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Abstract: The air feeding system is one of the most important systems in the proton exchange
membrane fuel cell (PEMFC) stack, which has a great impact on the stack performance. The main
control objective is to design an optimal controller for the air feeding system to regulate oxygen excess
at the required level to prevent oxygen starvation and obtain the maximum net power output from
the PEMFC stack at different disturbance conditions. This paper proposes a fractional order fuzzy PID
controller as an efficient controller for the PEMFC air feed system. The proposed controller was then
employed to achieve maximum power point tracking for the PEMFC stack. The proposed controller
was optimized using the neural network algorithm (NNA), which is a new metaheuristic optimization
algorithm inspired by the structure and operations of the artificial neural networks (ANNs). This
paper is the first application of the fractional order fuzzy PID controller to the PEMFC air feed system.
The NNA algorithm was also applied for the first time for the optimization of the controllers tested
in this paper. Simulation results showed the effectiveness of the proposed controller by improving
the transient response providing a better set point tracking and disturbance rejection with better
time domain performance indices. Sensitivity analyses were carried-out to test the robustness of
the proposed controller under different uncertainty conditions. Simulation results showed that the
proposed controller had good robustness against parameter uncertainty in the system.

Keywords: fractional order fuzzy PID controller; neural network algorithm; PEM fuel cell; MPPT
operation; sensitivity analysis

1. Introduction

In recent years, fuel cells gained a lot of interest as one of the most promising renewable energy
sources because of its high efficiency, flexibility and sustainability. Fuel cells produce electricity via
electrochemical reactions between hydrogen and oxygen. The byproducts of the electrochemical
reactions are only water and heat so fuel cells are considered as clean energy sources. The most common
type of fuel cells is the proton exchange membrane (PEM) fuel cell. Proton exchange membrane fuel
cells (PEMFCs) are used in vehicular applications because of its high electrical efficiency [1].

A PEMFC stack works as an autonomous energy source in automotive systems where the
compressor motor of the air feeding system is powered by the PEMFC stack acting as an auxiliary
load. The air feeding system is one of the most important systems in the PEMFC stack that has a great
impact on the stack performance because it consumes up to 30% of the fuel cell power [2,3]. The role
of the air feeding system is to regulate the oxygen excess ratio also known as stoichiometry at it is a
predefined value using compressed air to prevent both oxygen starvation and oxygen saturation and to
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obtain the maximum net power output from the PEMFC stack. Oxygen starvation occurs at a sudden
increase in the fuel cell stack current causing damage of the fuel cell membrane and the catalyst layer
leading to fuel cell damage. On the contrary, oxygen saturation, which means a high level of oxygen
availability, increases the power consumption of the air compressor resulting in a reduction of the
net power output of the fuel cell. The PEMFC air feeding system is a complex nonlinear multi-input
multi-output (MIMO) system that may include parameter uncertainty, so an efficient controller is
required for the precise regulation of the oxygen excess ratio at different disturbance levels.

For the PEMFC air feeding system, several control techniques have been investigated in the
literature such as feedforward control [4–7], LQR/LQG control [8], feedforward plus PI feedback
control [6], sliding mode control (SMC) [9], adaptive sliding mode observer based control [10], adaptive
control [11], model predictive control (MPC) [12], time delay control (TDC) with static feedforward [13]
and disturbance-observer-based control [2]. Recently, soft computing techniques gained a lot of interest
for the control of the PEMFC air feeding system. A B-spline neuro controller (B-SNN) was proposed
in [14], PID feedback control with a single-input single-output (SISO) fuzzy feedforward controller [15]
and hybrid fuzzy-PID controller [16].

A fuzzy logic controller (FLC) is widely accepted as an efficient controller, which is capable
of controlling system without knowledge of its underlying dynamics and without using extensive
mathematical analysis. Applications of FLCs in the literature witness that FLC is very efficient for
nonlinear and uncertain systems [17]. However, the design of FLC is difficult because it involves several
parameters without a distinct method for tuning. The design parameters for FLC are input/output
scaling factors, membership function parameters and the rule base. Several heuristic methods have
been proposed for the design and tuning of FLCs usually involving trial and error methods. The use of
metaheuristic optimization techniques is an efficient method for tuning FLC, which proved efficient
for different applications in literature [18,19].

Fractional order controllers are a generalization of standard controllers by using fractional order
calculus where the order of the differentiators or integrators is a fractional number rather than an
integer number used in standard controllers. The use of fractional operators increases the degree of
freedom of the controller allowing it to generate outputs, which cannot be generated using integer
order operators. A fractional order PID (FOPID) controller was proposed by Podlubny [20] where it
demonstrated better control performance compared to the standard integer order PID controller. As a
result, Fractional order PID controller gained a lot of interest in different control applications [21–25].

The application of fractional order operators has been extended to be used with fuzzy logic
controllers where it was firstly proposed by Das et al. in [26]. Results demonstrated the superiority
of the fractional order fuzzy PID compared to the standard Fuzzy PID controller. As a result, the
fractional order fuzzy PID (FOFPID) controller gained a lot of interest and it is considered as an active
and promising research area for different control applications [27–30].

This paper proposes a fractional order fuzzy PID (FOFPID) controller as an efficient controller
for the PEMFC air feeding system. The proposed controller is optimized using the neural network
algorithm (NNA). NNA is a new metaheuristic optimization algorithm developed by Sadollah et al. [31].
Sadollah et al. concluded that the artificial neural networks (ANNs) could be modeled and used as a
metaheuristic optimization algorithm for handling optimization problems. NNA was developed based
on the structure and the operators of the artificial neural networks (ANNs) for solving optimization
problems [31]. NNA is one of the parameter free metaheuristic optimization algorithms where it does
not require the user to fine-tune any algorithm parameters.

