allowable temperature, Tmax-rec and Tmin-rec be the maximum and minimum recommended
temperature, and Ti be the average temperature at the i-th intake. According to [11], RCIHI and RCILO
are respectively defined as:

RCIHI = (1−

∑
i
(Ti − Tmax -rec)

∣∣∣
Ti>Tmax -rec

N(Tmax-all − Tmax-rec)
) 100%; (2)

RCILO = (1−

∑
i
(Tmin -rec − Ti)

∣∣∣
Ti<Tmin−rec

N(Tmin−rec − Tmin−all)
) 100%. (3)

RCIHI and RCILO are metrics measuring intakes being over-temperature and under-temperature,
respectively. It is reasonable to expect that most of RCILO are 100% because ACS energy savings may
lead to the intake temperature increasing instead of decreasing. It is essential for the data center
energy saving control to find an optimal compromise between saving energy and not affecting the
rack intake temperature. Therefore, both PUE and RCI are utilized as objectives for the multi-objective
optimization approach proposed in this paper.

3. Multi-Objective Optimization

The most straightforward and easiest way to control chiller power consumption is to control the
chilled water outlet temperature Tchwo(•) that directly affects the AHU outlet cold air temperature
T f (•). Similarly, the AHU power consumption can be controlled by controlling AHU fans running
speed v f (•). Assume that the running speed v f (•) of AHU fans is controlled using variable frequency
drives that can be controlled through an inverter. Denote TL

chwo and TH
chwo as the lower and higher limit

of the chilled water outlet temperature Tchwo; vL
f and vH

f as the lower and higher limit of the AHU fans

running speed. The proposed energy saving control scheme searches for the optimal settings T∗chwo(k)
and v∗f (k) at every k-th time step using the multi-objective optimization approach to simultaneously
minimize PUE(k) and maximize both RCIHI(k) and RCILO(k), i.e.,(

T∗chwo(k), v∗f (k)
)
= arg min

Tchwo(k)
max
v f (k)

(PUE(k), RCIHI(k), RCILO(k)). (4)
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subject to
TL

chwo ≤ Tchwo(k) ≤ TH
chwo; (5)

vL
f ≤ v f (k) ≤ vU

f . (6)

Denote Pch(k) and PAHU(k) as the power consumption of the chiller and AHU, respectively, at the
k-th time step. Most of the ACS power consumption is due to the power consumptions of both the
chillers and AHUs. Therefore,

PAC(k) ≈ Pch(k) + PAHU(k). (7)

Since the optimization variables Tchwo(k) and v f (k) in (4) directly affect both Pch(k) and PAHU(k),
the minimization of PUE(k) is practically achieved through the minimization of PAC(k) according to
Equations (1) and (7).

In parallel with minimizing PAC(k), every rack intake temperature needs to be maintained within
a preset range satisfying both RCIHI and RCILO, respectively, in Equations (2) and (3), i.e., within the
range between maximum and minimum recommended temperature. For both the implementation
convenience and installation cost, temperature sensors are not installed at every rack air intake.
Referring to Figure 1, all the rack intake temperatures depend on the AHU outlet cold air temperature
T f (k). Therefore, the following assumption can be made for practical engineering consideration:

Ti(k) ≈ T f (k), i = 1 . . .N. (8)

Referring to Equations (2) and (7), RCIHI(k) is maximized if both Tchwo(k) and v f (k) are controlled
so that T f (k) ≤ Tmax-rec. Similarly, RCILO(k) is maximized if both Tchwo(k) and v f (k) are controlled so
that Tmin-rec ≤ T f (k) according to Equations (3) and (7). In other words, both RCIHI(k) and RCILO(k) are
maximized if the ACS is controlled by adjusting Tchwo(k) and v f (k) so that

Tmin-rec ≤ T f (k) ≤ Tmax-rec. (9)

However, both Tmin-rec and Tmax-rec are recommended by ASHRAE [11], satisfying every data
center in different regions with different climates. They are less strict, allowing greater flexibility
suitable for as many data centers as possible. In order to have better temperature control performance,
stricter lower and upper bounds TL

f and TU
f for T f (k) are given where Tmin-rec < TL

f and TU
f < Tmax-rec

so that T f (k) is controlled within a smaller range. Therefore,

Tmin-rec < TL
f ≤ T f (k) ≤ TU

f < Tmax-rect. (10)

Denote the temperature difference Td(•) as:

