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Abstract: To reduce the cost of the inverter system in home appliances, a method using a shunt
resistor at the DC-link can be substituted for a method using two current sensors at the inverter output.
However, the minimum time of the active vector is required to sample the accurate current using a
1-shunt resistor. Therefore, many studies have been conducted investigating current reconstruction
methods in the unmeasurable region of the current. The conventional methods using voltage injection
have some problems such as high THD (Total Harmonic Distortion) and acoustic noise, because the
PWM pattern is shifted. In addition, the current reconstruction is inaccurate in a low modulation
region. In this paper, the cause of the noise in conventional methods is analyzed and a simple
current reconstruction method based on an average current estimation and a current reference is
utilized for reducing acoustic noise. In an immeasurable area, especially a low modulation region,
an intermittent PWM shift method is proposed to enhance the accuracy of the reconstructed current.
Therefore, a control strategy that combines all of the mentioned methods is implemented for the entire
operating range. The effectiveness of the proposed methods is verified through the experimental
results and the results of sound measurement in an anechoic chamber are included to compare with
the acoustic noise.

Keywords: AC motor drive; acoustic noise; current estimation; current reconstruction; intermittent
PWM shift; low modulation region; shunt resistor; SVPWM; three-phase inverter

1. Introduction

Phase current information is required to control the torque and speed of an AC motor. A method
using hall-effect current sensors is the most accurate for obtaining the current. However, most
appliances use shunt resistors for measuring the phase current to reduce costs [1–3]. The current
measurement method using one shunt resister (shown in Figure 1) further reduces the cost because the
information of two phase currents can be acquired in one switching period through the DC link shunt
resistor, Rshunt [4,5].

The phase current information that can be measured through the shunt resistor depends on the
voltage vector applied, as shown in Table 1. Since two different active vectors are applied in a switching
period, two phase currents can be sampled from the shunt resistor and the other phase current is
calculated using the following equation:

ia + ib + ic = 0 (1)
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Figure 1. 1-shunt inverter with SPMSM. 

Table 1. DC link current according to voltage sectors. 

Voltage Vector shunti  

1(100)V  ai  

2 (110)V  ci−  

3 (010)V  bi  

4 (011)V  ai−  

5 (001)V  ci  

6 (101)V  bi−  

0 7(000), (111)V V  0  

However, when the currents are measured from the shunt resistor, the currents contains the 
ringing component caused by the transient response. Thus, a minimum time minT  is required to 
sample the accurate current when the active voltage is applied. minT  includes other factors, as 
follows: 

min dead settling adT T T T= + +  (2) 

where deadT  is the dead time used to prevent short-circuiting, settlingT  is the settling time for the 

stabilization of the current, and adT  is the conversion delay of the AD converter [6]. Figure 2 shows 
the unmeasurable area of the current caused by the insufficient time of applied voltage when the 
phase current is measured through a 1-shunt resister. The unmeasurable areas can be divided into 
two parts according to the number of currents available from the shunt resistor. First, the region 
defined as the bar area in the hexagon of the space vector plane can measure only one phase current 
from the shunt resistor, as shown in Figure 2a. Second, the region called the star area in the hexagon 
cannot measure any phase current because the applied voltage time of both two phases is shorter 
than minT , as shown in Figure 2b. In Figure 2, the voltage magnitude VΔ , which represents the 
boundary of the area, is calculated as follows (Equation (3)): 

min2
3 dc

s

TV V
T

Δ =  (3) 

where dcV  is the DC-link voltage and sT  is the sampling time. 

Figure 1. 1-shunt inverter with SPMSM.

Table 1. DC link current according to voltage sectors.

