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Abstract: The paper presents an analytical method for calculating impedances of rectangular bus
ducts. The method is based on the partial inductance theory—in particular, the impedance of
rectangular busbars in a three-phase system with a neutral conductor is described. The results of
resistances and reactances of these systems of multiple rectangular conductors were obtained. Skin
and proximity effects were taken into account. The measurements of the impedance of shielded and
unshielded high-current busducts of rectangular conductors were also carried out. The magnetic
field of the busbars was determined with several methods.
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1. Introduction

Electrical connections between the main devices and the apparatus of power substations, which
conduct a current of considerable value, are usually made of bare aluminum or copper conductors
fixed on post insulators which are called busbars or bars [1,2]. Rigid busbars for each phase are usually
made of individual flat bars. Only at higher currents do they consist of two or three flat bars in a
package [3].

High-current bus ducts with copper or aluminum rectangular busbars are often used in switching
stations and power substations due to their ease of assembly and operation. Their rated currents reach
values of up to 10 kA and rated voltages are usually 10–30 kV [4]. A typical high-current bus duct with
rectangular busbars is shown in Figure 1.
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Figure 1. Three phase bus duct with a neutral busbar manufactured by the Holduct company
(Myslowice, Poland) [5].
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Due to electromagnetic coupling, currents in phase busbars induce eddy currents in the metal
conductive shield. Hence, there is a complex electromagnetic coupling between phase busbars and the
enclosure of the bus duct system. In the case of a parallel conductor system, the uneven distribution of
current density in these conductors is caused by the skin effect as well as the proximity effect [6–11],
which affect their self and mutual impedances [12–17]. Both the skin effect and proximity effect will
generally cause the resistance of the busbars to increase and the inductance to decrease [18]. Defining
these impedances is the purpose of this paper.

For every busbar, it is necessary to check the magnetic field in its surroundings to make sure it
does not exceed the limit values set by the relevant standard [19–22]. This requires measurements
around bus bar systems. Measurements of magnetic fields in such systems can be troublesome due to
inaccessible places under the shield.

2. Impedances Rectangular Busbars with a Finite Length

The test objects of the bus duct, manufactured by the Holduct company (Myslowice, Poland),
were two bus duct versions—the unshielded version shown in Figure 2 and the shielded version shown
in Figure 3.
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Figure 2. Unshielded bus duct manufactured by the Holduct company [5]. 
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Figure 3. Shielded bus duct manufactured by the Holduct company [5]. 

2.1. Impedance—Analytic Equations 

In the case of N parallel conductors with length land conductivity σi (i = 1, 2,..., N) and a 
cross-section Si with sinusoidal currents with angular frequency ω and complex effective values Ii 
directed in accordance with the Oz axis, the complex current density has only one component along 
this axis, that is 

)()( XJX izi 1=J  (1)

Figure 2. Unshielded bus duct manufactured by the Holduct company [5].
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2.1. Impedance—Analytic Equations

In the case of N parallel conductors with length land conductivity σi (i = 1, 2, . . . , N) and a
cross-section Si with sinusoidal currents with angular frequency ω and complex effective values Ii
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directed in accordance with the Oz axis, the complex current density has only one component along
this axis, that is

J
i
(X) = 1z J

i
(X) (1)

where X = X(x1, y1, z1) is the point of observation, and 1z is a z-axis versor.
If Ohms law is

J
i
(X) = σiEi(X) (2)

and the voltage drop ui per busbar unit length is added, the following integral equation is obtained for
the l-th wire [18,23]

J
i
(X)

σi
+

jωµ0

4π

N∑
j=1

∫
v j

J
j
(Y)

ρXY
dv j = ui (3)

or
J
i
(X)

σi
+

jωµ0

4π

∫
vi

J
i
(Y)

ρXY
dvi +

jωµ0

4π

N∑
j = 1
j , i

∫
v j

J
j
(Y)

ρXY
dv j = ui (4)

where Y = Y(x2, y2, z2) is the source point, ρXY =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 is the distance
between the observation point X and the source point, vi and vj are the volumes of the i-th and j-th
conductor respectively, and ui is the unit voltage drop (in V·m−1) along the i-th conductor, where i, j =

1, 2, . . . , N. Unit voltage drop has a physical meaning only if all conductors of the circuit have been
considered. However from the mathematical point of view, sometimes it is useful to split the circuit
into several segments, e.g., particular busbars.

In the case presented in Figure 3, the integral equation for each busbar and enclosure is recorded
in the form

J
i,k
(X)

σi
+

jωµ0

4π

Nc∑
j=1

N j∑
l=1

∫
v j, l

J
j,l
(Y)

ρXY
dv j,l = ui (5)

where Nc is the number of phases plus the neutral circuit plus the shield; i, j = 1, 2, . . . , Nc (Nc = 5); Nj
is the number of busbars per phase or neutral circuit or the number of enclosure plates (usually 4); k,
l = 1, 2, . . . , Nj.

If the current density functions Ji,k(X) and Jj,l(Y) are unknown or difficult to determine, then each
of the conductors of the system shown in Figure 3, including the conductive plates of the enclosure,
can be divided into elementary conductors [18,23].

