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Abstract: Short-term load forecasting (STLF) has been widely studied because it plays a very
important role in improving the economy and security of electric system operations. Many types
of neural networks have been successfully used for STLF. In most of these methods, common
neural networks were used, but without a systematic comparative analysis. In this paper, we first
compare the most frequently used neural networks’ performance on the load dataset from the State
Grid Sichuan Electric Power Company (China). Then, considering the current neural networks’
disadvantages, we propose a new architecture called a gate-recurrent neural network (RNN) based
on an RNN for STLF. By evaluating all the methods on our dataset, the results demonstrate that the
performance of different neural network methods are related to the data time scale, and our proposed
method is more accurate on a much shorter time scale, particularly when the time scale is smaller
than 20 min.

Keywords: short-term load forecasting; back-propagation neural network; recurrent neural network;
long-short term memory; gate-recurrent neural network

1. Introduction

Accurate short-term load forecasting (STLF) can play a significant role in power construction
planning and power grid operation, and also has crucial implications for the sustainable development
of power enterprises. STLF can predict future loads for minutes to weeks. Because of the nonlinearity,
non-stationarity, and non-seasonality of STLF, it is very challenging to predict accurately. Inaccurate
load forecasting may increase operating costs [1]. By contrast, with an accurate electric load forecasting
method, fundamental operating functions, such as unit maintenance, reliability analysis, and unit
commitment, can be operated more efficiently [2]. Thus, it is essential for power suppliers to build an
effective model that can predict power loads, accomplish a balance between production and demand,
reduce production costs, and implement pricing schemes for various demand responses. According
to the length of the forecast period, power load forecasting is divided into four categories: long-term
load forecasting, medium-term load forecasting, STLF, and ultra-STLF [3].

There have been many efforts to develop accurate STLF; many methods have been propsoed [4–16].
In much earlier works, researchers attempted to forecast load precisely using a mathematical statistics
approach. The most representative is the regression analysis approach [4], which uses a set of functional
linear regression models. In [5], the authors used the Kalman filter to develop a very short-term load
predictor, and the Box–Jenkins autoregressive integrated moving average approach was proposed
in [6]. In [17], the relationships between demand and driver variables were evaluated by using
semi-parametric additive models. Additionally, in [18], the authors came up with a new SVD-based
exponential smoothing formulation. Based on linear regression and patterns, an univariate models
were proposed for 34 daily cycles of a load time series in [19]. In [20], by combining a Bayesian neural
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network with the hybrid Monte Carlo algorithm, the authors assumed a new model for STLF. Modified
artificial bee colony algorithm, extreme learning machine, and the wavelet transform were combined
to construct a novel STLF method in [21].

However, mathematical statistics approaches are based on linear analysis; thus, it is difficult for
them to predict nonlinear and non-stationary problems. For better learning of nonlinear features,
machine learning is a good approach. Two broad categories of methods exist: support vector regression
(SVR) and artificial neural networks (ANNs). In the SVR approach, a generic strategy for STLF based
on the SVR has been proposed [22–25]. In this method, there are two considerable improvements to
SVR-based load forecasting methods: the procedure for generating model inputs and the subsequent
model input was selected by feature selection algorithms. By combining SVR with other algorithms,
many hybrid methods have been proposed. An SVR model combined with the differential empirical
mode decomposition algorithm and autoregression was proposed in [26–28], and provides higher
accuracy and interpretability, and better generation ability. To extend the SVR method, a chaotic genetic
algorithm was presented to improve forecasting performance in [29]. In [30,31], the authors combined
support vector machines (SVMs) with a genetic algorithm, and combined SVR with ant colony
optimization to forecast the system load. In [32],an attempt based on double seasonal exponential
smoothing was used for STLF. Besides these studies, in [7], in order to achieve better regression and
forecasting performance, the proposed SVR-based STLF approach, a supervised machine learning
approach with the preprocessing of input data is required. Simultaneously, STLF models were
developed using fuzzy logic and an adaptive neuro-fuzzy inference system [33], with efficient load
forecasting and has been the alternative approach for STLF in Turkey.

For ANNs, the backpropagation neural network (BPNN) was the first ANN method used for
load forecasting. In [34], the authors presented a BPNN approach with a rough set for complicated
STLF with dynamic and nonlinear factors to enhance the performance of predictions. By combining
a Bayesian neural network and BPNN, Ningl et al. [35] proposed a Bayesian-backpropagation method
to forecast the hour power load of weekdays and weekends. Based on the BPNN, the authors
discussed the relationship between the daily load and weather factors in [36]. Because the BPNN
is a type of feedforward ANN, it cannot learn the features of time sequential data, but power
load data can be considered as sequential data. Recurrent neural networks (RNNs) have been
introduced into STLF. In [37–40], the authors proposed using an RNN to capture a compact and robust
representation. A multiscale bi-linear RNN was proposed for STLF [41]. Additionally, a long-short term
memory (LSTM) network as a type of more complex RNN has been used in STLF [42–44]. However,
the performance of LSTM is not very effective.

Although neural networks have been frequently used in short-term power load prediction, there
barely has been a systematic comparison of the role of neural networks in this problem to determine
how to solve the key problems and which approach exerted the least negative effect on the neural
network. Therefore, we systematically compare the advantages and disadvantages of different types
of commonly used neural network methods and then analyse the performance of neural networks for
different time scales. Simultaneously, according to the difference in network performance, we design
new RNN architecture that balance memory and the current scenario at any time by referring to
highway neural networks [45] in the time dimension. Thus, our main contributions in this paper
are as follows: first, we systematically analyze the performance of commonly used neural networks
on our power load data. Second, according to the advantages and disadvantages of these networks,
we propose a new neural network architecture, the gate-RNN, to forecast STLF.