Voltage Vector ishunt

V1(100) ia

V2(110) −ic

V3(010) ib

V4(011) −ia

V5(001) ic

V6(101) −ib

V0(000), V7(111) 0

However, when the currents are measured from the shunt resistor, the currents contains the
ringing component caused by the transient response. Thus, a minimum time Tmin is required to sample
the accurate current when the active voltage is applied. Tmin includes other factors, as follows:

Tmin = Tdead + Tsettling + Tad (2)

where Tdead is the dead time used to prevent short-circuiting, Tsettling is the settling time for the
stabilization of the current, and Tad is the conversion delay of the AD converter [6]. Figure 2 shows the
unmeasurable area of the current caused by the insufficient time of applied voltage when the phase
current is measured through a 1-shunt resister. The unmeasurable areas can be divided into two parts
according to the number of currents available from the shunt resistor. First, the region defined as the
bar area in the hexagon of the space vector plane can measure only one phase current from the shunt
resistor, as shown in Figure 2a. Second, the region called the star area in the hexagon cannot measure
any phase current because the applied voltage time of both two phases is shorter than Tmin, as shown
in Figure 2b. In Figure 2, the voltage magnitude ∆V, which represents the boundary of the area, is
calculated as follows (Equation (3)):

∆V =
2Tmin
√

3Ts
Vdc (3)

where Vdc is the DC-link voltage and Ts is the sampling time.
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Figure 2. Unmeasurable area in the hexagon of the space vector: (a) Bar area; (b) Star area. 

In order to precisely control the motor in the 1-shunt inverter system, a reconstruction method 
of the phase current is required when the voltage reference passes through the unmeasurable area. 
To restore the phase current, the conventional methods move the voltage reference to the measurable 
area by shifting the PWM pattern to compensate for the distorted voltage [4–12]. These methods can 
restore the current in all operation regions, but a distorted current is caused by the PWM shift. 
Another method is current estimation by observer [13,14]. Furthermore, in [15,16], the single current 
sensor is arranged in a new position to sample the current during a zero-voltage vector without the 
PWM shift. 

In our previous work, the current estimation method is proposed by using a voltage equation 
and the last information on the sampled current in the measurable region [17]. This method is 
available in the Bar area, but the current reconstruction is impossible because the initial current 
cannot be measured in the Star area. Thus, an additional reconstruction method is required in the low 
modulation region [18]. In this paper, depending on a pre-defined region, the current reconstruction 
methods using the average currents and the current references and the intermittent PWM shift are 
used for all operation region. Experiments are executed to reduce both the THD of the phase current 
and the acoustic noise compared with the conventional method using PWM shift [7]. 

2. The Conventional Method Using PWM Shift 

The conventional PWM shifting method secures the measuring time by shifting the PWM 
pattern when the voltage reference passes the unmeasurable region, as shown in Figure 3 [4–9]. To 
shift the PWM pattern, the sampling voltage vector sV  is located outside the Star area and then the 
compensation voltage vector cV  is applied as shown in Figure 3a. The average voltage output of sV  
and cV  is equal to the voltage reference vector *s

dqV , so it has no effect on the control. Since sV  is 

placed in the measurable region, two-phase currents can be measured through the shunt resistor 
during the first half cycle, as shown in Figure 3b, and the compensation voltage vector cV  is applied 
in the other half period. cV  can be expressed as in Equation (4) to meet the average voltage vector: 

* *1 ( ) 2
2

S s
dq s c c dq sV V V V V V= + → = −  (4) 

In order to examine the magnitude of the injected voltage through the PWM shift method, it can 
be calculated as in Equation (5): 

*s
i s dqV V V= −  (5) 

Since the PWM pattern should be shifted in the low modulation region during every switching 
period, a voltage injection also occurs. In addition, as the voltage reference is generated in the lower 
modulation region, the magnitude of the injection voltage increases. These factors cause the 
distortion of the current and make acoustic noise. 

Figure 2. Unmeasurable area in the hexagon of the space vector: (a) Bar area; (b) Star area.