Td(k) = max
(
0,

(
TL

f − T f (k)
))
+ max

(
0,

(
T f (k) − TU

f

))
. (11)

Therefore, the maximization of both RCIHI(k) and RCILO(k) is achieved and even improved by the
minimization of Td(k) in Equation (11). The multi-objective optimization min-max in Equation (4) is
thus transformed into simultaneous minimization of PAC(k) in (7) and Td(k) in (11). In other words,
the multi-objective optimization in (4) is replaced by the following multi-objective optimization:(

T∗chwo(k), v∗f (k)
)
= argmin

Tchwo(k),v f (k)
(PAC(k), Td(k)) (12)

with the same constraints in (5) and (6).
The multi-objective optimization in Equation (12) with the constraints in (5) and (6) is calculated by

the energy saving controller as shown in Figure 1. Most chillers have interfaces allowing remote setting
for chilled water outlet temperature Tchwo(k). Similarly, most AHUs also have interfaces that allow
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remotely setting AHU fan running speed v f (k). Referring to Figure 1, the energy saving controller is
designed to conduct the remote setting through the most commonly used RS-485 network. Other wired
or wireless networks such as Ethernet, Wifi, Zigbee, etc., can also be used to replace RS-485 network.

4. NSGA-II and Neural Network Modeling

NSGA-II is utilized to implement the multi-objective optimization in Equation (12) with constraints
in (5) and (6). Both the optimization variables Tchwo(k) and v f (k) are parameterized in the chromosome
in real numbers. Both objective functions PAC(k) and Td(k) in (7) and (11), respectively, are utilized as
the fitness functions. The crossover and mutation operators in NSGA-II are the same as the ones in
regular genetic algorithm (GA). The Pareto-optimal solutions are searched from the best non-dominated
solutions in every generation based on the fitness value of every chromosome. However, it is not
possible to practically measure both Pch(k) and PAHU(k) and then calculate PAC(k) corresponding to
different optimization variables Tchwo(k) and v f (k) encoded in the chromosomes for NSGA-II on-line
learning. The practical difficulty mainly comes from the fact that it usually takes a few minutes to
more than half hour for the ACS to respond to both settings Tchwo(k) and v f (k), and finally to stabilize
the entire system in order to measure the steady power consumption Pch(k) and PAHU(k), respectively
for every chromosome. It is therefore not possible for the NSGA-II to perform on-line optimization
of Tchwo(k) and v f (k) if the fitness value corresponding to every chromosome is to be practically
measured from the ACS. Moreover, it will cause ACS mechanical impairment if both settings Tchwo(k)
and v f (k) are changed so often, corresponding to every different optimization variable encoded in
every chromosome of gene pool during the learning process of NSGA-II. Similarly, it is not possible to
measure the AHU outlet cold air temperature T f (k) and then calculate Td(k) due to the same practical
difficulty. In order to overcome this difficulty, an FNN-based model is learned a priori based on the
recorded data measured in the field for Pch(k), PAHU(k), and T f (k), respectively so that each of these
three variables can be estimated corresponding to different sets of optimization variables encoded in
the chromosome as well as some variables measured on-line.

Denote ρ f as the flow rate of chilled water, cw as the specific heat capacity of water, the chilled
water inlet temperature of chiller as Tchwi(k). The cooling capacity Q of a chiller is calculated as:

Q(k) = ρ f cw(Tchwi(k) − Tchwo(k)). (13)

Referring to Equation (13), Pch(k) directly depends on the value of (Tchwi(k) − Tchwo(k)) according
to (13). Pch(k) can be expressed as a function of (Tchwi(k) − Tchwo(k)). Denote this function as Γch which
is to be learned and modeled by an FNN, Pch(k) can be expressed in association with Γch as:

Pch(k) = Γch(Tchwi(k) − Tchwo(k)). (14)

The function Γch is implemented as a 1 × 10 × 10 × 1 FNN with 1 input, 1 output, and 2 hidden
layers with 10 neurons per layer. Back propagation is utilized as the learning approach.

The running speed of AHU fans v f (k) is usually adjusted through a PWM controller. Similar to
the model for the chiller, the relationship between PAHU(k) and v f (k) can also be learned and modeled
by an FNN. Denote Γ f as the function modeling this relationship, PAHU(k) can be expressed as:

PAHU(k) = Γ f
(
v f (k)

)
. (15)

The function Γ f is implemented as a 1 × 10 × 1 FNN with 1 input, 1 output, and 1 hidden layer
with 10 neurons.