2. Methods

To explore the performance of different types of neural networks applied to STLF, we use four
types: three types of the most commonly used neural networks and an improved neural network that
we call the gate-RNN.



Energies 2019, 12, 1433 3 of 23

2.1. BPNN

A BPNN is a type of feedforward neural network (FNN). The simple architecture of a BPNN is
shown in Figure 1, where the neurons in the same layer of the BPNN are only connected with adjacent
layers’ neurons; there are no connections among neurons in the same layer. The BPNN contains three
types of layers: the input layer, hidden layers, and output layer. Input layer inputs data into the neural
network. Output layer outputs the neural network’s computational results. The hidden layers are the
layers between the input layer and output layer. The values of connections between different layers
are weights denoted by wi where i denotes i-th layer. All the knowledge that the neural network has
learned is stored in the weights.

Layer 1 Layer 2 Layer L-1 Layer L

Figure 1. Architecture of a BPNN that contains L layers. Typically, Layer 1 is the input layer, which
inputs data into the neural network, and the last layer, Layer L, is the output layer, which outputs
the predicted values. The W between every pair of layers is the weight, which is the knowledge of
the network.

The goal of training a BPNN is to determine a set of suitable W so that the network can obtain
the correct output when test data is input into it by training on the train dataset. Suppose there is
a training set 〈(x1, y1) , (x2, y2), . . . , (xn, yn)〉, which contains n tuples. Each tuple contains input data
xi and target label yi. To train a BPNN, the first step is forward computing, which can be computed as{

zl+1 = W lal ,

al+1 = f (zl+1),
(1)

where zl is the l-th layer’s input vector, al is the l-th layer’s output vector, and f (·) is an active function.
In this paper, we chose the rectified linear unit as our active function, which is defined as

f (x) =

{
x, i f x >= 0,

0, else.
(2)

After forward computing, the BP networks need to update the network through the losses that
were calculated from the target labels so that the network can determine the suitable W, where W
is a set of

{
W1, . . . , WL} and L is the number of layers. One of the most commonly used update

methods is the gradient descent method with BP. The BP process starts by defining a loss function, Loss.
The loss function measures the distance between the outputs of the BP network and the true targets.
The mean-square error (MSE) is a common loss function for prediction. It is defined as Equation (3):

Loss =
1

2nL

nL

∑
i=1

∥∥∥yL
i (x)− aL

i

∥∥∥2
, (3)
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where yL
i is the i-th output of the output layer, aL

i is the i-th target label of output layer, and nL is the
total number of outputs in the output layer. 1

2 is for better computing the derivative of loss. Because aL
i

is computed by W, loss function Loss is the function of weight W.
To use the gradient descent method to determine the optimal W, we need to compute5W which

is defined as

5W =
∂Loss
∂W

, (4)

and update W using

W = W − α5W, (5)

where α is the learning rate, which controls the learning step during each update. We define an error
term in the i-th neuron l-th layer as δl

i =
∂L
∂zl

i
for better computation of gradient5W in each layer.

In the output layer, we can compute the gradient of wL
ij directly by combining Equation (3) and

using the chain rule:

∂Loss
∂wL =

∂Loss
∂zL

∂zL

∂wL = δL(aL−1)T . (6)

Then, we compute the other layers’ error terms using back propagation:

δl =
∂Loss

∂zl =
∂Loss
∂zl+1

∂zl+1

∂zl = ḟ (zl)((wl)Tδl+1
j ). (7)

Then, we compute the remaining layers’ weight gradients from back to front in matrix form as

5W l = δl+1(al)T . (8)

Thus, the learning process of the BPNN can be presented as Algorithm 1.

Algorithm 1: The BP network update process with gradient decent.
Input :

The input dataset D =
{
(x, yL)

}
;

The learning rate α = 0.0001;
Output :

The weight of the BP network W after training ;

1 initialize the model parameter W with uniform
(
−
√

6/k,
√

6/k
)

, where k is the sum of input

and output dimensions;
2 For each sample (x, yL) ∈ D, set a1 = x ;
3 for l = 1 : L do
4 z(l + 1) = wlal ;
5 al+1 = f (zl+1) ;
6 end
7 Compute loss by Equation (3);
8 Compute the output layer error term by δL = ∂L

∂zL ;
9 for l = L− 1 : 1 do

10 δl = ((wl)Tδl+1) ḟ (zl);
11 end
12 Compute5w in each layer by Equation (8);
13 Update w by Equation (5) ;
14 Repeat to line 2 until converge.
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2.2. RNN

STLF is a type of prediction based on the previous time. It is based on the history load information
forecasting the next time load value. We can consider it as a sequential problem. Among all types
of neural networks, the RNN is good at solving sequential problems. An RNN contains recurrent
connections. A simple architecture of an RNN is shown in Figure 2 . It contains an input layer, recurrent
layer, and output layer. The difference between an RNN and BPNN is that an RNN has connections
among the same recurrent layer’s neurons.

For a better understanding of the computation of an RNN, we can unroll the RNN on the time
dimension as shown in Figure 3. In the unrolled RNN, the neurons in the hidden layer at each time
step t can be considered as one layer of an FNN. If the time step is T, then the unrolled RNN has T
hidden layers. Based on the unrolled network, we can train the RNN using backpropagation through
time (BPTT) [46], specifically epoch-wise BPTT, using the following steps:

Inputs

Recurrent layer

Output 

Figure 2. Architecture of a simple RNN: the inputs connect with each hidden neuron, and the hidden
neurons have connections between every other neuron and have outputs.