In order to precisely control the motor in the 1-shunt inverter system, a reconstruction method
of the phase current is required when the voltage reference passes through the unmeasurable area.
To restore the phase current, the conventional methods move the voltage reference to the measurable
area by shifting the PWM pattern to compensate for the distorted voltage [4–12]. These methods can
restore the current in all operation regions, but a distorted current is caused by the PWM shift. Another
method is current estimation by observer [13,14]. Furthermore, in [15,16], the single current sensor is
arranged in a new position to sample the current during a zero-voltage vector without the PWM shift.

In our previous work, the current estimation method is proposed by using a voltage equation and
the last information on the sampled current in the measurable region [17]. This method is available
in the Bar area, but the current reconstruction is impossible because the initial current cannot be
measured in the Star area. Thus, an additional reconstruction method is required in the low modulation
region [18]. In this paper, depending on a pre-defined region, the current reconstruction methods
using the average currents and the current references and the intermittent PWM shift are used for
all operation region. Experiments are executed to reduce both the THD of the phase current and the
acoustic noise compared with the conventional method using PWM shift [7].

2. The Conventional Method Using PWM Shift

The conventional PWM shifting method secures the measuring time by shifting the PWM pattern
when the voltage reference passes the unmeasurable region, as shown in Figure 3 [4–9]. To shift the
PWM pattern, the sampling voltage vector Vs is located outside the Star area and then the compensation
voltage vector Vc is applied as shown in Figure 3a. The average voltage output of Vs and Vc is equal to
the voltage reference vector Vs∗

dq, so it has no effect on the control. Since Vs is placed in the measurable
region, two-phase currents can be measured through the shunt resistor during the first half cycle,
as shown in Figure 3b, and the compensation voltage vector Vc is applied in the other half period.
Vc can be expressed as in Equation (4) to meet the average voltage vector:

VS∗
dq =

1
2
(Vs + Vc)→ Vc = 2Vs∗

dq −Vs (4)

In order to examine the magnitude of the injected voltage through the PWM shift method, it can
be calculated as in Equation (5):

Vi = Vs −Vs∗
dq (5)

Since the PWM pattern should be shifted in the low modulation region during every switching
period, a voltage injection also occurs. In addition, as the voltage reference is generated in the lower
modulation region, the magnitude of the injection voltage increases. These factors cause the distortion
of the current and make acoustic noise.
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3.1. The Division of Operation Area for the Current Reconstruction 
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3.2. The Average Current Estimation Method from the Shunt Resistor in Area 1 

In this paper, the current reconstruction method is applied differently depending on the area. In 
Area 1, the information of two phase currents can be directly measured from the shunt resistor. 
However, the sampling point considering minT  is different from the average phase current when the 

Figure 3. Conventional PWM shift method to reconstruct the current: (a) Example of Vs∗
dq, Vs, Vc;

(b) switching pattern.

3. The Proposed Reconstruction Method of the Phase Current

3.1. The Division of Operation Area for the Current Reconstruction

The number and phase of the measurable current vary depending on the magnitude of the voltage
reference and the rotation angle in Figure 2. Thus, the control region is classified into four areas in this
paper. The voltage reference passes through the normal and bar area, when the magnitude of voltage
reference vector is larger than 2∆V, as shown in Figure 4, In this case, the Normal area is defined as
Area 1, where two phase currents can be sampled by the shunt resistor. The Bar area of Figure 4a is
defined as Area 2, which can sample only one phase current. When 2

√
3

∆V < |V∗| < 2∆V in Figure 4b,
the voltage reference vector is placed on the Bar or Star area. The triangular part of the star outline is
defined as Area 3 and none of the currents can be sampled. Lastly, Area 4 is the region in which the
magnitude of the voltage reference is lower than 2

√
3

∆V, as shown in Figure 4c. Area 4 also cannot
sample all phase currents.
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3.2. The Average Current Estimation Method from the Shunt Resistor in Area 1 

In this paper, the current reconstruction method is applied differently depending on the area. In 
Area 1, the information of two phase currents can be directly measured from the shunt resistor. 
However, the sampling point considering minT  is different from the average phase current when the 

Figure 4. Operation area depending on the voltage reference vector V∗: (a) |V∗| > 2∆V; (b) 2
√

3
∆V <

|V∗| < 2∆V; (c) |V∗| < 2
√

3
∆V.