As for calculating the second objective Td(k) in Equation (11), a model estimating AHU outlet
cold air temperature T f (k) is essential. Different from the models for Pch(k) and P f (k), note that any
changes in the inputs for these two models Γch and Γ f are directly reflected to the outputs Pch and
P f , respectively, without time delay because the Chiller and AHU power consumptions vary with



Energies 2019, 12, 1474 8 of 16

the input settings right away. However, it takes time for the AHU outlet cold air temperature T f to
change because long distance airflow cooling system is targeted for control and T f is the temperature
of the long distance airflow loop. Moreover, any changes T f are also related to the temperatures
in previous time steps. It is assumed in this paper that predicted signal T f (k + 1) are related to the
temperatures in previous two time steps, i.e., T f (k) and T f (k− 1). Although a data center is a closed
environment, T f (k) is still affected by the outdoor temperature because the air-cooling chillers are
installed outdoors. Therefore, T f (k) also depends on the outdoor temperature To(k) which can be
measured by a temperature sensor installed outdoors. Finally, both optimization variables Tchwo(k) and
v f (k) determined at every k-th time step also affect T f (k). Similar to previous modeling approaches,
denote Γtmp as a function modeling the relationship between T f (k + 1) and other elements including
T f (k), T f (k− 1), To(k), Tchwo(k) and v f (k). Therefore,

T f (k + 1) = Γtmp
(
T f (k), T f (k− 1), To(k), Tchwo(k), v f (k)

)
. (16)

A 5 × 15 × 15 × 1 FNN with 5 inputs, 1 output, and 2 hidden layers with 15 neurons per layer is
utilized to model Γtmp.

In order to learn the FNN neural network models Γch, Γ f , and Γtmp in (14)–(16), respectively,
the data between inputs and output for these three models are measured and recorded for training and
testing. Let yi be the i-th recorded real signal and ŷi be corresponding i-th output of the FNN models,
i.e., the i-th signal estimated by the FNN model, the root mean square error (RMSE) defined as follows
is utilized as the metric evaluating estimation results of the proposed FNN models with L input/output
data pairs for each model.

RMSE =

√√√
1
L

L∑
i=1

(yi − ŷi)
2. (17)

The objective functions or fitness functions for NSGA-II are evaluated at every k-th time step.
Let the sampling interval be τs, NSGA-II is applied to obtain the best optimal solution from the
convergent Pareto-optimal solution within the sampling interval τs. Note that τs is normally set
to be 10 to 15 min that is long enough for the NSGA-II to search for the best optimal solution.
The corresponding fitness value of every chromosome

(
Tchwo(k), v f (k)

)
is evaluated using the FNN

proposed in Equations (14)–(16). Referring to (7), PAC(k) is evaluated by calculating Pch(k) and PAHU(k)
using the FNN models Γch and Γ f as shown in (14) and (15), respectively. Referring to (11), the second
fitness function is evaluated by first predicting T f (k + 1) at the next time step using the FNN model Γtmp

as shown in (16). Note that the temperature difference Td(k + 1) is calculated based on the predicted
signal T f (k + 1) according to (11). Denote Tgj

chwo(k) and vgj
f (k) as the optimization variables encoded

in the g-th chromosome of the j-th generation, Pgj
AC(k) and Tgj

d (k + 1) as the corresponding fitness
values. Assume that there are G chromosome in the gene pool and it totally takes J(k) generations for
the NSGA-II to obtain convergent Pareto-optimal solutions at the k-th time step. The calculation of
fitness values corresponding to every chromosome in the gene pool is illustrated in Figure 2. It is
shown in Figure 2 that the power consumptions of chillers and AHUs denoted as Pgj

ch(k) and Pgj
AHU(k),

respectively, as well as the predicted AHU outlet cold air temperature denoted as T f (k + 1), are

estimated through FNN models based on Tgj
chwo(k) and vgj

f (k) in every g-th chromosome. However,

the chilled water inlet temperature of chiller Tchwi(k) and the outdoor temperature To(k) are obtained
through on-line measurement and remain constant in every generation until NSGA-II achieve best
optimal solution for the k-th time step.
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The set of Pareto-optimal solutions obtained in every j-th generation of NSGA-II, denoted as
Ψ j

(
Tchwo(k), v f (k)