Division of the k-th rectangular busbar with an i-th phase or neutral circuit is made separately in
the horizontal (Ox axis) and vertical (Oy axis) directions. In this way, rectangular elementary conductors
are obtained along with widths ∆a and heights ∆b respectively, determined by the following formulas:

∆a =
a

N(i,k)
x

and ∆b =
b

N(i,k)
y

(6)

where a and b are, respectively, the width and height of a rectangular busbar, and Nx
(i,k) and Ny

(i,k)

are, respectively, the numbers of divisions along the busbar width and height. Therefore, the total
number of elementary conductors of the k-th busbar within an i-th phase is Ni,k = Nx

(i,k)
·Ny

(i,k) and
are numbered by m = 1, 2, . . . , Ni,k. For the l-th busbar with an j-th phase or the neutral circuit,
the total number of elementary conductors is Nj,l = Nx

(j,l)
·Ny

(j,l) and are numbered by n = 1, 2, . . . , Nj,l.
The horizontal enclosure plate is divided Nx

(5,k) in the horizontal direction and Nty
(5,k) in the vertical
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direction. The vertical plate of the enclosure is divided into Ntx
(5,k) and Ny

(5,k) segments along the
horizontal and vertical directions, respectively, i.e.,

∆A =
A

N(5,k)
x

, ∆B =
B

N(5,k)
y

, ∆ty =
t

N(5,k)
ty

and ∆tx =
t

N(5,k)
tx

(7)

where A and B are the widths of two horizontal and two vertical cover plates, respectively, t is their
thickness, and k = 1, 2. All elementary conductors have the same length l.

If the cross-sectional area Si,k
(m) = ∆a · ∆b of the m-th elemental conductor is very small [18],

i.e., if the diagonal
√
(∆a)2 + (∆b)2 of this cross-section is not greater than the depth of penetration of

the electromagnetic wave, then in such an elementary conductor the skin effect can be neglected and
then the constant complex current density in the whole cross-section can be assumed in the form of

J(m)

i,k =
I(m)

i,k

S(m)

i,k

(8)

where Ii,k
(m) is a complex current in the m-th elementary conductor.

Then also for the m-th elementary conductor, an equation can be written

J(m)

i,k (X)

σi
+

jωµ0

4π

Nc∑
j=1

N j∑
l=1

N j,l∑
n=1

∫
v j, l

J(n)j,l (Y)

ρXY
dv(n)j,l = ui (9)

where vj,l
(n) is the volume of the n-th elementary conductor of the busbar or the shield of the l-th busbar

with the j-th phase of the neutral circuit or the enclosure.
Then Equation (9) is divided by the area Si,k

(m) and integrated throughout volume vi,k
(m) of the

m-th elementary conductor, giving the equation

R(m)

i,k I(m)

i,k + jω
Nc∑
j=1

N j∑
l=1

N j,l∑
n=1

M(m,n)
(i,k)( j,l)

I(n)j,l = Ui (10)

where Ui is the voltage drop in the elementary conductor of the i-th phase of the neutral conductor or
the enclosure.

In the above equation, the resistance of the m-th elementary conductor is

R(m)

i,k =
l

σiS
(m)

i,k

(11)

and its self inductance or mutual inductance between two elementary conductors is

M(m,n)
(i,k)( j,l)

=
µ0

4π S(m)

i,k S(n)
j,l

∫
v(m)

i,k

∫
v(n)j,l

dv(m)

i,k dv(n)j,l

ρXY
(12)

The integrals can be performed analytically, the final closed forms for the inductance given
in [24–27].

The equation system of (10) written for each elementary conductor is a complex linear
equation system

Û = ẐÎ (13)
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where Û and Î are, respectively, columnar voltage and current vectors in each of the elementary
conductors, and Ẑ is the symmetrical matrix of self and mutual impedances—the so-called impedance
matrix of all elementary conductors.

The current Î and voltage Û vectors can be represented as follows:

Û =



{
U
}
1{

U
}
2

...{
U
}
Nc


,
{
U
}
i
=


{
U
}
i,1

...{
U
}
i,Ni

,
{
U
}
i,k

=
{
Ui

}
of length N(i,k) (14)

and

Î =



{
I
}
1{

I
}
2

...{
I
}
Nc


,
{
I
}
i
=


{
I
}
i,1
...{

I
}
i,Ni

,
{
I
}
i,k

=
{
I(n)i,k

}
of length N(i,k) (15)

The impedance matrix Ẑ is a matrix whose elements (sub-matrices) are also matrices

Ẑ =



[Z(m,n)
(1,k)(1,l)

] [Z(m,n)
(1,k)(2,l)

] · · · [Z(m,n)
(1,k)(Nc,l)

]

[Z(m,n)
(2,k)(1,l)

] [Z(m,n)
(2,k)(2,l)

] · · · [Z(m,n)
(2,k)(Nc,l)

]

...
...

. . .
...