Time Input Recurrent layer Output

Figure 3. Unrolled architecture of an RNN: it contains t time steps. The neurons at each time step
constitute one layer of the unrolled RNN. This unrolled RNN contains t layers, and at each time step t,
the output is y(t).
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1. Forward computing: the output of network at time t can be computed as the following equation:

{
s(t + 1) = x(t) + wy(t),

y(t + 1) = f (s(t + 1)).
(9)

2. Define the loss as

Etotal
(t′ ,t) =

t

∑
τ=t′+1

E(τ), τ ∈ [t0 + 1, t] , (10)

where E(t) = − 1
2 [d(t

′)− y(t′)]2 is the error at time t′. At each time step, d(t′) represents the
target label and y(t′) is the output of the network at time t′.

3. Compute gradient5w of w as follows:

5 w =
∂Etotal

(t0,t1)

∂w
=

t

∑
τ=t0+1

∂Etotal
(t0,t1)

∂w(τ)
. (11)

Combine with the chain rule and define e(τ) = ∂E(τ)
∂y(τ) , which can be written as

∂Etotal
(t0,t1)

∂w(τ)
= δ(τ)(y(τ − 1))T , (12)

where

δk(τ) =

{
f (̇s(τ))e(τ), when τ = t,

f (̇s(τ))(e(τ) + wTδ(τ + 1)), when t0 < τ < t.
(13)

Hence, the gradients of weights can be computed as

5 w = δ(τ)(y(τ − 1))T . (14)

4. Then, update the weights in the RNN using Equation (5) until the network converges.

2.3. LSTM

LSTM is a type of RNN, but it has a more complicated architecture. A common LSTM network
consists of many LSTM blocks, which are called memory cells. An LSTM cell stores the input for
some period of time. The flow of information into and out of the cell was determined by the values in
the cell and regulated by the three gates. A classical cell architecture is shown in Figure 4. The cell
receives input xt at time t, output ht−1 and state vector Ct−1 at time t− 1. There are three gates in the
cell to control the computation of the cell: the input gate, output gate and forget gate. The input gate
selectively records new information into the cell state. The output gate determines which information
is worth outputting. The forget gate selectively forgets some information and retains much more
valuable information. The forward pass of an LSTM unit with a forget gate can be computed as
following equations 

ft = σg(W f xt + U f ht−1),

it = σg(Wixt + Uiht−1),

ot = σg(Woxt + Uoht−1),

ct = ft · ct−1 + it · σc(Wcxt + Ucht−1),

ht = ot · σh(ct),

(15)
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where xt is the input vector to the cell. W ∈ Rh×d and U ∈ Rh×h are the weight matrices and bias vector
parameters, where h and d refer to the number of input features and number of hidden units. ft, ii and
Ot are the forget gate, input gate and output gate’s output, respectively. ht is the hidden state vector,
which is also called the output vector. ct is the cell state vector. σg, σc and σh are activation functions,
where σg is the sigmoid function, σc is the hyperbolic tangent function and σh is the hyperbolic tangent.

To update the parameters of LSTM, a common way is using epoch-wise BPTT algoritm as the
same with RNN, the detail can be found in [47].

X

Tanh

σTanh

Figure 4. A cell of LSTM. The cell receives external input xt and cell state Ct−1 and outputs cell state Ct

and current output ht. The cell contains three gates: input gate it, output gate ot and forget gate ft.

2.4. Gate-RNN

As we can see, BPNN is an FNN. If BPNNs are used to predict load, they will weaken the
relationships in the time dimension. Regarding RNN and LSTM, they are good at capturing temporal
features. However, RNN can only memory history information through the weights among neurons,
which is much is too simple to handle the input information and memory information. By contrast,
during an experiment, we found that LSTM was too complicated to train stably. Thus, we propose
an RNN cell that can control the computation of input information and memory information, converges
well in the training process, and has excellent results in ultra STLF.

Figure 5 shows the cell architecture of our gate-RNN. At time t, the input vector of the cell is xt

and the history information is output ht−1 at time t− 1. When input vector xt is input into the cell,
it is divided into three branches: two branches for computing two gates’ values that are 1− G and
G, and one for computing the cell’s state that is S. Gate G controls the effect of the cell state on the
output and gate 1− G controls the effect of history information on the output. The output of the cell
ht combines the output of both gates. We use the ” + ” operator as our combination approach, and it
adds the values of both gates at the same position.
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1-G G SH

Figure 5. The cell of gate-RNN. It contains two gates to control the input information and history
information. It uses G to control input information and 1− G to control history information.

The computation of the cell is as follows:

gt = Wgxt,

st = Wsxt,

h̃t = Whht−1,

ht = gt · st + h̃t · (1− gt),

(16)

as for LSTM, W ∈ Rh×d denotes the weight matrices parameters. Many gate-RNN cells are combined
to obtain a layer and then a neural network. To update the gate-RNN, we compute the gradient of the
weight at each time step. We also define an error term at the t-th time step (same as the l-th layer) as
δt =

∂Loss
∂ht

to better compute the gradient of5W in each layer. In the t-th time step, we can compute
the gradients of Wg, Ws, Wh directly by combining Equation (3) and using the chain rule, as follows:

5Wg =
∂Loss
∂Wg

=
∂Loss

∂ht
· ∂ht

∂gt
· ∂gt

∂Wg

= δt · ((st − h̃t) · (xt))
T , (17)