In this paper, the proposed fractional order fuzzy PID (FOFPID) controller is optimized using
the NNA, where the NNA is used to optimize the input and output scaling factors, the membership
function parameters of the controller inputs as well as the order of the fractional order differentiator
and integrator.

The main contributions of this paper are:
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• A new application for the FOFPID and FOPID controllers is proposed to apply in the PEMFC air
feed control to improve performance and robustness.

• This paper employs a direct discretization approach using an Al-Alawi operator for the first time
to implement fractional order fuzzy PID controllers rather than indirect discretization approach
based on Oustaloup’s recursive approximation.

• This paper is the first application of the NNA algorithm in controller design applications.
• The proposed NNA optimized FOFPID controller is tested for a constant set value for the oxygen

excess ratio as well as the maximum power point operation by tracking a time varying set value
for the oxygen excess ratio.

• Sensitivity analyses are performed to test the robustness of the proposed controller under various
uncertainty conditions.

2. PEMFC Model

A PEM fuel cell stack consists mainly of three subsystems which are: (i) A hydrogen supply
subsystem that feeds the anode side with hydrogen, (ii) an air feed subsystem that feeds the cathode
by oxygen from the air and (iii) a humidification and thermal management subsystem that regulates
the humidity and the temperature of the fuel cells, respectively. The main components of a PEMFC
stack system are shown in Figure 1.
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Figure 1. The main components of a PEMFC stack system.

The air feeding subsystem has a great impact on the PEMFC stack performance because it
consumes up to 30% of the fuel cell power [2,3]. The air feed subsystem consists of an electromechanical
air compressor, which maintains the required oxygen pressure and mass flow rate in the cathode of
PEMFC [2].

2.1. Air Feed System Model for PEMFC

There are several models for the PEMFC air feed system. Pukrushpan et al. introduced an accurate
9th order model for the air feed system in [4,5,32]. A reduced order model of Pukrushpan’s model was
introduced by Suh in [33] where the 9th order model of Pukrushpan et al. was reduced into a 4th order
model while preserving the dynamic behavior. Some assumptions have been assumed for PEMFC
model reduction: The hydrogen subsystem dynamics are neglected by assuming perfect hydrogen
supply control. Humidity and temperature variations are neglected by assuming perfect humidity and
temperature control. The DC motor dynamics are neglected due to its small time constant compared to
the mechanical system [33,34]. This model has been widely accepted by researchers for the design of
the air feed system controller [16,35,36].
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According to Suh’s model, the PEMFC air feed system equations are expressed as follows:

x. = f (x) + guu + gωω (1)

with a state vector x = [x1, x2, x3, x4]
T, where x1 = PO2 is the partial pressure of oxygen in the cathode,

x2 = PN2 is the partial pressure of nitrogen in the cathode, x3 = ωcp is the angular velocity of the
compressor, x4 = Psm is the pressure of the supply manifold, u = vcm is the compressor-motor voltage
as the control input and ω = Ist is the PEMFC stack current representing the measurable disturbance
to the system. The components of f (x) are [16,35,37]:

f1(x) = c1(x4 − χ) −
c3x1α(x1, x2)

c4x1 + c5x2 + c6
(2)

f2(x) = c8(x4 − χ) −
c3x2α(x1, x2)

c4x1 + c5x2 + c6
(3)

f3(x) = −c9x3 −
c10

x3

((
x4

c11

)c12

− 1
)
ψ3(x3, x4) (4)

f4(x) = c14

(
1 + c15

((
x4

c11

)c12

− 1
))

.(ψ3(x3, x4) − c16(x4 − χ)) (5)

where χ = x1 + x2 + c2 is the cathode pressure (Pca) and α(x1, x2) is the total flow rate at the cathode
outlet, which is given by:

α(x1, x2) =

c17χ
( c11
χ

)c18 .
(
1−

( c11
χ

)c12
)0.5

f or c11
χ > c19

c20χ f or c11
χ ≤ c19

(6)

The input vectors gu and gω are given by:

gu = [0 0 c13 0] T (7)

gω = [−c7 0 0 0] T (8)

The constants ci, i = 1, 2, . . . , 24 depend on the physical parameters of the PEMFC stack. The
definition of these constants is given in Table 1 [16,35]. The values of the model parameters are shown
in the Appendix A in Table A1 [16].

The measurement outputs vector is:

y =


y1

y2

y3

y4

 =

ψ1(x1, x2)

x4

ψ3(x3, x4)

x3

 (9)

where y1 = ψ1(x1, x2) is the stack voltage (Vst) given by:

Vst = nvFC (10)

where vFC is the voltage of a single fuel cell and n is the number of fuel cells in the stack. The voltage
of a single fuel cell is defined by:

vFC = E− vact − vohm − vconc (11)

with E as the open circuit voltage and vact, vohm and vconc are the activation, ohmic and concentration
overvoltages, respectively. For more details about ψ1(x1, x2), the reader can refer to [4,5,7]. y3 =
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ψ3(x3, x4) is the airflow rate inside the compressor (Wcp) also known as the compressor flow map. It is
approximated as follows [16,35]:

ψ3
aproximated =

y3
maxx3

x3max

1− exp


−rc

(
sc +

x3
2

qc
− x4

)
sc +

x32

qc
− x4

min


 (12)

where, rc = 15, sc = 105 Pa and qc = 462.25 rad2/
(
s2Pa

)
.

Table 1. PEMFC model constants a.