[Z(m,n)
(Nc,k)(1,l)

] [Z(m,n)
(Nc,k)(2,l)

] · · · [Z(m,n)
(Nc,k)(Nc,l)

]


(16)

where sub-matrices
[
Z(m,n)
(i,k)( j,l)

]
have an elements containing self impedances and mutual impedances

between the conductors of the i-th and the j-th phase:

[
Z(m,n)
(i,k)( j,l)

]
=


[Z(m,n)

( j,1)(i,1)
] . . . [Z(m,n)

( j,1)(i,Ni)
]

...
. . .

...

[Z(m,n)
( j,N j)(i,1)

] . . . [Z(m,n)
( j,N j)(i,Ni)

]

 (17)

The elements of the matrix Ẑ are

Z(m,n)
(i,k)( j,l)

=

 R(m)

i,k + jω M(m,n)
(i,k)( j,l)

for m = n, i = j, k = l

jω M(m,n)
(i,k)( j,l)

otherwise.
(18)

The admittance matrix Ŷ is then found, which is the inverse impedance matrix and is given by
the formula

Ŷ =
[
Y(m,n)
(i,k)( j,l)

]
= Ẑ−1 (19)

It is then possible to determine the current in the m-th elementary conductor of the k-th conductor
of the i-th phase or the neutral circuit as

I(m)

i,k =

Nc∑
j=1

N j∑
l=1

N j,l∑
n=1

Y(m,n)
(i,k)( j,l)

U j (20)
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Therefore, the total current of the i-th phase or the neutral circuit is expressed by the sum

Ii =

Ni∑
k=1

Ni,k∑
m=1

I(m)

i,k (21)

After substitution of (20) to (21), the following is obtained:

Ii =

Nc∑
j=1

Yi, jU j (22)

where

Yi, j =

Ni∑
k=1

Ni,k∑
m=1

N j∑
l=1

N j,l∑
n=1

Y(m,n)
(i,k)( j,l)

(23)

The admittance matrix, with elements given by (23), will allow the determination of the impedance
matrix of the shielded three-phase high-current bus duct with a neutral conductor with rectangular
busbars on the basis of the formula

Z =
[
Zi, j

]
= Y−1 =

[
Yi, j

]−1
(24)

Because impedances Zi,j are determined from the matrix, which is determined only from the
design of the high-current busduct and material properties, its value does not depend on the phase
currents and the current in the neutral circuit. Skin and proximity effects are taken into account.

The impedances of the high-current busduct shown in Figure 3 are given by a 4 × 4 matrix.
In circuit theory, impedances Zii and Zij are called partial self and mutual impedances which, however,
should not be misinterpreted as the classical definition of self and mutual impedances in closed
circuits [28].

Impedances Zii and Zj are sufficient to describe the behavior of the electric circuit but do not have
a physical interpretation and therefore cannot be determined by measurement. If however, one of
the busbars, e.g., the N-th, were to be regarded as a so-called reference conductor, it could be used
as a return conductor for other conductors. If, for example, only phase current Ii exists, its return to
the power source is via the neutral bus (Figure 4). This means that this current forms a closed loop
i-N. Thereafter, complex voltages, such as voltage drops and the voltage induced by the current Ii, are
described by the following classic formulas [18]:

Ui = Zii Ii + ZiN IN = (Zii −ZiN) Ii (25)

U j = Z ji Ii + Z jN IN = (Z ji −Z jN) Ii (26)

UN = ZNi Ii + ZNN IN = (ZNi −ZNN) Ii (27)

The voltage between the terminals i-N is described by the equation

UiN = Ui −UN = (Zii −ZiN −ZNi + ZNN) Ii (28)

and the voltage between the terminals j-N has the form of

U jN = U j −UN = (Z ji −Z jN −ZNi + ZNN) Ii (29)

After that, the definition of the self impedance of the loop i-N is introduced as

zii =
UiN

Ii
= Zii −ZiN −ZNi + ZNN = Zii + ZNN (30)
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and the mutual impedance definition between the loop i-N and j-N as

z ji =
U jN

Ii
= Z ji −Z jN −ZNi + ZNN (31)

As a result, the square impedance matrix (n− 1) × (n− 1) is obtained with the elements zii and zji.
This matrix is called a reduced impedance matrix which, in the case of Figure 3, has the form of

z =


z11 z12 z13
z21 z22 z23
z31 z32 z33

 (32)

Afterwards, the electric circuit model of the three-phase high-current busduct with the neutral
busbar contains only three self impedances and six mutual impedances (Figure 5).
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If the shield of the high-current bus duct is grounded at its ends by resistance Rgr (Figure 6), then
the unknown current of the shield grounding equals

I5 = Ien =
4∑

j=1

Y5, jU j+Y5,5Uen (33)

In addition, pursuant to Kirchhoff’s second law (Figure 6):

Uen + 2RgrIen = 0 (34)

By solving Equations (33) and (34) given the Uen we obtain

Uen = U5 =
−1

Y5,5 +
1

2Rgr

 5∑
j=1

Yi, jU j + Y5,4U0

 (35)

Substituting solution (35) to the Equation (22) we obtain

Ii =
4∑

j=1

Ỹi, jYU j (36)

where I4 = I0

4∑
j=1

Ỹi, jYU j.