5Ws =
∂Loss
∂Ws

=
∂Loss

∂ht
· ∂ht

∂st
· ∂st

∂Ws

= δt · (gt · (xt))
T , (18)

5Wh =
∂Loss
∂Wh

=
∂Loss

∂h
· ∂ht

∂h̃t
· ∂h̃t

∂Wh

= δt · ((1− gt) · (ht−1))
T . (19)

Then, we update the entire network using Algorithm 2.
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Algorithm 2: The update process of gate-RNN.
Input :

The input dataset D =
{
(x, yL)

}
;

The learning rate α = 0.0001;
Output :

The weight of the gate-RNN network W after training ;

1 initialize the model parameter W with uniform
(
−
√

6/k,
√

6/k
)

;

2 For each sample (x, yL) ∈ D, set a1 = x ;
3 Do forward computing by using Equation (16);
4 Compute loss by Equation (3);
5 Compute the last time step T error term by δT

g = ∂Loss
∂gT , δT

h = ∂Loss
∂hT , δT

s = ∂L
∂sT ;

6 Compute gradients of Ws, Wh, Wg, by using Equation (17)–(19);
7 Update W by Equation (5) ;
8 Repeat to line 2 until converge.

3. Experiments Results and Discussion

3.1. Experiment Data Processing and Experiment Settings

Our dataset contained an entire year’s electrical load of the 2016 Electric Power Company
in Sichuan Province, China. The data values distribution is shown in Figure 6. The average,
variance, standard deviation and coefficient of variation are 16,965.71, 11,692,942.24, 3419.49 and
4.96, respectively. To avoid overlap between the training data and test data, all the data were sorted by
time, and the first three-quarters of the total data was chosen as our training data and the remainder
as our test data. It means that we used nine months’ load values as the train date, the rest of the
three months’ load values as test sets. Because, for training neural networks, it is suggested to use
raw data, we don’t use any regularization or pay special attention to the special days in the whole
years such as holidays and Chinese New Year day. The original data recorded electrical load with
a 1 min interval. According to the data processing method in [7], the data were sampled for different
time scales. For a better analysis of neural network performance, the data were sampled for 5-min,
20-min, 30-min, and 40-min time scales after dividing the training data and test data into different
time scales. The data size of different time scales’ train dataset and test dataset are shown in Table 1.
It can be visualized as in Figure 7. As we can see, with the time scale become larger, the size of dataset
become smaller. Because of sampling by different time scales, the data have been divided into different
sizes. Regarding training the BPNN, the inputs of the neural networks were the last 10 samples and
the output was the prediction value of the 11th moment load value. For the RNN series methods,
the input was the previous nine load values and the current load value, and the output was the next
time predicted load value. All the input values are the nearest ten values and ordered in time; this
is the same way as mentioned in [35,43]. The complete structures of ANNs are shown in Figure 8.
After predicting the eleventh load value, the second value to the eleventh value is chosen to predict the
twelfth value. We iterate this procedure until finishing the prediction of the last value. The prediction
mechanism of the neural network is shown in Figure 9.
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Figure 6. The distribution of raw data values.

Figure 7. The numbers of training data and test data distribution at different time scales.

Table 1. The data size of different time scales.

Dataset 5 min 20 min 30 min 40 min

train 78,624 19,656 13,104 9828
test 26,496 6624 4416 3312



Energies 2019, 12, 1433 11 of 23

Input layerHidden layer Output layer

Output layer

Hidden layer

Input layer

Figure 8. The complete structures of BP neural network and RNNs. (a) the structure of BP neural network,
the input layer contains 10 neurons, hidden layer contains 64 neurons and output layer contains only
one neuron; (b) the structure of RNNs, the input contains one neuron that input the current load value,
the hidden layer contains four units and output contains one neuron which output the predict load
value. If each unit in the right figure is neuron, it is the structure of RNN, if each unit is LSTM cell,
then it is the structure of LSTM and if each unit is gate-RNN cell, then it is the structure of gate-RNN.

Neural 
networks

Figure 9. The predict mechanism of the neural network.

In the experiment, the following criteria were used to evaluate all the mentioned methods: the root
mean square error (RMSE), mean absolute error (MAE) and mean absolute prercentage error (MAPE),
which are widely used in STLF [1,7,17]. They are calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − ẋi)2, (20)

MAE =
1
N

N

∑
i=1
|xi − ẋi| , (21)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ xi − ẋi
xi

∣∣∣∣× 100%, (22)
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where xi is the actual load value, ẋi is the predicted load value, N is the number of test samples.
These criteria represent three types of deviation between the forecast and actual values: the smaller the
criteria, the higher the forecasting accuracy. MAE is the basic metric for STLF, RMSE is sensitive to
the regression point with large deviation, and MAPE considers both the error and the ratio which are
between the predicted value and true value.