PEMFC Model Constants

C1 =
RTstKca,in
MO2 Vca

( xO2,atm

1+ωatm

)
C14 =

RTatmγ
Ma,atmVsm

C2 = Psat C15 = 1
ηcp

C3 = RTst
Vca

C16 = Kca,in

C4 = MO2 C17 = CDAT

(RTst)
0.5

( 2γ
γ−1

)0.5

C5 = MN2
C18 = 1

γ

C6 = MvPsat C19 =
(

2
γ+1

) γ
γ−1

C7 = RTstn
4FVca C20 = CDAT√

RTst
γ0.5

(
2

γ+1

) γ+1
2γ−2

C8 =
RTstKca,in
MN2 Vca

(
1−xO2,atm

1+ωatm

)
C21 = 1

Rcm

C9 =
ηcmktkv
JcpRcm

C22 = kv

C10 =
CpTatm
Jcpηcp

C23 = Kca,in
( xO2,atm

1+ωatm

)
C11 = Patm C24 =

nMO2
4F

C12 =
γ−1
γ xO2,atm =

yO2,atmMO2
Ma,atm

C13 =
ηcmkt
JcpRcm

ωatm = Mv
Ma,atm

φatmPsat
Patm−φatmPsat

a: Adopted with permission from Reference [16] Copyright (2017) Elsevier.

2.2. Control Objective

The performance variables vector for the PEMFC stack system is defined by:

z =

[
z1

z2

]
=

[
Pnet

λo2

]
(13)

where z1 = Pnet is the net power output of the PEMFC stack and z2 = λo2 is the oxygen-excess ratio.

z1 = y1ω− c21u(u− c22x3) (14)

z2 =
c23

c24ω
(x4 − χ) (15)

Oxygen starvation occurs when the value of z2 falls below 1, i.e., (z2 < 1). Hence, the oxygen excess
ratio z2 must be regulated at a certain point that prevents oxygen starvation at different disturbance
conditions. For hydrogen/air fuel cells, z2

re f = 2 has been proposed as an optimal value [15,16,36].
Although, keeping the oxygen excess ratio at z2

re f = 2 can avoid oxygen starvation, it cannot guarantee
the maximum net power output from the fuel cell stack. The z1/z2 performance curve for different
stack currents from 100 A to 300 A is shown in Figure 2.
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(a) Maximum power point (z1

?, z2
?) for different levels of disturbance (Ist). (b) z1

?, z2
? as a function

of the disturbance (Ist).

Figure 2 show that the optimal operating point (z1
?, z2

?) depend on the stack current Ist, meaning
that for different values of the stack current Ist, there exists an optimal operating point (z1

?, z2
?)

between z2 = 2 and z2 = 2.5 where the maximum net power output is achieved. The optimal values
z1
? and z2

? are functions of the stack current Ist and are given by:

z2
? = ϕ1(ω) (16)

z1
? = ϕ2(ω) (17)

where ϕ1(ω) and ϕ2(ω) are approximated from the z1/z2 performance curve given in Figure 2. ϕ1(ω)

is obtained using shape preserving interpolation while ϕ2(ω) is a quadratic function with parameters
obtained using the least squares method.

Hence, to obtain the maximum power output from the stack, Zre f
2 must be determined based on

the stack current Ist as follows:
z2

re f = z2
? (18)

z1
re f = z1

? (19)

The control objective is to design an optimal controller for the oxygen excess ratio z2 to regulate it
at the required level to prevent oxygen starvation and obtain the maximum net power output z1 from
the PEMFC stack at different disturbance conditions.

3. Air Feeding System Controller Design

The PEMFC air feeding system is a highly nonlinear MIMO system so an efficient controller is
required for achieving the control objectives. This paper proposes a fractional order fuzzy PID controller
as an efficient candidate for solving the PEMFC air feeding control problem. The proposed control
scheme is shown in Figure 3. Fuzzy control simplifies the controller design procedures especially for
complex nonlinear systems because FLCs apply the control actions in human-like thinking rather than
a complex mathematical design [38]. The hybridization of fractional order operators for integration
and differentiation with a fuzzy PID controller increases the degrees of freedom of the fuzzy controller
allowing it to produce outputs, which cannot be produced with an integer order fuzzy controller.
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3.1. Fractional-Order Operators and Its Discretization

Among the several definitions, the most common definitions for fractional order operators
(differentiator/integrator) are the Grünwald-Letnikov (G-L) definition and Riemann-Liouville (R-L)
definition [39].

The Grünwald-Letnikov (G-L) definition is given by:

aDr
t f (t) = lim

h→0

1
hr

[(t−a)/h]∑
i=0

(−1)i
(

r
i

)
f (t− ih) (20)

where the time domain operator Dr is equivalent to the frequency domain operator Sr, r ∈ [−1, 1].
A positive value of r implies a fractional order differentiator while a negative value of r implies a
fractional order integrator.

To obtain digital implementation of a fractional order controller (FOC), two discretization methods
can be used: Direct discretization and indirect discretization [39]. Indirect discretization methods
are two-step methods, where, the first step is to perform a frequency-domain approximation in a
continuous time domain such as the Oustaloup’s band-limited rational approximation, the second step
is to discretize the obtained fit s-transfer function. Several frequency-domain approximations can be
used but the stable minimum-phase discretization cannot be guaranteed [39]. Direct discretization
methods are used to obtain the discrete approximation transfer function directly.

Generally, direct discretization of the fractional-order differentiator/integrator S±r, (r ∈ R), can be
carried out using the generating function S = ω

(
z−1

)
. The generating function used and its expansion

determine the form and the coefficients of the approximation [39]. Direct discretization methods
include the direct power series expansion (PSE) of the Euler operator, continuous fractional expansion
(CFE) of the Tustin operator and the numerical integration-based method [39].