3.2. The Average Current Estimation Method from the Shunt Resistor in Area 1

In this paper, the current reconstruction method is applied differently depending on the area.
In Area 1, the information of two phase currents can be directly measured from the shunt resistor.
However, the sampling point considering Tmin is different from the average phase current when the
current sensor is used as shown in Figure 5. Therefore, the harmonic component is included when the
measured current from the shunt resistor is directly used.
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applied. In Figure 6, the current 1( )ai n  can be obtained from the measured current ,a si  by using 
Equation (7) when the effective voltage vector 6V  is applied: 

Figure 5. Switching patterns and current wave form of shunt resistor in sector 6.

In a previous work, the average phase current estimation method is proposed by using the voltage
equation of the motor [17]. The current slope can be expressed as in Equation (6) by ignoring the
resistance component, because the voltage applied to resistance is lower than that of the inductance.

dix
dt

=
Vxn − Ex

L
x = {a, b, c} (6)

where Vxn is the pole voltage, which varies according to the switching state, and Ex is the back-Emf of
the each phase. The current slopes according to the switching states are arranged in Table 2.

Table 2. Current slope according to the switching states.

Switching State Current Slope of ia Current Slope of ib Current Slope of ic

V1(100) −3Ea+2Vdc
3L

−3Eb−Vdc
3L

−3Ec−Vdc
3L

V2(110) −3Ea+Vdc
3L

−3Eb+Vdc
3L

−3Ec−2Vdc
3L

V3(010) −3Ea−Vdc
3L

−3Eb+2Vdc
3L

−3Ec−Vdc
3L

V4(011) −3Ea−2Vdc
3L

−3Eb+Vdc
3L

−3Ec+Vdc
3L

V5(001) −3Ea−Vdc
3L

−3Eb−Vdc
3L

−3Ec+2Vdc
3L

V6(101) −3Ea+Vdc
3L

−3Eb−2Vdc
3L

−3Ec+Vdc
3L

V0(000), V7(111) −Ea
L

−Eb
L

−Ec
L

The average current estimation method estimates the average current by adding the amount of
current change from the current obtained from the shunt resistor when the effective voltage vector
is applied. In Figure 6, the current ia(n1) can be obtained from the measured current ia,s by using
Equation (7) when the effective voltage vector V6 is applied:

ia(n1) =
−3Ea + Vdc

3L
×

Ts

2
+ ia,s. (7)

From ia(n1) the average phase current ia,avg can be calculated by using Equation (8) when the
switching state V0 is applied:

ia,avg = −
Ea

L
×

T0

4
+ ia(n1) (8)
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In addition, the switching duration time T0, T1, and T2 can be calculated from Equations (9) to
(11) by using SVPWM calculation [18]:

T0 = Ts[1−
1

Vdc
(Vas −Vbs)] (9)

T1 =
Ts

Vdc
(Vas −Vcs) (10)

T2 =
Ts

Vdc
(Vcs −Vbs) (11)

By inserting Equation (7) and the time equation into Equation (8), the estimated average current
can be obtained via Equation (12):

ia,avg =
Ts

L
[
1
6
(Vcs −Vbs) −

Ea

4
(1 +

3Vcs

Vdc
)] + ia,s (12)

The average current of “b” phase also can be derived from Equation (13) from the “b” phase
current, which is measured at the second sampling time:

ib,avg = −
EbTs

4L
[1−

1
Vdc

(Vas −Vbs)] + ib,s (13)
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Figure 6. The estimation of the average phase current in sector 6: (a) The estimation method of “a”
phase current at the 1st sampling time; (b) the estimation method of “b” phase current at the 2nd
sampling time.