)
is obtained by searching for the non-dominated optimal solutions that minimizes

both fitness functions as follows:

Ψ j
(
Tchwo(k), v f (k)

)
= argmin

g=1...G

(
Pgj

AC(k), Tgj
d (k)

)
. (18)

Therefore, the convergent Pareto-optimal solutions for the k-th time step are contained in the
set Ψ J(k)

(
Tchwo(k), v f (k)

)
that is obtained at the J(k)-th generation. There are usually more than one

Pareto-optimal solutions in Ψ J(k)
(
Tchwo(k), v f (k)

)
. The best solution at the k-th time step is finally

determined by searching for those Pareto-optimal solutions with the minimum PAC(k) because energy
saving control is the final goal for multi-objective optimization. Denote the pair of best optimal

solutions at the k-th time step as
(
T∗chwo(k), v∗f (k)

)
, then

(
T∗chwo(k), v∗f (k)

)
= argmin

(Tαchwo(k),v
α
f (k))∈Ψ

J(k)(Tchwo(k),v f (k)) ∀α

(
PAC(k)

)
. (19)

5. Experiments

The ACS in a campus data center is utilized for the experiment. It consists of two AHUs and two
chillers. One chiller and one AHU are controlled using the proposed multivariable objective energy
saving control scheme while the other AHU and chiller are left uncontrolled to provide the base load.
The lower and upper bounds for T f (k), Tchwo(k), and v f (k) in Equations (10), (5), and (6), respectively,
are set as: TL

f = 23.5, TH
f = 24.5; TL

chwo = 7, TH
chwo = 12; vL

f = 50%, and vH
f = 100%. The constants

including the maximum and minimum allowable temperature Tmax-rec and Tmin-rec, respectively; the
maximum and minimum recommended temperature Tmax-rec and Tmin-rec, respectively, for RCI in (2)
and (3) are set as following according to [11]: Tmax-rec = 27, Tmax-all = 32, Tmin-rec = 18, Tmin-all = 15.
As for NSGA-II, the parameters are set as following: the maximum allowed iterations = 80, the number
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of chromosomes in the gene pool = 50, crossover rate = 0.8, mutation rate = 0.05, crossover distribution
index = 20, mutation distribution index = 20. The sampling interval of every time step is set as 15 min.
In other words, the proposed multi-objective optimization approach is executed and the optimization
variables: chilled water outlet temperature Tchwo of chiller as well as running speed of AHU fans v f are
both calculated and updated every 15 min.

5.1. Experiments of Neural Network Modeling

In order to verify the modeling capability of the proposed three FNN models in Equations (14)–(16),
52 weeks (or 12 months) of data between inputs and output for these three models are recorded for
training and testing. One day among 7 days in a week is randomly selected for testing. In other words,
the data contained in 6 days a week, 52 weeks a year, are utilized for training. The rest of 52 weeks
of data, i.e., one randomly selected day a week, 52 weeks a year, are utilized for testing. The RMSE
defined in (17) for the training and testing results are shown in Table 1. It is shown in Table 1 that
the RMSE for testing data are not too different from the one for training. The modeling accuracies
of the proposed three FNN models are thus guaranteed. For the purpose of illustration, the power
consumptions of chiller and AHU as well as the AHU outlet cold air temperature estimated by those
three FNN models for a typical testing day are compared with real data in Figure 3a,b, Figure 4a,b
and Figure 5a,b, respectively. From the RMSE of the data on this typical testing day in Table 1 and the
modeling results illustrated in Figures 3–5, the modeling accuracy of these three FNN models can also
be verified.

Table 1. Comparison of RMSE of estimated signals for training and testing results.

Estimated Signals FNN Structure Facilities RMSE
(Training)

RMSE
(Testing)

RMSE (A Typical
Testing Day)

Pch (power
consumption of chiller) 1 × 10 × 10 × 1 Chiller 1 1.1246 1.1367 1.1129 (Figure 3a)

Chiller 2 0.9829 0.8825 0.6838 (Figure 3b)

PAHU (power
consumption of AHU) 1 × 10 × 1 AHU 1 0.0241 0.0257 0.0311 (Figure 4a)

AHU 2 0.0267 0.0299 0.0215 (Figure 4b)

T f (AHU outlet cold
air temperature) 5 × 15 × 15 × 1 AHU 1 0.1125 0.1324 0.1227 (Figure 5a)