Next, the admittance

Ỹi, j = Yi, j −
Yi,5Y5, j

Y5,5 +
1

2Ruz

for i, j = 1, 2, 3, 4 (37)

from which, after calculating the inverse matrix, an impedance matrix is obtained

Z̃i, j =
[
Ỹi, j

]−1
(38)

Energies 2019, 12, 1419 8 of 20 

 

4 3, 2,      for     ,1,

2
1

~

5,5

,55,
,, =

+
−= ji

R
Y

YY
YY

uz

ji
jiji  

(37)

from which, after calculating the inverse matrix, an impedance matrix is obtained 

[ ] 1
,,

~~ −
= jiji YZ  (38)

I0 I1 I2 I3 
Ien 

  U1   U2   U3   Uen 

  Ugr 

 U0 

Rgr 

Rgr 

 
Figure 6. Circuit model of a high-current bus duct with a division of phase busbars, a neutral busbar, 
and a shield into elementary conductors in the case of shield grounding at its ends. 

2.2. Impedances—Calculation Example 

In order to verify the obtained formulas, impedance measurements were made on an actual 
high-current busduct (Figure 7). 

 
Figure 7. Measurement stand: 1—busbar manufactured by the Holduct company [5], 2—shield 
cover, 3 —current transformer, 4—Rogowski coils, 5—voltmeter, 6—phase meter, 7—PC with 
measurement software. 

The impedances of the busbars were determined by the following methods: the analytical 
method (AM) previously described [1,3,29] for simple configurations of unshielded busbars 
neglecting skin and proximity effects, the integral equation method (IEM) based on integral 

3 

7 

1 

2 

6 

5 

4 
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2.2. Impedances—Calculation Example

In order to verify the obtained formulas, impedance measurements were made on an actual
high-current busduct (Figure 7).
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Figure 7. Measurement stand: 1—busbar manufactured by the Holduct company [5], 2—shield
cover, 3—current transformer, 4—Rogowski coils, 5—voltmeter, 6—phase meter, 7—PC with
measurement software.

The impedances of the busbars were determined by the following methods: the analytical method
(AM) previously described [1,3,29] for simple configurations of unshielded busbars neglecting skin
and proximity effects, the integral equation method (IEM) based on integral equations [1,18,30,31],
the two-dimensional finite element method (FEM) using FEMM software [32,33] and the measurement
(meas) in the test stands presented in Figure 7.

In the case of an unshielded (Figure 2) and shielded (Figure 3) busbar type, phase conductors
and neutral conductors contain one rectangular bar hence N1 = N2 = N3 = 1 and N4 = 1. As shown in
Figure 2, the dimensions are: a = 12 mm, b = 100 mm, and d = d1 = 24 mm. The phase bars and the
neutral bar are copper bars with a conductivity of σ = 56 MS·m−1. The frequency of the phase currents
is f = 50 Hz.

For the calculations, it was assumed that l = 1 m and l = 3.50 m. The last length is also the length
of the actual busbar tested in the laboratory. Each bar is divided into Nx

(i,k) = 12 and Ny
(i,k) = 50,

which gives 600 rectangular elemental bars for each bar, i.e., the total number of elementary bars with
dimensions of 2× 1 mm is 2400.

The busbar enclosure (Figure 3) is made of aluminum with a conductivity of σ5 = 34 MS·m−1 and
the thickness of its walls t = 3 mm. The position of the enclosure walls relative to the bars is determined
by a1 = 12 mm, b1 = 12 mm, b2 = 15 mm. The horizontal enclosure plate is divided into Nx

(5,k) = 114 and
Nty

(5,k) = 2, which gives 228 elementary rectangular conductors measuring 1× 1.5 mm. The vertical
enclosure plate is divided into Ny

(5,k) = 127 and Ntx
(5,k) = 2, giving 254 elementary conductors of

1 × 1.5 mm. In this way, the enclosure is divided into 964 rectangular elementary conductors. Therefore,
the total number of rectangular elementary conductors of the busbar from Figure 3 is 3364.

After the aforementioned discretization was performed, the self and mutual impedances of the
unshielded and shielded busbar systems with one rectangular bar per phase and with one neutral bar
were calculated. The results from the calculations are summarized in Table 1.
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Table 1. Self and mutual impedances in mΩ of the unshielded (u) and shielded (s) three-phase busbar
systems illustrated in Figures 2 and 3.

Length
l in m Nj

Ni
u

s
Method 1 (L1) 2 (L2) 3 (L3) 4 (N)

1

1 (L1)
u

AM 0.014 + j 0.214 0.000 + j 0.185 0.000 + j 0.161 0.000 + j 0.185
IEM 0.022 + j 0.202 0.005 + j 0.173 0.002 + j 0.149 0.004 + j 0.174
FEM 0.021 + j 0.339 0.005 + j 0.339 0.002 + j 0.288 0.004 + j 0.312

s IEM 0.025 + j 0.199 0.006 + j 0.174 0.000 + j 0.153 0.008 + j 0.168
FEM 0.023 + j 0.337 0.005 + j 0.312 –0.005 + j 0.292 0.008 + j 0.306