In this manner, the generalized Equations (14) and (15) can be applied to all rotating sectors, where
1st, 2nd, and 3rd are the magnitude orders of the voltage reference of the three phases. By following
Equations (14) and (15), the phase current with the largest voltage reference can be obtained at the 1st
sampling point and the phase current with the lowest voltage reference can be estimated at the 2st
sampling point.

i1st,avg =
Ts

L
[
1
6
(V2nd −V3nd)] −

E1st
4

(1 +
3V2nd
Vdc

)] + i1st,s (14)

i3rd,avg = −
E3rdTs

4L
[1−

1
Vdc

(V1st −V3rd)] + i3rd,s (15)
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3.3. The Current Estimation Method Using Current Reference in the Unmeasurable Region

The current reconstruction method, using average current estimation, is not applicable in Area 2 to
Area 4. The proposed current estimation method, by using the current reference [19], is a reconstruction
method for the current that cannot be obtained from the shunt resistor in the unmeasurable region of the
1-shunt inverter. The estimated current can be simply obtained by using the electrical model of the motor.
Figure 7 shows the block diagram of the current controller composed of a PI (Proportional-Integral)
regulator and the motor in the synchronous frame, where Rs, Ls,ωe are the stator resistor, inductance, and
electrical angular speed, respectively [20]. Through the coordinate transformation of the synchronous
coordinate system, the AC current is changed to the DC components. At this time, if the back-EMF and
mutual component generated by d-q transform are compensated for by the feed-forwarding estimation
value, and if the current PI regulator is designed as in Equation (16), the pole of the motor can be
canceled out by the zero of the PI current controller. As a result, we get the open-loop transfer function
Go(s), which is derived as in Equation (17):

Kp = Lsωcc, Ki = Rsωcc (16)

Go(s) = (Kp +
Ki
s
) × (

1
Rs + sLs

) =
ωcc

s
(17)

where ωcc is the bandwidth of the current controller [21].
The closed-loop transfer function Gc(s) of the current response is calculated as follows:

Gc(s) =
Ie
dq(s)

Ie∗
dq(s)

=
Go(s)

1 + Go(s)
=

ωcc
s

1 + ωcc
s

=
ωcc

s +ωcc
(18)

Equation (18) is equal to the transfer function of the first-order low-pass filter (LPF), of which the
cutoff frequency is ωcc. As the input of the LPF is the current reference ie∗dq, the output of the LPF is the

estimated current îedq in the synchronous frame.
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Figure 7. Block diagram of the PI current controller and the motor. 
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The average current estimation method and current estimation method based on Equation (18)
is shown in Figure 8. When the voltage reference is generated in Area 1, the current reconstruction
method using average current estimation is used for current control. Then the voltage reference goes
through the unmeasurable region, and the current reconstruction method is substituted to current
estimation method using LPF. In Area 2, one phase current is reconstructed by the shunt resistor and
the average current estimation method. Another without enough Tmin is estimated by the current
estimation method using the current reference. In Areas 3 and 4, all three phase currents are obtained
by the current estimation method using the current reference. The phase reconstruction method using
the current estimation method has the advantage that a PWM shift is not required. As a result, the THD
of the phase current and the level of the acoustic noise are lower than in the conventional methods.
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âbci

|V |* θ

2Φ

1Φ

1Φ

3Φ

3Φ

irecon.

 
Figure 8. The proposed current estimation method by using the LPF. 

3.4. Intermittent PWM Shift Method 

In Area 4, described in Section 3.1, the motor is continuously controlled without acquiring any 
current information. Thus, all phase currents should be reconstructed by the proposed current 
estimation method. However, continuous control using estimation currents cause increasing the 
estimation error. Therefore, it is necessary to update the estimated currents by intermittently using 
the measured current through the shunt resistor. Thus, the intermittent PWM shift method is 
proposed to improve the accuracy of the reconstructed currents in the low modulation region. 