AHU 2 0.1087 0.1138 0.1018 (Figure 5b)Energies 2018, 11, x FOR PEER REVIEW  11 of 16 
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5.2. Experiments of Energy Saving

In order to signify the effectiveness and efficiency of the proposed energy saving control scheme,
the control scheme was applied from 19:50 to 23:50 on a typical summer night. It takes about 120 s
in every sampling interval for the energy saving controller running the proposed multi-objective
optimization and returns both optimization variables Tchwo and v f at every time step on a personal
computer with Intel® Core™ i7-8700 CPU @ 3.20 GHz. The variation in outdoor temperature is shown
in Figure 6. For the convenience of illustration, vertical black bars are added in Figures 7–10, showing
the start and end of the control interval. It is shown in Figure 7 that the AHU outlet cold air temperature
T f started dropping a few minutes after the control scheme was applied at 19:50 and went up a few
minutes after the control scheme was terminated. Figure 8 shows that the variations in Tchwo calculated
by the proposed multi-objective optimization approach and the ones practically measured in the field.
It is shown in Figure 8 that the measured values did follow the calculated ones.
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In response to the calculated and measured chilled water outlet temperature, the chiller power
consumption went down as the control interval started and returned to normal values as the control
interval ended, showing the energy saving performance of the proposed control scheme. Since the
running speed v f of the AHU fans was adjusted using a pulse width modulation (PWM) controller,
the variation in calculated v f was in duty cycles as shown in Figure 9. Referring to Figure 9, the AHU
power consumption within the control interval slightly increases. It leads to AHU outlet cold air
temperature T f going down within the control interval as shown in Figure 7. Although AHU power
consumption slightly increased, chiller power consumption went down during the control interval.
The total power consumption of both chiller and AHU is shown in Figure 10. Figure 10 shows that the
total power did reduce within the control interval. The PUE before the control interval is 1.55 and yet
the PUE within the control interval drops to 1.42. The RCILO and RCIHI before the control interval was
applied were 100% and 93%, respectively, while both values are 100% within the control interval.

The same experiment was also conducted on a whole day in both summer and winter, calculating
average energy saving. The energy saving effect was verified by comparing a pair of days with and
without the proposed energy saving control scheme. These two days were selected for experiments
under the condition that they had similar average outdoor temperatures and similar average CPU
loads for the IOT equipment. The evaluation interval ranges from 9:00 a.m. to 5:00 p.m. within a
regular campus working interval. The energy saving performance on a typical winter day and summer
day with and without the proposed energy saving control scheme is shown in Table 2. Table 2 shows
that the average energy saved on a typical winter day and summer day is 4.02 kWh/h and 3.05 kWh/h,
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respectively. The energy saving ratios are 23.4% and 19.6% for a typical winter and summer day,
respectively. Table 2 also shows that the average outlet cold air temperature T f is not affected by the
energy saving control despite the fact that significant energy saving results has been achieved. In fact,
it is even slightly reduced on the day with energy saving control. It shows that the proposed energy
saving control scheme can save the consumed energy and also maintain the rack inlet air temperature
within a suitable range satisfying RCI.

Table 2. Comparison of energy saving performance with and without control.

Season Control
Status

Avg.
Outdoor

Temp. (◦C)

Avg. Power
Consumption

(kW)

Avg. Energy
Saved

(kWh/h)

Avg.
PUE

Avg. Outlet
Cold Air

temp. Tf (◦C)

Winter day W/control 19.95 11.74 4.02 1.4 24.33
W/o control 17.2 15.76 - 1.52 24.58

Summer day W/control 25.66 12.52 3.05 1.42 24.11
W/o control 26.33 15.57 - 1.53 24.27

6. Conclusions

A multi-objective optimization approach NSGA-II was proposed to optimize energy saving
effectiveness. The optimization approach minimizes the power consumptions of both chillers and
AHUs while keeping AHU outlet cold air temperature within a specified range. Both commonly
used standardized metrics for data centers including PUE and RCI were utilized as the objects for
optimization. Fresh air cooling control can also be integrated with the proposed energy saving control
scheme to further improve energy saving performance. In fact, the proposed energy saving control
scheme can also be applied to other central ACS controlling both chillers and AHUs. Neural network
models are utilized to model the power consumption of chillers and AHUs, as well as the prediction of
AHU outlet cold air temperature. Other models such as recurrent neural network (RNN) and long
short-term memory (LSTM) can also be used if the data center size is too large or the airflow loop
distance is too long.
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