2 (L2)
u

AM 0.000 + j 0.185 0.014 + j 0.214 0.000 + j 0.185 0.000 + j 0.161
IEM 0.005 + j 0.173 0.019 + j 0.202 0.004 + j 0.174 0.002 + j 0.149
FEM 0.005 + j 0.339 0.021 + j 0.339 0.004 + j 0.313 0.002 + j 0.288

s IEM 0.006 + j 0.174 0.025 + j 0.199 0.008 + j 0.168 0.000 + j 0.153
FEM 0.008 + j 0.306 0.024 + j 0.337 0.008 + j 0.306 –0.005 + j 0.292

3 (L3)
u

AM 0.000 + j 0.161 0.000 + j 0.185 0.014 + j 0.214 0.000 + j 0.143
IEM 0.002 + j 0.149 0.004 + j 0.174 0.021 + j 0.203 0.000 + j 0.130
FEM 0.002 + j 0.288 0.004 + j 0.174 0.021 + j 0.341 –0.001 + j 0.270

s IEM 0.000 + j 0.153 0.008 + j 0.168 0.031 + j 0.187 –0.007 + j 0.144
FEM –0.005 + j 0.292 0.008 + j 0.306 0.032 + j 0.324 –0.007 + j 0.283

4 (N)
u

AM 0.000 + j 0.185 0.000 + j 0.161 0.000 + j 0.143 0.014 + j 0.214
IEM 0.004 + j 0.174 0.002 + j 0.149 0.000 + j 0.130 0.021 + j 0.203
FEM 0.004 + j 0.312 0.002 + j 0.288 –0.001 + j 0.270 0.021 + j 0.341

s IEM 0.008 + j 0.168 0.000 + j 0.153 –0.007 + j 0.144 0.031 + j 0.187
FEM 0.008 + j 0.306 –0.005 + j 0.292 –0.007 + j 0.283 0.032 + j 0.324

3.50

1 (L1)
u

AM 0.053 + j 1.038 0.000 + j 0.935 0.000 + j 0.845 0.000 + j 0.935
IEM 0.075 + j 0.990 0.016 + j 0.891 0.006 + j 0.808 0.015 + j 0.892
FEM 0.049 + j 0.749 0.017 + j 1.186 0.007 + j 1.008 0.014 + j 1.092

s IEM 0.086 + j 0.983 0.020 + j 0.894 –0.002 + j 0.824 0.027 + j 0.876
FEM 0.081 + j 1.179 0.017 + j 1.092 –0.017 + j 1.022 0.028 + j 1.071

2 (L2)
u

AM 0.000 + j 0.935 0.053 + j 1.038 0.000 + j 0.935 0.000 + j 0.845
IEM 0.016 + j 0.891 0.075 + j 0.990 0.015 + j 0.893 0.006 + j 0.808
FEM 0.017 + j 1.186 0.074 + j 1.186 0.014 + j 1.095 0.007 + j 1.008

s IEM 0.020 + j 0.894 0.086 + j 0.982 0.028 + j 0.875 –0.002 + j 0.824
FEM 0.017 + j 1.092 0.084 + j 1.179 0.028 + j 1.071 –0.017 + j 1.022

3 (L3)
u

AM 0.000 + j 0.845 0.000 + j 0.935 0.053 + j 1.038 0.000 + j 0.778
IEM 0.006 + j 0.823 0.015 + j 0.893 0.073 + j 0.995 0.000 + j 0.745
FEM 0.007 + j 1.008 0.014 + j 1.095 0.073 + j 1.193 –0.003 + j 0.945

s IEM –0.002 + j 0.824 0.028 + j 0.875 0.107 + j 0.940 –0.027 + j 0.792
FEM –0.017 + j 1.022 0.028 + j 1.071 0.112 + j 1.134 –0.024 + j 0.990

4 (N)
u

AM 0.000 + j 0.935 0.000 + j 0.845 0.000 + j 0.778 0.053 + j 1.038
IEM 0.015 + j 0.892 0.006 + j 0.808 0.000 + j 0.745 0.073 + j 1.012
FEM 0.014 + j 1.092 0.007 + j 1.008 –0.003 + j 0.945 0.073 + j 0.994

s IEM 0.027 + j 0.876 –0.002 + j 0.824 –0.027 + j 0.792 0.105 + j 0.942
FEM 0.028 + j 1.071 –0.017 + j 1.022 –0.024 + j 0.990 0.112 + j 1.134

u: unshielded; s: shielded.

The obtained results of the self and mutual impedance calculations presented in Table 1 allow
determination of the reduced self and mutual impedances. These impedances are shown in Table 2.
The table also presents the measurement results of these impedances. Impedance measurements were
made on a suitably prepared measurement stand, as shown in Figure 7. The high-current bus duct
was supplied with a current of 1 kA. The current measurement was carried out through Rogowski
coils (AmpFLEX series A100) with an accuracy of 1%, and the voltage measurement was made using a
digital voltmeter (Picotest M3500) with a class of 0.1%. The phase angle between current and voltage
was measured using a phase meter (Dranetz Plug-in-Model-305-PA-3009A) with an accuracy of 1%.
The experiments were performed under 50 Hz sinusoidal supply. The actual length of the bus duct was
3.9 m while in order to avoid the influence of the power cords, voltage drop measurements were made
on a 3.5 m section. To calculate the reduced impedance matrix, effective values of current and voltage
were measured as well as the phase angle between their instantaneous values. The measurements were
repeated several times and the measured impedance values are presented in Table 2. The impedance
values presented were compared to the results obtained using the integral equation method (IEM)
(software was developed in the Visual Studio 2010 Professional environment), the finite elements
method (FEM), and the measurement results (meas).
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Table 2. Reduced self and mutual impedances in mΩ of the unshielded (u) and shielded (s) three-phase
busbar systems illustrated in Figures 2 and 3.