In order to balance performance and accuracy, we tried several trials to decide the size of all
the neural networks in a 30-min time scale data set, the trails’ results on 30-min test set are shown
in Table 2. The number after the methods is the number of neurons. We have tried a three-layer
BPNN architecture, and the results show it can forecast the load values well when the number of
hidden neurons is 64. More or less hidden neurons will cause a decrease in performance. It means
that a three-layer BPNN with 64 hidden neurons is a good choice for this load forecast task. Therefore,
we have not added more layers into BPNN. The same as with BPNN, from the results, we can see
that one recurrent layer with four neurons is a good choice for this load forecast task. The specific
configuration of the mentioned neuron networks for STLF was as follows: The BPNN contained three
layers. Specifically, the first layer was the input layer, which contained 10 neurons, and each input was
a sampled load value; the second layer was a hidden layer whose size was 64; and the last layer was
the output layer, which only contained one neuron, which represented the predicted value. The RNN,
LSTM, and gate-RNN input layers contained one neuron, which was input into a 4-neuron RNN,
LSTM, or gate-RNN cell, and the output was the same as that of the BPNN. The RNN cell calculated
the value of the last 10 moments to predict the value of the next moment. All the networks in this paper
were implemented using the Keras framework. The loss function of these methods was Equation (22).
The optimizer of the neural networks was RMSProp and its parameters were set as Keras default
parameters except for the learning rate. During the training process, the learning rate of epoch 1 to 5
was 0.01 and the remaining epoches learning rate was 5× 10−5. The total number of epoch was 55 and
the value of weight decay is 5× 10−5.

Table 2. Results of different hidden layer sizes in 30-min time scale test set.

Number of Hidden Neurons RMSE MAPE MAE

BP_32 585.22 2.38 439.96
BP_64 529.23 2.12 393.11
BP_128 581.59 2.21 408.03

GATE_2 524.75 2.02 374.16
GATE_4 530.09 2.00 372.40
GATE_8 520.05 1.83 337.12

LSTM_2 1323.30 5.58 1041.50
LSTM_4 1443.63 6.16 1161.02
LSTM_8 1800.25 8.17 1467.79

RNN_2 518.58 1.97 365.87
RNN_4 506.58 1.85 341.61
RNN_8 518.02 1.87 343.78

3.2. Comparison of the Models with the Baseline Method

To evaluate the effectiveness of the neural network methods mentioned in the section above,
several most commonly used traditional methods were chosen as the baseline methods. They are
SVR [22], decision tree (DT) [9], autoregressive integrated moving average model (ARIMA) [48],
and one random forest (RF) proposed in [49]. SVR is one of the most popular methods that is widely
used to forecast short-term load. DT, ARIMA and RF introduced in [49] are useful methods. All these
methods have been used in STLF in different time scales, 5-min, 20-min, 30-min and 40-min time
scale [9,48,49]. The results of all the methods test on the test set of three months are shown in Tables 3–6.
From these tables, we can see that among the eight methods, the neural network methods achieved
better comprehensive performance compared with other traditional methods in all different time scales,
except LSTM. In a smaller time scale, specifically in 5-min and 20-min, gate-RNN achieved better
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performance than any other methods. ARIMA achieved the best performance among all the traditional
methods. On a larger time scale, 30-min and 40-min, BP achieved better comprehensive performance
than any other methods. Meanwhile, DT achieved the best performance among all traditional methods.
It has shown that the performance of methods is influenced by the time scale.

Table 3. Results of eight methods on the 5-min time scale in a three months’ test dataset.

Methods RMSE MAPE (%) MAE

SVR [22] 913.61 4.61 766.82
DT [9] 145.26 0.63 133.68
ARIMA [48] 131.42 0.53 131.43
RF [49] 159.95 0.68 122.67
BP 137.69 0.59 108.62
RNN 130.69 0.55 100.12
LSTM 667.49 2.75 507.67
gate-RNN 116.94 0.49 89.36

Table 4. Results of eight methods on the 20-min time scale in three months’ test dataset.

Methods RMSE MAPE (%) MAE

SVR [22] 880.66 4.04 729.80
DT [9] 386.30 1.63 301.47
ARIMA [48] 402.06 1.47 269.82
RF [49] 310.2 1.69 427.38
BP 451.72 1.81 334.30
RNN 403.14 1.65 304.58
LSTM 828.09 3.37 626.32
gate-RNN 337.00 1.31 242.75

Table 5. Results of eight methods on the 30-min time scale in three months’ test dataset.

Methods RMSE MAPE (%) MAE

SVR [22] 830.00 3.80 682.88
DT [9] 517.70 2.14 394.55
ARIMA [48] 670.24 2.41 442.21
RF [49] 646.02 2.41 447.30
BP 529.23 2.12 393.11
RNN 506.58 1.85 341.61
LSTM 1443.63 6.16 1161.02
gate-RNN 530.09 2.00 372.40

Table 6. Results of eight methods on the 40-min time scale in three months’ test dataset.

Methods RMSE MAPE (%) MAE

SVR [22] 1155.91 5.65 979.10
DT [9] 701.78 3.02 553.725
ARIMA [48] 818.07 3.43 628.24
RF [49] 943.62 3.48 647.44
BP 715.68 2.85 527.99
RNN 762.60 2.91 537.40
LSTM 2056.35 8.49 1598.33
gate-RNN 792.15 3.23 601.51