In this paper, the direct discretization approach was used to obtain a discrete approximation of the
fractional order operator S±r, (0 < r < 1), in the infinite impulse response (IIR) form of discretization
using the Al-Alaoui operator, which is a mixed scheme of the Euler and Tustin Operators. The
Al-Alaoui operator as a generating function is given by:

ω
(
z−1

)
=

8
7T

1− z−1

1 + z−1/7
(21)

where T is the sampling interval.
The discretized fractional-order operator is given by:

D±r(z) =
(
ω
(
z−1

))±r
=

(
8

7T
1− z−1

1 + z−1/7

)±r

(22)
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Equation (22) is a rational discrete-time transfer function of infinite orders. CFE is an efficient
way to approximate Equation (22) with a finite order rational one [39]. The resulting discrete transfer
function approximating a fractional-order operator can be expressed as:

D±r(z) ≈
(

8
7T

)±r
CFE

{(
1−z−1

1+ z−1
7

)±r}
p,q

=
(

8
7T

)±r Pp(z−1)
Qq(z−1)

=
(

8
7T

)±r Pp(z−1)
Qq(z−1)

=
(

8
7T

)±r p0+p1z−1+p2z−2+...+pmz−p

q0+q1z−1+q2z−2+...+qnz−q

(23)

where CFE{u} denotes the continued fraction expansion of u; p and q are the order of approximation.
Normally, it could be set p = q = n. The discretization of Sr result is an infinite impulse response (IIR)
form. An approximate rational function can be obtained by truncation.

The continued fractions expansion (CFE) of any well-behaved function G
(
z−1

)
is given by:

G
(
z−1

)
' a0

(
z−1

)
+

b1
(
z−1

)
a1(z−1) +

b2(z−1)

a2(z−1)+
b3(z−1)

a3(z−1)+...

(24)

where the coefficients ai and bi are either constants or rational functions of the variable z−1.
The advantage of using the direct discretization method with the Al-Alaoui operator as a generating

function is that it always gives discrete transfer functions with stable minimum phase characteristics,
which is not always guaranteed when using the indirect discretization approach. The other advantage
is that there is only one tuning knob [40,41].

The transfer function of the fractional order PID controller (PIλDµ) is given by:

GFOPID(s) = Kp +
Ki

sλ
+ Kdsµ (25)

where Kp, Ki, Kd are proportional, integral and derivative gains respectively. µ and λ are positive
numbers that represent the order of differentiation and integration [30]. The control signal in the time
domain representation given by:

uFOPID(k) = Kpe(k) + KiD−λe(k) + KdDµe(k) (26)

3.2. Fractional Order Fuzzy PID Controller

A fuzzy logic PID controller consists basically of a fuzzy PI and a fuzzy PD controller connected
in parallel [18]. Hybridization of fractional order operators with a fuzzy controller is achieved by
replacing the integer order differentiator and integrator at the input and the output of the FLC by a
fractional order operator [26]. The use of fractional order operators adds extra degrees of freedom
for tuning.

The structure of two inputs fractional order fuzzy PID controller with its tunable parameters is
shown in Figure 4 where GE and GDE are the input scaling factors while α and β are output scaling
factors. Dµ is a fractional order differentiator with non-integer order µ while D−λ is a fractional order
integrator with a non-integer order λ. Integer order fuzzy PID controller can be obtained easily from a
fractional order fuzzy PID controller by setting the order of the differentiator and integrator in Figure 4
to an integer value, i.e., µ = 1, λ = 1. However, the use of fractional order operators increases the
degrees of freedom (DOF) of the fuzzy controller allowing it to generate output values that cannot be
generated using an integer order fuzzy controller.
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The input scaling factors GE, GDE perform a scaling or normalization of the inputs from the real
values into a normalized universe of discourse [−1,1], while the output scaling factors α, β perform
an inverse scaling or denormalization of the fuzzy controller output into applicable values suitable
for the system. The performance of the fuzzy logic PID controller depends strongly on the values
of these scaling factors [19]. Scaling factors has a global effect on the performance of the fuzzy
controller. Therefore, these scaling factors must be properly tuned to achieve the desired system
performance. Optimization algorithms represent an efficient tool for tuning the scaling factors of fuzzy
controllers [19].

The inputs of the fractional order fuzzy PID controller are the error e(k) and the fractional
derivative of error Dµ(z)e(k), which are scaled using the input scaling factors GE and GDE respectively
into E(k) and DµE(k). The output is the control signal uFOFPID which is scaled using the output scaling
factors α and β where:

e(k) = zre f
2 − z2(k) (27)

f de(k) = Dµ(z)e(k)=
(
ω
(
z−1

))µ
e(k) (28)

E(k) = GE.e(k) (29)

FDE(k) = Dµ(z)E(k) = GDE.Dµ(z)e(k) (30)

uFOFPID(k) = α.uFIS(k) + β.D−λ(z)uFIS(k) = α.uFIS(k) + β.
(
ω
(
z−1

))−λ
uFIS(k) (31)

where
uFIS(k) = fFuzzy(E(k), Dµ(z)E(k)) (32)

where D = ω
(
z−1

)
is the generating function for the Al-Alaoui operator and

(
ω
(
z−1

))µ
and

(
ω
(
z−1

))−λ
are

discrete transfer functions approximating the fractional-order differentiator and integrator respectively
obtained using the Al-Alaoui operator. fFuzzy is a nonlinear function represent the fuzzy reasoning.