The intermittent PWM shift method intermittently uses the PWM shift to newly update phase 
current information from the shunt resistor. In this paper, the sampling voltage vector sV is applied 
on the boundary of the star area, as shown in Figure 9a. As a result, one phase current can be updated 
to the measured current through the shunt resistor. The reason for this is to reduce the magnitude of 
the injection voltage as compared with the conventional PWM shift method [7]. In this case, since 
only one phase current can be sampled from the shunt resistor, other currents should be 
reconstructed by using the proposed current estimation method. 

As shown in Figure 9b, the phase angle θ  of the sampling voltage vector sV  is equal to that of 
the voltage reference vector *s

dqV  in the x‒y coordinate system. The line of the sampling voltage sV  

is derived as in Equation (19), line 1. As the angle of the border line of star area is 60° where 

0 30θ° ≤ ≤ °  and the x-intercept of this line is 
2

3
VΔ

, line 2 is derived as in Equation (20) in Figure 9b. 

Figure 8. The proposed current estimation method by using the LPF.

3.4. Intermittent PWM Shift Method

In Area 4, described in Section 3.1, the motor is continuously controlled without acquiring
any current information. Thus, all phase currents should be reconstructed by the proposed current
estimation method. However, continuous control using estimation currents cause increasing the
estimation error. Therefore, it is necessary to update the estimated currents by intermittently using the
measured current through the shunt resistor. Thus, the intermittent PWM shift method is proposed to
improve the accuracy of the reconstructed currents in the low modulation region.

The intermittent PWM shift method intermittently uses the PWM shift to newly update phase
current information from the shunt resistor. In this paper, the sampling voltage vector Vs is applied on
the boundary of the star area, as shown in Figure 9a. As a result, one phase current can be updated to
the measured current through the shunt resistor. The reason for this is to reduce the magnitude of the
injection voltage as compared with the conventional PWM shift method [7]. In this case, since only one
phase current can be sampled from the shunt resistor, other currents should be reconstructed by using
the proposed current estimation method.Energies 2019, 12, x FOR PEER REVIEW 9 of 17 
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As shown in Figure 9b, the phase angle θ of the sampling voltage vector Vs is equal to that of
the voltage reference vector Vs∗

dq in the x-y coordinate system. The line of the sampling voltage Vs is
derived as in Equation (19), line 1. As the angle of the border line of star area is 60◦ where 0◦ ≤ θ ≤ 30◦

and the x-intercept of this line is 2∆V
√

3
, line 2 is derived as in Equation (20) in Figure 9b.

line1 : y = tanθ · x (19)
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line2 : y =
√

3(x−
2
√

3
∆V) (20)

The intersection point (α, β) of lines 1 and 2 is as follows:

α = |Vs| cosθ, β = |Vs| sinθ (21)

By substituting the point from Equation (21) into Equation (20), the magnitude of the sampling
voltage vector Vs is calculated as follows:

|Vs| =
2∆V

√
3 cosθ− sinθ

(22)

As the PWM pattern is intermittently shifted in Area 4, the estimation error can be compensated
for by using the electrical model. In addition, the frequency and average magnitude of the injected
voltage are much lower than that of the conventional method. Moreover, the harmonics of the phase
current is also less than that of the conventional method.

3.5. Overall Control Scheme

Figure 10 shows the overall control block diagram including one shunt inverter and the AC
motor. In this system, the sensorless algorithm, which is based on Back-EMF observer, is implemented
for the speed control [22]. According to the position of the voltage reference calculated from the
information of both the input of SVPWM and the estimated theta from the sensorless algorithm, the
reconstructed currents, irecon., are selected from either the average current estimation method or the
current estimation method using LPF. Then, using both the reconstructed currents and Equation (1),
the input of the current controller, iedq,shunt, is estimated and used for the current controller. However,
when the voltage reference is located on Area 4, the intermittent PWM shift method is used to move the
voltage reference to the measurable region. In the intermittent PWM shift method, a random number
Nrandom between 0 and 100 is generated, and Nrandom is compared to the reference value Nre f , which is
decided on experimentally as 94. When Nrandom is greater than Nre f , the Flag_PWM_shift is set to 1
and the injection voltage Vs and compensation voltage Vc are calculated. The sampling vector Vs is
applied to Area 3. In other cases, the original voltage reference Vs∗