To clearly illustrate the forecast value, from the test set of three months, we chose 1000 time scales’
actual and predicted electric load values obtained by the eight methods to draw a figure on a 30-min
time scale, which is shown in Figure 10. The orange line stands for real load values, the blue line stands
for prediction values and the green line stands for the average value of real load values. Furthermore,
1000-time scales are nearly one month, from Figure 10, we can see the blue line is far away from the
green line and close to the orange line. All of the methods’ prediction values are much closer to the real
values; this means that the prediction values have no relations to the average value for some months
and even one year. Specifically, it can be seen that the predicted values obtained by the LSTM method
have the maximum error for the original data compared with the other seven methods; particularly,
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the other three types of neural network methods. This is because the structure of LSTM is much more
complicated than the other three types of neural networks. To achieve equivalent performance, LSTM
needs much more data than BP, RNN, and gate-RNN. It is difficult to train an LSTM for STLF using
only one year of load data. Additionally, we plot the error distribution of each model in 30-min time
scale, which is shown in Figure 11. RNN and gate-RNN are more accurate and effective, while the
errors of other methods are scattered in a wider distribution space.
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Figure 10. Visualization of the results of four types of neural networks and other four comparative
approach in 30-min time scale: (a) results of ARIMA; (b) results of DT; (c) results of RF; (d) results of
SVR; (e) results of BP; (f) results of RNN; (g) results of LSTM; (h) results of gate-RNN. The blue line
indicates the outputs of the neural network and the orange line is the true value of the load.
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Figure 11. All eight methods’ prediction error distributions in 30-min time scale. (a) distribution of
ARIMA; (b) distribution of DT; (c) distribution of RF; (d) distribution of SVR; (e) distribution of BP;
(f) distribution of RNN; (g) distribution of LSTM; (h) distribution of gate-RNN.
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3.3. Performance Analysis of the Neural Networks

In this section, we analyze the performance of four neural network methods which include the
training process of different neural networks and the performance of the neural networks. To better
compare these methods, we used four time scales to process the data: 5 min, 20 min, 30 min, and 40 min.

3.3.1. Training Process Analysis for the Neural Networks

To assess whether the neural networks were trained and learned the distribution of data, a direct
approach is to assess whether the train loss and test loss converged. From Figures 12–15, we can see
that the RNN and gate-RNN train loss and test loss converged well for all time scales; LSTM had large
fluctuations and BP had slight fluctuations. For the 5-min time scale, even though LSTM had a large
fluctuation, all the methods achieved a small train loss and test loss, and the trends of the train loss
and test loss were the same. This means that all the methods learned the distribution of train data and
achieved good performance on the test set. When the time scale was larger than 5 min, even though
the trends of the train loss and test loss were the same, the convergence values of the train loss and test
loss were different, and the losses increased as the time scale increased. This means that, as the time
scale increased, the performance of the neural network became worse.

From Figures 12–15, we also can find that our proposed method converged after training in
approximately five epochs, which was faster than any of the other methods. BP converged in
approximately ten epochs and RNN converged in approximately seven epochs. This means that
our proposed method had significant power to forecast ultra short-term load. We believe that it
benefits from the suitable gate mechanism. The RNN method has no gate mechanism; it cannot choose
the memory information, but the LSTM method was too complicated to train on the data.
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Figure 12. Neural networks’ losses on the train and test datasets for 5-min time scales: (a) loss of BPNN;
(b) loss of RNN; (c) loss of LSTM; and (d) loss of gate-RNN. The blue line is the train loss curve and the
orange line is the test loss curve.
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Figure 13. Neural networks’ losses on the train and test datasets for 20-min time scales: (a) loss of
BPNN; (b) loss of RNN; (c) loss of LSTM; and (d) loss of gate-RNN. The blue line is the train loss curve
and the orange line is the test loss curve.
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Figure 14. Neural networks’ losses on the train and test datasets for 30-min time scales: (a) loss of
BPNN; (b) loss of RNN; (c) loss of LSTM; and (d) loss of gate-RNN. The blue line is the train loss curve
and the orange line is the test loss curve.
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Figure 15. Neural networks’ losses on the train and test datasets for 40-min time scales: (a) loss of
BPNN; (b) loss of RNN; (c) loss of LSTM; and (d) loss of gate-RNN. The blue line is the train loss curve
and the orange line is the test loss curve.

3.3.2. Examination of All the Neural Networks

After analyzing the train loss and test loss, we analyzed the criteria for each method for different
time scales. The results for the four neural networks are shown in Tables 7–9. Tables 7–9 which present
the RMSE, MAPE, and MAE, respectively, for four time scales. Table 7 shows that gate-RNN achieved
the best performance for the 5-min and 20-min time scales; RNN achieved the best performance for
the 30-min time scale; and BP achieved the best performance for the 40-min time scale. The results in
Tables 8 and 9 show the same performance as Table 7 where gate-RNN achieved the best performance
for the 5-min and 20-min time scales; RNN achieved the best performance for the 30-min time scale;
and BP achieved the best performance for the 40-min time scale. Overall, gate-RNN achieved good
results among all the four methods. This proves that our proposed method is better at forecasting ultra
short-term load again.

Table 7. Results of the RMSE for different time scales.

Methods 5 min 20 min 30 min 40 min

BP 137.69 451.72 529.23 715.68
RNN 130.69 403.14 506.58 762.60
LSTM 667.49 828.09 1443.63 2056.35
gate-RNN 116.94 337.00 530.09 792.15

Table 8. Results of the MAPE for different time scales.

Methods 5 min 20 min 30 min 40 min

BP 0.59 1.81 2.12 2.85
RNN 0.55 1.65 1.85 2.91
LSTM 2.75 3.37 6.16 8.49
gate-RNN 0.49 1.31 2.00 3.23
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Table 9. Results of the MAE for different time scales.

Methods 5 min 20 min 30 min 40 min

BP 108.62 334.3 393.11 527.99
RNN 100.12 304.58 341.61 537.40
LSTM 507.67 626.32 1161.02 1598.33
gate-RNN 89.36 242.75 372.40 601.51

Further visualization results are shown in Figure 16. We can see it intuitively that the performance
of all the methods became worse as the time scale increased. Overall, all the methods had a similar
trend: they began at a relatively small value and ended with a large value. Figure 16 also shows
that our method achieved the best results for the criteria for small time scales, but, as the time scales
increased, our method’s performance became slightly worse. Overall, the performance of LSTM for all
criteria for different time scales was worse, and the values for the criteria were far from those of the
other neural network methods.