Length
l in m i

j
u

s
Methods 1 (L1) 2 (L2) 3 (L3)

3.50

1 (L1)

u

AM 0.106 + j 0.206 0.053 + j 0.193 0.053 + j 0.170
IEM 0.117 + j 0.199 0.068 + j 0.184 0.064 + j 0.165
FEM 0.118 + j 0.198 0.068 + j 0.183 0.064 + j 0.163
meas 0.113 + j 0.208 0.058 + j 0.192 0.053 + j 0.172

s
IEM 0.137 + j 0.173 0.100 + j 0.136 0.103 + j 0.098
FEM 0.138 + j 0.172 0.102 + j 0.133 0.108 + j 0.094
meas 0.131 + j 0.178 0.089 + j 0.144 0.095 + j 0.106

2 (L2)

u

AM 0.053 + j 0.193 0.106 + j 0.386 0.053 + j 0.350
IEM 0.068 + j 0.184 0.136 + j 0.368 0.081 + j 0.333
FEM 0.068 + j 0.183 0.136 + j 0.365 0.081 + j 0.330
meas 0.058 + j 0.192 0.117 + j 0.384 0.075 + j 0.342

s
IEM 0.100 + j 0.136 0.196 + j 0.276 0.163 + j 0.201
FEM 0.102 + j 0.133 0.200 + j 0.270 0.170 + j 0.193
meas 0.090 + j 0.145 0.177 + j 0.296 0.148 + j 0.218

3 (L3)

u

AM 0.053 + j 0.170 0.053 + j 0.350 0.106 + j 0.520
IEM 0.064 + j 0.165 0.081 + j 0.333 0.145 + j 0.498
FEM 0.064 + j 0.163 0.081 + j 0.330 0.145 + j 0.493
meas 0.052 + j 0.172 0.074 + j 0.342 0.128 + j 0.513

s
IEM 0.103 + j 0.098 0.163 + j 0.201 0.267 + j 0.299
FEM 0.108 + j 0.094 0.170 + j 0.193 0.279 + j 0.287
meas 0.095 + j 0.105 0.145 + j 0.218 0.243 + j 0.329

u: unshielded; s: shielded.

3. Magnetic Field of the Three-Phase Rectangular Busbars with a Finite Length

The magnetic field of busbars manufactured by the Holduct company were examined in unshielded
bars (Figure 2) as well as shielded bars (Figure 3).

3.1. Current Densities at Rectangular Busducts

Knowledge of voltage drops on individual conductors Uj for j = 1, 2, 3, 4, 5 according to
the substitution

U(n)
jl = U j (39)

allows, by virtue of the formula [1]

I(m)

i,k =
5∑

j=1

N j∑
l=1

N j,l∑
n=1

Y(m.n)
(i,k) ( j,l)

U(n)
j,l (40)

where i = 1, 2, 3, 4, 5; k = 1, 2, .., Ni; m = 1, 2, .., Ni,k, to calculate the current at any m-th fiber of
the k-th conductor of i-th phase

I(m)

i,k =
5∑

j=1


N j∑
l=1

N j,l∑
n=1

Y(m.n)
(i,k) ( j,l)

U(n)
j,l

 (41)

Once the currents in all elementary conductors are calculated, it allows, according to the formula

J(m)

i,k =
I(m)

i,k

S(m)

i,k

(42)

to determine the current density distribution at the busducts and the screen.
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3.2. Magnetic Field of Rectangular Busducts

Knowledge of the current density at individual elementary conductors of busducts allows
calculation of the magnetic field distribution. The magnetic field generated by the known current
density of such an elementary conductor can be determined by the medium of the vector potential
generated by this current in the space [34–36]. For the elementary conductor shown in the Figure 8,
this potential is given by the formula

A(m)

i,k (P) =
µ0

4 π

y

v(m)
i,k

J(m)

i,k (Q)

r(P, Q)
dvQ = 1zA(m)

i,k (x, y, z) (43)
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A(m)

i,k (x, y, z) =
µ0

4 π

I(m)

i,k

S(m)

i,k

l(m)
i,k∫

0

y(m)
i,k +∆y(m)

i,k∫
y(m)

i,k

x(m)
i,k +∆x(m)

i,k∫
x(m)

i,k

dx1 dy1 dz1√
(x− x1)

2 + (y− x1)
2 + (z− x1)

2
(44)

If l(m)

i,k � ∆x(m)

i,k and l(m)

i,k � ∆y(m)

i,k and if the point P(x, y, z) is far enough from element v(m)

i,k , ergo

|x− x1| � ∆x(m)

i,k and
∣∣∣y− y1

∣∣∣ � ∆y(m)

i,k , then the triple integral (44) can be calculated with sufficient
accuracy as follows