In this paper, seven membership functions (MFs) namely NB, NM, NS, Z, PS, PM and PB are used
for the inputs E, DµE and the output uFIS. Gaussian MFs are selected for the input variables. The
Gaussian MF is defined by:

g(x; C, σ) = exp

−(x−C)2

2σ 2

 (33)

where C is the mean of the membership function and σ is the standard deviation.
In this work, for computational efficiency, a zero-order Takagi-Sugeno-Kang (TSK) fuzzy inference

is used, where the output of each rule is simply a constant or a singleton. The type and the parameters
of the membership functions used affect the performance of the fuzzy controller. An optimization
algorithm has been used for tuning the parameters of the membership functions [19,42]. The inputs and
output membership functions for the fractional order fuzzy PID controller with its design parameters
are shown in Figure 5.
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The ith fuzzy rule used for the fractional order fuzzy PID controller has the following form:

Rule Ri : IF E is Ai AND DµE is Bi THEN uFIS is yi.

where Ai and Bi are Gaussian fuzzy sets, while yi is a singleton. The complete rule base of the fractional
order fuzzy PID controller with 49 rules is given in Table 2. This rule base has been selected according
to [43].

Table 2. Fractional order fuzzy PID controller rule base [43].

uFIS
E

NB NM NS Z PS PM PB

DµE

NB NB NB NB NB NM NS Z
NM NB NB NB NM NS Z PS
NS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB
PM NS Z PS PM PB PB PB
PB Z PS PM PB PB PB PB

4. Optimization Tool

4.1. Neural Network Algorithm (NNA)

Artificial Neural Networks (ANNs) map the input data to the target data through an iterative
update of the weights wi j of the ANNs to reduce the mean square error between the predicted output
and the target output. The neural network algorithm (NNA) is based on the concepts and the structure
of the ANNs to generate new solutions where the best searching agent in the population is considered
as the target and the procedures of the algorithm tries to make all the searching agents follow that
target solution [31].

NNA is a population-based algorithm where it starts with an initial population of randomly
generated solutions within the search space. Each individual or searching agent in the population is
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called a “pattern solution”, each pattern solution is a vector of 1×D representing the input data of the
NNA. Pattern Solutioni = [xi1, xi2,xi3, . . . . . . , xiD].

To start the NNA optimization algorithm, a pattern solution matrix X with size Npop ×D is
randomly generated between the lower and upper bounds of the search space. The population of
pattern solution X is given by:

X =



X1
...

Xi
...

XNpop


=



x11 x12 · · · x1D
...

xi1

...
xi2

...
· · ·

...
xiD

...
xNpop1

...
xNpop2

...
· · ·

...
xNpopD


(34)

where
xi j = LB j + rand

(
UB j − LB j

)
, i = 1, 2, . . . , Npop, j = 1, 2, . . . , D (35)

where LB and UB are 1×D vectors representing the lower and upper bounds of the search space.
Like ANNs, in NNA each pattern solution Xi will have its corresponding weight Wi where

Wi =
[
wi1, wi2, . . . , wiNpop

]T
. The weights array W is given by:

W =
[
W1, . . . , Wi, . . . , WNpop

]
=


w11 · · · wi1 · · · wNpop1

w12 · · · wi2 · · · wNpop2
...

w1Npop · · ·

...
wiNpop

...
· · ·

...
wNpopNpop

 (36)

where W is a square matrix
(
Npop ×Npop

)
of uniformly distributed random numbers between 0 and 1.

The weight of the pattern solution is involved in the generation of a new candidate solution.
In NNA, the initial weights are random numbers and its value is updated as the iteration number

increases according to the calculated error of the network. The weight values are constrained such that
the summation of the weights for any pattern solution should not exceed one, defined mathematically
as follows:

wi j ∈ U(0, 1), i, j = 1, 2, 3, . . . , Npop (37)

Npop∑
j=1

wi j = 1, i = 1, 2, 3, . . . , Npop (38)

These constraints for weight values are used to control the bias of movement and the generation
of new pattern solutions. Without this constraint, the algorithm will be stuck in a local optimum
solution [31].

The fitness Ci of each pattern solution is computed by the evaluation of the objective function fobj
using the corresponding pattern solution Xi.

Ci = fobj(Xi) = fobj(xi1, xi2, . . . , xiD), i = 1, 2, . . . , Npop (39)

where fobj is the objective function.
After the fitness calculation for all pattern solutions, the pattern solution with the best fitness is

considered as the target solution with a target position XTarget, target fitness FTarget and target weight
WTarget. The NNA models an ANN with Npop inputs each input of D dimension(s) and only one target
output XTarget [31].
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Inspired by the weight summation technique used in ANNs, the new pattern solution is generated
as follows:

→

X
New

j (k + 1) =
Npop∑
i=1

wi j(k)·
→

Xi(k), j = 1, 2, 3, . . . , Npop (40)

→

Xi(k + 1) =
→

Xi(k) +
→

X
New

i (k + 1), i = 1, 2, 3, . . . , Npop (41)

where k is an iteration index.
After the new pattern solutions are generated from the previous population, the weight matrix is

updated as well using the following equation:

→

W
Updated

i (k + 1) =
→

Wi(k) + 2·rand·
(
→

W
Target

(k) −
→

Wi(k)
)
, i = 1, 2, 3, . . . , Npop (42)

where the constraints (37) and (38) must be satisfied during the optimization process.
For better exploration of the search space, a bias operator is used in the NNA algorithm. The

bias operator is used to modify a certain percentage of the pattern solutions generated in the new

population
→

Xi(k + 1) as well as the updated weight matrix WUpdated
i (k + 1). The bias operator prevents

the algorithm from premature convergence by modifying a certain number of individuals in the
population to explore other places in the search space, which has not been visited by the population.
For more details about the bias strategy, the reader can refer to reference [31].