5 20 30 40
time step

250

500

750

1000

1250

1500

1750

2000

R
M
SE

(a) RMSE 
BP
RNN
LSTM
gate-RNN

5 20 30 40
time step

200

400

600

800

1000

1200

1400

1600
M
A
E

(b) MAE 
BP
RNN
LSTM
gate-RNN

5 20 30 40
time step

1

2

3

4

5

6

7

8

M
A
PE

(c) MAPE 
BP
RNN
LSTM
gate-RNN

Figure 16. Visualization of the three criteria for the neural networks for different time scales: (a) RMSE
of the neural networks for different time scales; (b) MAE of the neural networks for different time
scales; and (c) MAPE of the neural networks for different time scales.

We believe that this scenario was caused by the following main points. First, we consider the
reason that the data is time scale. The larger the time scale, the more likely that unpredictable states will
affect the load value, such as sudden weather changes and holidays. Even though the neural networks
could predict the trend of the load, the values of the load would have a large turbulence. Second,
we consider the neural networks’ features. As we know, the complexity of the structures increases
gradually in the following order: BP, RNN, gate-RNN, and LSTM. The more complex the architecture
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of a neural network, the more difficult it is to train it, and the more data are needed to train it. After we
process the data into different time scales, the data size changes according to the time scale. For example,
the number of total data items is Ttotal recorded every 1 min, so, when our time scale is 5 min, the data
items become T5min, which is 1

5 of the total items, that is, five times smaller than Ttotal . All of the
time scales can be represented by Ttotal = 5× T5min = 20× T20min = 30× T30min = 40× T40min.
Thus, when using these different time scales to process data to train the networks, the actual data
size decreased with the time scale, and then the performance became worse with an increase in the
time scale.

4. Conclusions

The aim of our work was to explore the performance of different types of neural networks in the
STLF, and, based on the insufficiency of current neural networks, we proposed a new neural network
architecture called the gate-RNN. Our proposed method is extremely suitable for handling ultra STLF.
From the experimental results, we found that neural networks have the STLF ability. They can achieve
better performance than the tranditional methods. However, the more complex the neural network’s
architecture, the more data are needed to train the neural network. Considering that different neural
networks have different characteristics, for our dataset, the gate-RNN achieved the highest score
overall. For a large time scale, the BP achieved better performance than RNNs.

In future research, we plan to improve our work in two aspects. First, we will extend our data to
multivariate data. Collecting more electrical load data and adding more relevant factors can influence
load forecasting, for example, weather and some breaking news information. Second, based on the
gate-RNN, to train the neural network more efficiently, we plan to design a loss function that can
reflect the forecasting value online.
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The following abbreviations are used in this manuscript:

STLF Short-term load forecasting
ANN artificial neural network
SVM Support vector machine
SVR Support vector regression
BPNN Back propagation neural network
RNN Recurrent neural network
LSTM Long-short-term memory
gate-RNN Gate-recurrent neural network
MAE Mean absolute error
RMSE Root mean square error
MAPE Mean absolute percentage error
DT Decision tree
ARIMA Autoregressive integrated moving average model
RF Random forest



Energies 2019, 12, 1433 21 of 23

References

1. Bunn, D.W. Forecasting loads and prices in competitive power markets. Proc. IEEE 2000, 88, 163–169.
[CrossRef]

2. Senjyu, T.; Mandal, P.; Uezato, K.; Funabashi, T. Next Day Load Curve Forecasting Using Hybrid Correction
Method. IEEE Trans. Power Syst. 2005, 20, 102–109. [CrossRef]

3. Nataraja, C.; Gorawar, M.; Shilpa, G.; Harsha, J.S. Short term load forecasting using time series analysis:
A case study for Karnataka, India. Int. J. Eng. Sci. Innov. Technol. 2012, 1, 45–53.

4. Goia, A.; May, C.; Fusai, G. Functional clustering and linear regression for peak load forecasting.
Int. J. Forecast. 2010, 26, 700–711. [CrossRef]

5. Trudnowski, D.J.; Mcreynolds, W.L.; Johnson, J.M. Real-time very short-term load prediction for
power-system automatic generation control. IEEE Trans. Control Syst. Technol. 2001, 9, 254–260. [CrossRef]

6. Wang, H.; Schulz, N.N. Using AMR data for load estimation for distribution system analysis. Electr. Power
Syst. Res. 2006, 76, 336–342. [CrossRef]

7. Jiang, H.; Zhang, Y.; Muljadi, E.; Zhang, J.J.; Gao, D.W. A Short-Term and High-Resolution Distribution
System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization.
IEEE Trans. Smart Grid 2017, 9, 3341–3350. [CrossRef]

8. Capizzi, G.; Sciuto, G.L.; Napoli, C.; Tramontana, E. Advanced and adaptive dispatch for smart grids by
means of predictive models. IEEE Trans. Smart Grid 2018, 9, 6684–6691. [CrossRef]

9. Hambali, A.O.J.; Akinyemi, M.; JYusuf, N. Electric Power Load Forecast Using Decision Tree Algorithms.
Comput. Inf. Syst. Dev. Inform. Allied Res. J. 2016, 4, 29–42.

10. Bonanno, F.; Capizzi, G.; Sciuto, G.L. A neuro wavelet-based approach for short-term load forecasting in
integrated generation systems. In Proceedings of the 2013 International Conference on Clean Electrical
Power (ICCEP), Alghero, Italy, 11–13 June 2013; pp. 772–776.

11. Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A Deep Neural Network Model for Short-Term Load Forecast Based on
Long Short-Term Memory Network and Convolutional Neural Network. Energies 2018, 11, 3493. [CrossRef]

12. Tian, C.; Hao, Y. A novel nonlinear combined forecasting system for short-term load forecasting. Energies
2018, 11, 712. [CrossRef]

13. Zhang, X. Short-term load forecasting for electric bus charging stations based on fuzzy clustering and least
squares support vector machine optimized by wolf pack algorithm. Energies 2018, 11, 1449. [CrossRef]

14. Merkel, G.; Povinelli, R.; Brown, R. Short-term load forecasting of natural gas with deep neural network
regression. Energies 2018, 11, 2008. [CrossRef]

15. Li, G.; Li, B.-J.; Yu, X.-G.; Cheng, C.-T. Echo state network with bayesian regularization for forecasting
short-term power production of small hydropower plants. Energies 2015, 11, 12228–12241. [CrossRef]

16. Hu, C.; Luo, S.; Li, Z.; Wang, X.; Sun, L. Energy coordinative optimization of wind-storage-load microgrids
based on short-term prediction. Energies 2015, 8, 1505–1528. [CrossRef]

17. Fan, S.; Hyndman, R.J. Short-term load forecasting based on a semi-parametric additive model.
Monash Econom. Bus. Stat. Work. Pap. 2010, 27, 134–141. [CrossRef]

18. Taylor, J.W. Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 2012,
27, 458–464. [CrossRef]

19. Dudek, G. Pattern-based local linear regression models for short-term load forecasting. Electr. Power
Syst. Res. 2016, 130, 139–147. [CrossRef]

20. Niu, D.X.; Shi, H.F.; Wu, D.D. Short-term load forecasting using bayesian neural networks learned by Hybrid
Monte Carlo algorithm. Appl. Soft Comput. 2012, 12, 1822–1827. [CrossRef]

21. Song, L.; Peng, W.; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme
learning machine. Electr. Power Syst. Res. 2015, 122, 96–103.

22. Ceperic, E.; Ceperic, V.; Baric, A. A strategy for short-term load forecasting by support vector regression
machines. IEEE Trans. Power Syst. 2013, 28, 4356–4364. [CrossRef]

23. Min, Z.; Tao, H. Short Term Load Forecasting with Least Square Support Vector Regression and PSO.
Commun. Comput. Inf. Sci. 2011, 228, 124–132.

24. Li, Y.C.; Chen, P. A Parallel SVR Model for Short Term Load Forecasting Based on Windows Azure Platform.
In Proceedings of the Power & Energy Engineering Conference, Shanghai, China, 27–29 March 2012.

http://dx.doi.org/10.1109/5.823996
http://dx.doi.org/10.1109/TPWRS.2004.831256
http://dx.doi.org/10.1016/j.ijforecast.2009.05.015
http://dx.doi.org/10.1109/87.911377
http://dx.doi.org/10.1016/j.epsr.2005.08.003
http://dx.doi.org/10.1109/TSG.2016.2628061
http://dx.doi.org/10.1109/TSG.2017.2718241
http://dx.doi.org/10.3390/en11123493
http://dx.doi.org/10.3390/en11040712
http://dx.doi.org/10.3390/en11061449
http://dx.doi.org/10.3390/en11082008
http://dx.doi.org/10.3390/en81012228
http://dx.doi.org/10.3390/en8021505
http://dx.doi.org/10.1109/TPWRS.2011.2162082
http://dx.doi.org/10.1109/TPWRS.2011.2161780
http://dx.doi.org/10.1016/j.epsr.2015.09.001
http://dx.doi.org/10.1016/j.asoc.2011.07.001
http://dx.doi.org/10.1109/TPWRS.2013.2269803


Energies 2019, 12, 1433 22 of 23

25. Chen, Y.; Peng, X.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Yi, B.; Wang, K. Short-term electrical load forecasting using
the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings.
Appl. Energy 2017, 195, 659–670. [CrossRef]

26. Fan, G.F.; Peng, L.L.; Hong, W.C.; Fan, S. Electric load forecasting by the SVR model with differential
empirical mode decomposition and auto regression. Neurocomputing 2016, 173, 958–970. [CrossRef]

27. Fan, X.; Zhu, Y. The application of Empirical Mode Decomposition and Gene Expression Programming to
short-term load forecasting. In Proceedings of the Sixth International Conference on Natural Computation,
Yantai, China, 10–12 August 2010.

28. Ghelardoni, L.; Ghio, A.; Anguita, D. Energy Load Forecasting Using Empirical Mode Decomposition and
Support Vector Regression. IEEE Trans. Smart Grid 2013, 4, 549–556. [CrossRef]

29. Hong, W.-C.; Dong, Y.; Zhang, W.Y.; Chen, L.-Y.; Panigrahi, B.K. Cyclic electric load forecasting by seasonal
SVR with chaotic genetic;algorithm. Int. J. Electr. Power Energy Syst. 2013, 44, 604–614. [CrossRef]

30. Pai, P.F.; Hong, W.C. Support vector machines with simulated annealing algorithms in electricity load
forecasting. Energy Convers. Manag. 2005, 46, 2669–2688. [CrossRef]

31. Niu, D.; Wang, Y.; Wu, D.D. Power load forecasting using support vector machine and ant colony
optimization. Expert Syst. Appl. 2010, 37, 2531–2539. [CrossRef]

32. Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper.
Res. Soc. 2003, 54, 799–805. [CrossRef]
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