A(m)

i,k (x, y, z) =
µ0I(m)

i,k

4 π

l(m)
i,k∫

0

dz1√(
x− x(m)

i,k −
1
2 ∆x(m)

i,k

)2
+

(
y− y(m)

i,k −
1
2 ∆y(m)

i,k

)2
+ (z− z1)

2

(45)

Knowledge of the vector potential allows determination of the magnetic field strength as

H(m)

i,k (x, y, z) =
1
µ0

rotA(m)

i,k (x, y, z) = 1x
1
µ0

∂A(m)

i,k (x, y, z)

∂y
− 1y

1
µ0

∂A(m)

i,k (x, y, z)

∂x
(46)
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that is
H(m)

i,k (x, y, z) = 1xH(m)

x,i,k + 1yH(m)

y,i,k (47)

where the magnetic field strength components are

H(m)

x,i,k =
1
µ0

∂A(m)

i,k (x, y, z)

∂y
(48)

and

H(m)

y,i,k = −
1
µ0

∂A(m)

i,k (x, y, z)

∂x
(49)

Hence, these components are given by the following integrals:

H(m)

x,i,k(x, y, z) =
I(m)

i,k

4 π

l(m)
i,k∫

0

−

(
y− y(m)

i,k −
1
2 ∆y(m)

i,k

)
dz1[(

x− x(m)

i,k −
1
2 ∆x(m)

i,k

)2
+

(
y− y(m)

i,k −
1
2 ∆y(m)

i,k

)2
+ (z− z1)

2
] 3

2

(50)

and

H(m)

y,i,k(x, y, z) =
I(m)

i,k

4 π

l(m)
i,k∫

0

(
x− x(m)

i,k −
1
2 ∆x(m)

i,k

)
dz1[(

x− x(m)

i,k −
1
2 ∆x(m)

i,k

)2
+

(
y− y(m)

i,k −
1
2 ∆y(m)

i,k

)2
+ (z− z1)

2
] 3

2

(51)

The definite integrals (50) and (51) can be calculated by means of standard functions because the
adequate indefinite integral =(z, a, b), where ξ = z− z1, has the analytic form

=(z, a, b) =
∫

b dξ

[a2 + b2 + ξ2]3/2
=

b
a2 + b2

ξ√
a2 + b2 + ξ2

(52)

The above solution allows expression of the magnetic field strength components as follows:

H(m)

x,i,k(x, y, z) =
I(m)

i,k

4π

 =(z, x− x(m)

i,k −
1
2 ∆x(m)

i,k , y− y(m)

i,k −
1
2 ∆y(m)

i,k )−

=(l(m)

i,k − z, x− x(m)

i,k −
1
2 ∆x(m)

i,k , y− y(m)

i,k −
1
2 ∆y(m)

i,k )

 (53)

and

H(m)

y,i,k(x, y, z) = −
I(m)

i,k

4π

 =(z, y− y(m)

i,k −
1
2 ∆y(m)

i,k , x− x(m)

i,k −
1
2 ∆x(m)

i,k )−

=(l(m)

i,k − z, y− y(m)

i,k −
1
2 ∆y(m)

i,k , x− x(m)

i,k −
1
2 ∆x(m)

i,k )

 (54)

Finally, the total magnetic field in the outside of the busduct will be a superposition of partial
fields generated by currents at all elementary conductors, that is

Hx(x, y, z) =
Nc∑
i=1

Ni∑
k=1

Ni,k∑
m=1

H(m)

x,i,k(X) (55)

and

Hy(x, y, z) =
Nc∑
i=1

Ni∑
k=1

Ni,k∑
m=1

H(m)

y,i,k(X) (56)

and then
H(x, y, z) = 1xHx(x, y, z) + 1yHy(x, y, z) (57)
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In the three-phase busduct system, the magnetic field is elliptical [1,2]. Its instantaneous value is

H(x, y, z, t) = 1x
√

2Re(Hxe jωt) + 1y
√

2Re(Hye jωt) (58)

The highest value of the magnetic field is then [1,34]

Hmax(x, y, z) = max
0≤t≤T

∣∣∣H(x, y, z, t)
∣∣∣

√
2

=
∣∣∣H1(x, y, z)

∣∣∣+ ∣∣∣H2(x, y, z)
∣∣∣ (59)

and the lowest value is

Hmin(x, y, z) = min
0≤t≤T

∣∣∣H(x, y, z, t)
∣∣∣

√
2

=
∣∣∣∣∣∣H1(x, y, z)

∣∣∣− ∣∣∣H2(x, y, z)
∣∣∣∣∣∣ (60)

where

H1(x, y, z) =
Hx(x, y, z) + j Hy(x, y, z)

2
(61)

and

H2(x, y, z) =
H∗x(x, y, z) + j H∗y(x, y, z)

2
(62)

3.3. Magnetic Field—Measurement and Results

Firstly, the symmetrical currents forcing was assumed

I1 = I ej0o
, I2 = I e−j120o

, I3 = I ej120o
, IN = I1 + I2 + I3 = 0 (63)