A modification factor βNNA is used to determine the percentage of the pattern solutions to be
modified using the bias operator. The initial value of βNNA is set to 1 meaning that all individuals in
the population are biased. The value of βNNA will be adaptively reduced at each iteration using any
possible reduction technique such as follows:

βNNA(k + 1) = 1−
(

k
Max_iteration

)
, k = 1, 2, 3, . . . , Max_iteration (43)

βNNA(k + 1) = βNNA(k)·αNNA, k = 1, 2, 3, . . . , Max_iteration (44)

where αNNA is a positive number smaller than 1 originally selected as 0.99.
The reduction of the modification factor βNNA is made to enhance the exploitation of the algorithm

as the iterations increase by allowing the algorithm to search for the optimum solution near to the
target solution especially at the final iterations.

Unlike ANNs, in NNA the transfer function operator is used to generate better-quality solutions.
The transfer function operator (TF) is defined by the following equation:

→

X
∗

i (k + 1) = TF
(
→

Xi(k + 1)
)
=
→

Xi(k + 1) + 2· rand·
(
→

X
Target

(k) −
→

Xi(k + 1)
)
, i = 1, 2, 3, . . . , Npop (45)

Using the transfer function operator, the ith updated pattern solution
→

Xi(k + 1) is transferred from

its current position to a new updated position
→

X
∗

i (k + 1) towards the target pattern solution
→

X
Target

(k).
In NNA, at early iterations the bias operator has more chances to generate a new pattern solution

meaning that more possible opportunities for discovering unvisited pattern solutions as well as using
new weight values. As the iteration number increases, the chance of applying the bias operator
decreases while the transfer function (TF) operator will have more chance enhancing the exploitation
of the NNA especially at the final iterations.
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NNA is considered as a dynamic optimization model because the generation of a new updated
solution does not depend only on the previous value of that solution but also depends on all the
population described mathematically as follows:

→

Xi(k + 1) = f
(
→

Xi(k), X(k)
)
, i = 1, 2, 3, . . . , Npop (46)

where
→

Xi(k + 1) and
→

Xi(k) are the next and current locations of the ith pattern solution respectively.

4.2. Formulation of FOFPID Controller Design as an Optimization Problem

In this paper, the neural network algorithm (NNA) was used to optimize the fractional order
fuzzy PID controller. NNA was used to obtain the optimal or suboptimal value of the four
scaling factors

{
GE, GDE, α, β

}
, membership functions parameters for the two inputs E and DµE

{C1, C2, . . . , C6, σ1, σ2, . . . , σ8} as well as the order of the fractional order operators
{
µ, λ

}
. Each

candidate pattern solution must contain these parameters of the FOFPID controllers as follows:

→

Xi =
{
GEi, GDEi,αi , βi, C1i, C2i, . . . , C6i, σ1i, σ2i, . . . , σ8i,µi, λi

}
(47)

Gaussian membership functions are used for the inputs of the FOFPID controller. The Gaussian
membership function is characterized by two parameters, which are the center Ci and the standard
deviation σi. In this paper, a technique for encoding the membership functions using the minimum
number of parameters is used, where, the peer positive and negative membership functions have the
same value of the mean Ci, but with the opposite sign, and have the same standard deviation σi as
shown in Figure 5. This approach of encoding reduces the total number of the membership functions’
parameters to be optimized to half, reducing the dimension of the optimization problem leading to a
reduction of the computational cost. The total problem dimension is 20. The encoding of the controller
parameters into a pattern solution is given in Figure 6.
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The formulation of FOFPID controller design as an optimization problem is described as follows:
Minimize

J = fobj(GE, GDE, α , β , C1, C2, . . . , C6, σ1, σ2, . . . , σ8,µ, λ ) (48)

Such that,
GEmin ≤ GE ≤ GEmax (49)

GDEmin ≤ GDE ≤ GDEmax (50)

αmin ≤ α ≤ αmax (51)

βmin ≤ β ≤ βmax (52)

0 < Ci ≤ 1 (53)

σimin ≤ σi ≤ σimax (54)

0 ≤ µ, λ ≤ 1 (55)
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With the constrains:
0 < C1 < C2 < C3 ≤ 1 (56)

0 < C4 < C5 < C6 ≤ 1 (57)

where,

J = ITAE =

∫
t·|e| dt (58)

is the integral of the time weighted squared error, e is the error signal and t is the time.
The detailed procedures for using NNA for the optimization of the FOFPID controller are described

in Figure 7.
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The optimized membership functions for both inputs of the FOFPID controller are shown in
Figure 8. The optimal values for µ, λ are: µ = 0.8644 and λ = 1. Using the Al-Alawi operator, the
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truncated 5th order discrete transfer functions approximating D0.8644 and D−1 with a sampling interval
T = 0.001 s are:

Dµ = D0.8644 =
(

8
7T

1−z−1

1+z−1/7

)0.8644
= 2.537×106

−6.69×106 z−1+6.163×106 z−2
−2.264×106 z−3+2.483×105 z−4+6291 z−5

5770−9515 z−1+4245 z−2−160.6 z−3−121.6 z−4+z−5 (59)

D−λ = D−1 =
(

8
7T

1−z−1

1+z−1/7

)−1
= 0.7478−1.175 z−1+0.4782 z−2

−0.001453 z−3
−0.01458 z−4

−0.000125 z−5

854.6−2320 z−1+2221 z−2−865.4 z−3+108.6 z−4+z−5 (60)
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5. Simulation Results and Discussion

To verify the performance, the efficiency and the robustness of the proposed controller (NNA
optimized fractional order fuzzy PID controller), detailed simulations using a MATLAB/SIMULINK
environment were carried-out and analyzed. The performance verification was divided into three
tasks. The first task was to test the controller for constant set point mode with zre f

2 = 2. The second task

was to test the controller for maximum power point operation mode with zre f
2 = z?2 , where z?2 ∈ [2, 2.5]

is a function of the stack current. The third task was to test the robustness of the proposed controller
against parameter uncertainty in the PEMFC stack system using the sensitivity analyses. For the
validation of the simulation results, this work uses the same numerical values of the model parameters
as well as the same profile of the disturbance used in a recent paper (reference [16]). Moreover, the
simulation results are compared and verified to that of reference [16].