dq is applied and the control currents
are selected according to the area.Energies 2019, 12, x FOR PEER REVIEW 10 of 17 
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4. Experimental Results

In order to verify the proposed method, the experimental setup is implemented for a washing
machine drive system with a DC link shunt resistor. The washing machine (TH19VD) was provided by
LG Electronics (Changwon-si, Gyeongsangnam-do, Republic of Korea). The type of motor is SMPMSM
(Surface-Mounted PMSM). The parameters of the motor and the inverter system are specified in
Table 3. Figure 11 shows a block diagram of the hardware system. The inverter system is composed of
a single-phase diode bridge and there is a DC-link capacitor whose capacity is 4700 [uF]. The IPM
package (PS21A79) made by MITSUBISHI Inc. (Mitsubishi Electric Corporation, Chiyoda, Tokyo,
Japan) is used for the inverter. The was TI 32-bit TMS320C28346 and a 12-bit AD converter was used.

Table 3. Parameters of the system.

Vdc 310 [V] Poles 48

Ts 66.67 [us] Rs 5.9 [Ω]

Tmin 7 [us] Ls 537.5 [mH]

Rated speed 400 [rpm] Ke 0.1528 [V·s/rad]

Rated power 430 [W] Rshunt 0.2 [Ω]
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To verify the current reconstruction in Areas 1, 2, 3, and 4, the motor is operated at 30 rpm, 130 rpm,
and 400 rpm, respectively. When the motor is operated at 400 rpm, which is the rated speed, the voltage
reference is repeated in Areas 1 and 2. For Areas 2 and 3, the operation speed is 130 rpm. At this
speed, the proposed reconstruction method can be verified using current estimation. In addition, the
motor is operated at 30 rpm to verify the intermittent PWM shift method in Area 4. Figure 12 shows
the reconstructed phase current with and without the average current estimation method. As the
estimated phase current, ia,shunt, is obtained by the average current estimation method in Figure 12b,
the distortion of ia,shunt is much lower than ia,shunt without the average current estimation method in
Figure 12a. Figure 13 shows the waveforms of the 1-shunt current when the motor is operated using
the current sensor. In Figure 13a,b, the operating speed of the motor is 400 rpm or 130 rpm, respectively.
From Figure 13, the reconstruction of the current is essential for precise control. Figure 14 shows the
reconstructed current using the proposed current estimation method under the same conditions as in
Figure 13. In this case, the control currents are reconstructed currents and the real current sampled by
the current sensor is shown for comparison. The reconstructed current is equal to the current measured
by the current sensor in Figure 14.
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Figure 12. The reconstructed phase current using the shunt resistor method in Areas 1 and 2 (Figure 4a):
(a) without the average current estimation method; (b) with the average current estimation method.
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Figure 13. The phase current sampled through shunt resistor without the current reconstruction
method at 400 rpm (Figure 4a) and 130 rpm (Figure 4b): (a) Current waveform from shunt resistor at
400 rpm; (b) current waveform from the shunt resistor at 130 rpm.
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Figure 12. The reconstructed phase current using the shunt resistor method in Areas 1 and 2 (Figure 
4a): (a) without the average current estimation method; (b) with the average current estimation 
method. 
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Figure 13. The phase current sampled through shunt resistor without the current reconstruction 
method at 400 rpm (Figure 4a) and 130 rpm (Figure 4b): (a) Current waveform from shunt resistor at 
400 rpm; (b) current waveform from the shunt resistor at 130 rpm. 
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Figure 14. The phase current sampled through shunt resistor with the proposed current estimation
method at 400 rpm (Figure 4a) and 130 rpm (Figure 4b): (a) Current waveform from shunt resistor at
400 rpm; (b) current waveform from the shunt resistor at 130 rpm.