Secondly, by using the analytical method (AM), neglecting the skin and proximity effects,
the distribution of the magnetic field intensity for the unshielded busbar—with one bar per phase and
one neutral bar—was determined. The relevant graphs from [37] are shown in Figures 9–11.
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Figure 9. The distribution of magnetic field intensity along the line y = const (constants) of an unshielded
busbar system with current symmetry.
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If skin and proximity effects are taken into account, then in order to determine the magnetic field
intensity distribution of an unshielded and shielded busbar, the integral equation method (IEM) should
be used. The relevant graphs are shown in Figures 12–17.Energies 2019, 12, 1419 15 of 20 
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The aforementioned magnetic field intensity distributions were compared with each other along
with the results obtained using the analytical method (AM), the integral equation method (IEM),
the finite element method (FEM), and the measurement results (meas). The computations were
done with FEM (using FEMM software). Figure 16 shows the mesh generated by the software.
The comparison was made at selected points of a shielded and unshielded busbar manufactured
by Holduct [5]. The locations of the points are illustrated in Figure 17 (with and without enclosure
respectively), and the results are presented in Table 3.
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Table 3. Magnetic field intensity (in kA/m) at selected points of an unshielded (u) and shielded (s)
three-phase busbar system manufactured by Holduct with current symmetry of I = 1 kA.

u
s

Method
Measurement Points

1 2 3 4 5 6 7 8 9 10 11 12

u

AM 0.727 1.316 3.112 3.624 5.594 4.050 0.609 0.965 1.467 1.701 1.467 0.929
IEM 0.550 1.450 3.150 3.250 4.560 4.250 0.600 1.200 1.250 1.850 1.200 0.950
FEM 1.036 2.118 4.778 5.537 4.966 1.818 0.873 1.439 2.206 2.547 2.238 1.357
meas 0.318 1.723 4.041 4.422 3.650 1.419 0.754 1.274 2.058 2.296 1.761 1.153

s
IEM 0.550 2.050 2.850 3.250 3.200 0.950 0.490 0.750 1.050 1.100 0.950 0.550
FEM 1.180 2.823 4.725 4.313 4.464 1.890 0.626 0.908 1.183 1.468 1.406 0.807
meas 0.729 2.020 3.563 3.534 3.355 1.423 0.535 0.735 0.960 1.240 1.068 0.661

u: unshielded; s: shielded.

4. Discussion

The numerical method is validated by the FEM software and laboratory measurements. Skin,
proximity, and eddy current effects are taken into consideration. The results from the measurements
indicate that the our numerical method can be used to predict impedance of any such rectangular
busbar system with a good accuracy. Both busbar and enclosure have a great influence on its impedance.
The model predictions are found to be in very good agreement with measurements.

In the 4 × 4 impedance matrix (Table 1), it is necessary to pay attention to the significant differences
between the reactances calculated by the IEM and reactances determined by the FEM. This is due to the
poor physical interpretation of self and mutual busbar impedances [38–44]. If the physical significance
of these reactances described by a 3 × 3 impedance matrix (Table 2) is considered, then the differences
between these reactances calculated by the IEM and FEM practically disappear. However, it is necessary
to additionally take into account the fact that in the IEM these reactances are calculated for a finite
length busbar, while in the FEM, they are calculated per unit of length (long bars). The measured
resistance values are lower than the calculated ones by less than 15% in the case of unshielded busbars
and less than 12% in the case of shielded busbars. The measured reactance values are greater than
the calculated ones by less than 5% in the case of unshielded busbars and less than 14% in the case of
shielded busbars.

The results show that the magnetic field found by computations and measurement (Table 3)
roughly agree at most probing points, although at some points the differences are rather large. This may
come from difficulties with the exact positioning of the probe. The differences can be also explained by
the difficulty to correctly assess the magnetic field interactions far away from their emission points.

5. Conclusions

Based on the theory of electromagnetic fields and electrodynamics, with the use of the integral
equation method, analytical formulas were derived to determine the impedances and the magnetic
fields of rectangular busbar systems. These formulas apply to rectangular busbars of any cross-sectional
dimensions and any length. They take into account the finite transverse dimensions and the finite
length of the busbars. They can be used for any values of complex currents, in particular in cases of a
three-phase high-current bus.

The values presented in Tables 1 and 2 show that the impedance values—calculated on the basis
of integral equations—are close to the measured values. The relative error does not exceed 10%.
The measured levels are slightly higher than those calculated. This is due to the adoption of some
simplifications in the shield geometry (Figure 3) and does not take into account the mathematical
model of the actual shape of the shield (Figure 16).

In the case of impedance values obtained using the finite element method, they are almost identical
to the values calculated on the basis of integral equations.

The designed and constructed lab stand allowed experimental verification of magnetic fields
around a power transmission line with rectangular bus bars. The results of computations and
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measurements roughly agree at most probing points. At some points the differences seem considerable.
This is probably the result of inexact positioning of the probe during the experiment, as well as the
fact that its head has considerable size in comparison to the gaps between the bus bars. This shows
that magnetic field measurements between tightly packed elements are troublesome and require more
accurate methods.
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