5.1. The First Task (Tracking Constant zre f
2 )

In this task, the controller is tested by applying different values of the disturbance Ist, which
cover the whole range of the operation of the PEMFC stack while keeping the oxygen excess ratio at a
constant set point value zre f

2 = 2. The profile of the disturbance, i.e., the PEMFC stack current Ist is
shown in Figure 9.
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Figure 9. The disturbance ω (Ist).

The PEMFC performance using four different controllers, which are the NNA optimized PID
controller (NNA PID), NNA optimized fractional order PID controller (NNA FOPID), NNA optimized
fuzzy PID controller (NNA FPID) and NNA optimized fractional order fuzzy PID controller (NNA
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FOFPID) is shown in Figure 10. Simulation results showed that a sudden increase in the stack current
Ist representing the disturbance to the system resulted in a sudden reduction of the oxygen excess ratio
z2. The proposed controller (NNA FOFPID) recovered from the disturbance effect faster than other
controllers achieving the least settling time, rise time and fluctuations around the set point. At time
= 20 s, a sudden reduction in the stack current caused a sudden increase in the oxygen excess ratio
z2. The proposed controller (NNA FOFPID) recovered from the disturbance effect faster than other
controllers achieving the least settling time and fluctuations around the set point.
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2 = 2).

Simulation results showed that, the proposed NNA optimized fractional order fuzzy PID controller
(NNA FOFPID) significantly improved the transient response of the PEMFC air feeding system by
reducing the settling time and fluctuations around the set point compared to other controllers.

Simulation results showed that the NNA FOPID controller could outperform the NNA PID
controller. However, it could not outperform the NNA FPID controller. Simulation results showed
that the proposed NNA FOFPID could outperform all the other three types of controllers achieving a
better performance.

The variation of the stack voltage Vst and the net power output z1 of the PEMFC stack using the
four controllers is shown in Figures 11 and 12, respectively. It could be noticed that a sudden increase
in the PEMFC stack current resulted in a sudden reduction in the oxygen excess ratio z2 reducing the
stack voltage Vst. Although, the reduction of the PEMFC stack current, at time = 20 s, resulted in
an increase in the oxygen excess ratio z2 increasing the stack voltage Vst, the net power output z1 of
the stack was reduced because of the increased power consumption of the compressor motor. The
compressor motor voltage vcm using the proposed NNA optimized fractional order fuzzy PID (NNA
FOFPID) controller is shown in Figure 13.
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2 = 2).

A performance comparison based on the time domain performance indices is given in Table 3.
Results showed that, NNA optimized controllers could outperform the controllers presented in
reference [16]. The proposed NNA optimized fractional order fuzzy PID controller (NNA FOFPID)
was superior and achieved the best time domain performance indices.

Table 3. Performance indices using different controllers for task 1 (zre f
2 = 2).

Controller ISE IAE ITSE ITAE

PID [16] 0.0627 0.2903 NA 2.2741
FLC [16] 0.5045 1.1047 NA 8.0201

HFPID [16] 0.0249 0.1005 NA 0.6781
NNA PID 0.03711 0.1995 0.1032 1.356

NNA FOPID 0.02652 0.1261 0.07036 0.8443
NNA FPID 0.014 0.09013 0.06015 0.6539

NNA FOFPID (proposed) 0.009186 0.05291 0.04193 0.3639

5.2. The Second Task (MPPT)

In this task, the proposed NNA FOFPID controller was tested for the maximum power point
operation for the PEMFC stack by tracking a time-varying set-value z2

re f = z2
?, where the set-value

z2
? is a function of the stack current Ist to obtain the maximum net power output Pnet from the PEMFC

stack as described in Section 2. The same profile of the disturbance used in task 1 was used in the
maximum power point tracking mode (MPPT) task.

The PEMFC performance using the proposed controller and the other controllers for the maximum
power point tracking mode (MPPT) is shown in Figure 14. Simulation results showed that the proposed
NNA optimized fractional order fuzzy PID controller (NNA FOFPID) could outperform the other
controllers achieving a better set point tracking with the least settling time and minimal fluctuations
around the time-varying set value for both positive and negative set point changes achieving a better
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transient response. Results showed that the proposed NNA optimized fractional order PID controller
(NNA FOPID) was better in both set point tracking and the disturbance rejection.
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The variation of the stack voltage Vst in the MPPT operation mode using the four controllers is
shown in Figure 15. By comparing Figures 11 and 15, it could be noticed that the stack voltage Vst in the
case of the MPPT operation mode was larger than that in case of the constant set point operation mode.
The net power output z1 of the PEMFC stack is shown in Figure 16. Simulation results showed that
using a time-varying set-value z2

re f = z2
?, the net power output of the PEMFC stack was maximized.

The compressor motor voltage vcm in the MPPT operation mode using the NNA optimized fractional
order fuzzy PID controller (NNA FOFPID) is shown in Figure 17.
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A performance comparison based on the time domain performance indices for tracking a
time-varying set-value z2

re f = z2
? is given in Table 4. The proposed NNA optimized fractional

order fuzzy PID (NNA FOFPID) controller was superior and achieved the best time domain
performance indices.

Table 4. Performance indices using different controllers for task 2 (MPPT).