In Figure 15, the real q-axis current is compared with the estimated q-axis current when the step
response is applied. In Figure 15a, the real q-axis current ieqs has the step response of first-order LPF as
derived in Equation (17) and the estimated q-axis current îeqs has the same response of the real q-axis
current in Figure 15b. Figure 16 shows the phase current for the transient response. Although the
reference of the q-axis current increases when the voltage reference vector passes through Areas 1
and 2, the estimated current is almost equal to the real current.

Figure 17 show the phase current and FFT result when the motor is operated in Area 4. The proposed
intermittent PWM shift method is compared with the conventional MVI (minimum voltage injection)
method. Figure 17a shows the reconstructed “a” phase current and real “a” phase current measured by
the current probe when the motor is operated by using the conventional MVI method. The “a” phase
current obtained by the current probe shows that the current pulsation is large due to the PWM shift.
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On the other hand, the proposed intermittent PWM shift method can reduce the pulsation, as shown in
Figure 17b. Figure 17c shows the phase FFT result of the phase current. The conventional method has
the harmonics near the frequency of 4 kHz, 11 kHz, and 15 kHz. On the other hand, the proposed
method can reduce the harmonics.
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Figure 18 shows the step response in Area 4. The current reconstructed by the proposed
reconstruction method is controlled well, even though Area 4 is the region that cannot sample any
current. Figure 19 shows the speed control of the full operation range. The operating speed of the
motor is from 30 rpm to 250 rpm. Both Figures 18 and 19 show the area change and the phase current
while the actual speed reaches the speed reference.
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5. Measurement of the Acoustic Noise

As shown in Figure 20, the sound is measured at the anechoic chamber provided by LG Electronics
and the washing machine is in the center of the room. The first mike for measuring the noise (front mic
in Figure 20) is placed 70 cm from the floor and the distance between the washing machine and Front
Mic is 1 m. The second mike (rear mic in Figure 20) is installed at the same height as the motor and is
10 cm away from the washing machine, and a rubber pad is installed to eliminate the fricative noise
caused by the vibration of the washing machine.

Figures 21 and 22 show the average noise results at 30 rpm and 400 rpm, respectively.
The conventional method is compared with the proposed method and current sensor method. When
comparing with Figure 21, the proposed intermittent PWM shift method moves the PWM pattern less
than the conventional method, so that the noise near 4 kHz is smaller than in the conventional method.
However, the noise near the switching frequency is larger than the control using a current sensor.
Figure 22 show the results of the acoustic noise measurements of the conventional and the proposed
method at 400 rpm. Since the proposed method reconstructs phase currents using the estimation
method, not shifting the PWM pattern, the conventional method has higher noise, especially at 3–5 kHz,
than the proposed method.
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6. Conclusions

In this paper, current reconstruction methods using one shunt resistor are proposed. The proposed
reconstruction method can be classified in two ways. First is using the electrical model of the motor.
The current estimation is simply implemented by using the LPF. It can greatly reduce the acoustic noise
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and THD of the phase current. The second method is used in low modulation regions. This method can
compensate for the accumulation of error when the current estimation method is continuously used in
a low modulation region. To compensate for the error, an intermittent PWM shift is used to update the
estimation current in the measurable region. In this case, the frequency of the injected voltage is not
fixed, unlike in the conventional method, and the magnitude of the injected voltage is lower than in the
conventional method. As a result, the proposed current reconstruction method has better performance
for the THD of the phase current and acoustic noise. The validity of the proposed method is proven by
the experimental results, which involve sound measurement in an anechoic chamber.
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