Controller ISE IAE ITSE ITAE

HFPID [16] NA NA NA NA
NNA PID 0.04931 0.1938 0.062 1.034

NNA FOPID 0.03104 0.1238 0.04675 0.7024
NNA FPID 0.03671 0.1127 0.03346 0.4368

NNA FOFPID (proposed) 0.02459 0.0701 0.02513 0.2619

5.3. The Third Task (Sensitivity Analysis)

Sensitivity analyses were carried-out for testing the robustness of the proposed NNA optimized
FOFPID controller against system parameters changes. The system parameters were varied
independently by ±25% of their nominal values without changing the optimized parameter of
the proposed NNA FOFPID controller. The time domain performance indices (ISE, IAE, ITSE and ITAE)
for the nominal PEMFC air feeding system as well as the perturbed systems are shown in Table 5. The
performance of the system with the different considered parameter uncertainty is shown in Figure 18.

Table 5. Sensitivity analysis for the PEMFC air feeding system with the proposed NNA FOFPID.

Parameter % Change ISE IAE ITSE ITAE

Nominal 0 0.02459 0.0701 0.02513 0.2619

Jcp
+25% 0.0239 0.07184 0.03055 0.3069
−25% 0.0263 0.07017 0.01969 0.2255

Rcm
+25% 0.0256 0.07463 0.03141 0.3158
−25% 0.0239 0.06669 0.01997 0.225

Vsm
+25% 0.03594 0.08698 0.03287 0.3187
−25% 0.01389 0.05485 0.01815 0.2263

kt
+25% 0.02459 0.0701 0.02513 0.2619
−25% 0.02459 0.0701 0.02513 0.2619

kv
+25% 0.03929 0.1005 0.04467 0.519
−25% 0.01774 0.05987 0.02576 0.2671

Tatm
+25% 0.0313 0.07813 0.02625 0.2707
−25% 0.01966 0.06367 0.02441 0.2571
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Figure 18. Sensitivity analyses for the PEMFC air feeding system with the proposed NNA optimized
FOFPID controller for 25% uncertainty in different PEMFC stack parameters. (a) Uncertainty in
Jcp. (b) Uncertainty in Rcm. (c) Uncertainty in Vsm. (d) Uncertainty in kt. (e) Uncertainty in kv. (f)
Uncertainty in Tatm.

The results of Table 5 and Figure 18 showed that applying ±25% uncertainties in Jcp, Rcm, Vsm, kt,
kv and Tatm caused the time domain performance indices, overshoots, undershoots and settling time
to deviate from their nominal values. However, these deviations were slight within an acceptable
range and the system was dynamically stable. Sensitivity analyses showed that the PEMFC air
feeding system with an NNA optimized FOFPID controller had satisfactory robustness against the
considered parameter uncertainty range. It can be concluded that the NNA optimized FOFPID
controller parameters obtained with the nominal system parameters can be used without retuning or
resetting even the system parameters change in a considerable range.

6. Conclusions

In this paper, a fractional order fuzzy PID controller was proposed as an efficient controller for the
PEMFC air feeding system. The proposed controller was optimized using the neural network algorithm
(NNA). NNA was used to obtain the optimal value of the controller scaling factors and the order of
the fractional differentiator and integrator as well as the optimal parameters of the input membership
functions. Detailed simulation using a MATLAB/SIMULINK environment was carried-out to test the
performance of the proposed NNA optimized FOFPID controller for different modes of operation
of the PEMFC stack. Simulation results proved the efficiency and the superiority of the proposed
NNA optimized FOFPID controller over other types of controllers. The proposed controller achieved
a better set point tracking and disturbance rejection with minimal fluctuations around the set value
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with better transient response and minimum time domain performance indices. Sensitivity analyses
were carried-out to test the robustness of the proposed controller against parameter uncertainty in the
PEMFC air feeding system. Future research will concentrate on modifying the original NNA algorithm
for improving its convergence with applications to PEMFC control using new control schemes.
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Appendix A

Table A1. System Parameters for Simulation b.

Fuel Cells (FC) Data

n Number of cells in fuel cell stack 381 −

Vca The volume of the cathode 0.01 m3

CD
Throttle discharge coefficient for the cathode
outlet 0.0124 −

AT Cathode outlet throttle area 0.00175 m2

Vsm Supply manifold volume 0.02 m3

Tst Fuel cell temperature 353.15 K
Kca,in Cathode inlet orifice constant 0.3629 × 10−5 Kg s−1Pa−1

Air & Steam Properties

γ Ratio of specific heats of air 1.4 −

MN2 Nitrogen molar mass 28 × 10−3 Kg mol−1

MO2 Oxygen molar mass 32 × 10−3 Kg mol−1

Mv Vapor molar mass 18.02 × 10−3 Kg mol−1

Ma,atm Air molar mass 28.97 × 10−3 Kg mol−1

Tatm Atmospheric temperature 298.15 K
Patm Atmospheric pressure 1.01325 × 105 Pa
Cp Specific heat of air at constant pressure 1004 J Kg−1 K−1

φatm Average relative humidity of the ambient air 0.5 −

yO2,atm Oxygen mole fraction 0.21 −

Electrochemistry

F Faraday constant 96.487 C mol−1

R Universal gas constant 8.31451 J mol−1 K−1

Compressor (CP)

ηcp Compressor efficiency 80% −

Jcp Compressor inertia 5 × 10−5 Kg m2

Compressor Motor (CM)

Rcm Compressor motor resistance 0.82 Ω

kt Motor constant 0.0225 N m A−1

kv Motor constant 0.0153 V rad−1 s
ηcm Motor mechanical efficiency 98% −

b: Adopted with permission from reference [16] Copyright (2017) Elsevier.
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