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Abstract: Recent open-data movements give access to large datasets derived from real-world
observations. This data can be utilized to enhance energy systems modeling in terms of heterogeneity,
confidence, and transparency. Furthermore, it allows to shift away from the common practice of
considering average values towards probability distributions. In turn, heterogeneity and randomness
of the real-world can be captured that are usually found in large samples of real-world data.
This paper presents a methodological framework for an empirical deterministic–stochastic modeling
approach to utilize large real-world datasets in long-term energy systems modeling. A new software
system—OSeMOSYS-PuLP—was developed and is available now.It adds the feature of Monte
Carlo simulations to the existing open-source energy modeling system (the OSeMOSYS modeling
framework). An application example is given, in which the initial application example of OSeMOSYS
is used and modified to include real-world operation data from a public bus transport system.
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1. Introduction

1.1. Challenges and Opportunities

The world’s mean surface temperature is on a projected trajectory towards an increase of 2.5–7.8 ◦C
compared to the pre-industrial era, if no additional efforts are made to reduce greenhouse gas (GHG)
emissions [1]. This will presumably lead to tremendous impacts on human health and the ecosystem.
Despite this dramatic outlook, global GHG emissions from fossil fuel burning, cement manufacturing,
and gas flaring rose further by 2% per year over the period 2010–2014 [2]. The transport sector,
in particular, accounted for 11% of this increase; consumed 27% of the total final energy use; and is
projected to approximately double its fuel consumption by 2050 [1]. In contrast, some estimations
state a reduction potential of 15–40% by 2050 compared to the baseline scenario [1]. This significant
mitigation potential may be achieved if several measures are implemented such as: fuel switching,
energy efficiency improvements, infrastructure development, behavior change, modal shift, and new
policies [1,3,4]. Thus, the mitigation of climate change relies on the transformations of the energy
system, including the transport system. That, however, implies comprehensive and fundamental
changes at various levels.

The development of long-term energy planning scenarios is an indispensable tool to inform
decision-makers about the potential benefits and drawbacks associated with a transformation. Therein,
the field of energy systems modeling represents a cost-efficient and safe process to test and quantify
impacts of new policies, measures, and targets on the economy, environment, and society. Modeling
relies on the availability of data that is representative for the real world. Common practice is the
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use of aggregated data as input data for parameters in a model. Advantages are time-efficiency
for both data collection and preparation; a single or few numbers that can potentially represent
large amounts of data; reduction of complexity in a dataset and/or model; etc. Despite these clear
advantages, drawbacks also exist such as: the dimensionality of the analysis is restricted to the
aggregation level of the aggregated data; it is potentially impossible to trace back the aggregation to
the original raw data; presumption for correctness of data preparation and aggregation calculations
by others; etc. For example, average values (i.e., mean, median, mode) are commonly used in energy
systems modeling as input data for parameters representing the energy demand side in a model.
However, this simplified assumption neglects potential variations of parameters. Hence, this can result
in missing heterogeneity and randomness of the real-world behavior in a model; limiting confidence in
the aggregated data by the researcher of a study; limiting transparency of the input data for the model
by the reader of a study; etc. Although, this was a non-exhaustive list of reasons, it compels efforts
to overcome the said limitations that are inherited with the use of aggregated data. In comparison,
probability distributions could represent more of the occurring variations from the real-world in
a model. However, the determination of a probability distribution requires either much raw data to
generate an empirical probability distribution, or the type of probability distribution must be explicitly
stated along with its parametric values.

Meanwhile, recent open data movements gain scientific importance [5]. In addition, software
and computer technologies evolve and can now support data preparation and analysis processes [6,7].
As a result, new opportunities arise through the access to non-aggregated data (i.e., raw data).
Potential utilization of open real-world data could be: the development of more case-specific models;
use of more heterogeneous input data (such as probability distributions instead of average values);
and consequently, more heterogeneous output data. This might conceivably lead to richer and perhaps
different sets of conclusions, each accompanied with a probability estimation, rather than one output
dataset and one set of conclusions.

For instance, so-called “Intelligent Transport Systems” (ITS) [8] represent an example of the
“Internet-of-Things” (IoT) concept [9]. Therein, physical vehicles are connected to other objects
(e.g., a database) and exchange data. Through this, vehicle operation data are recorded, stored,
and made available for analyses. This opens new possibilities to link energy and transport models;
to develop scenarios that match more the reality; and eventually, to support decision-makers with
more refined insights based on the actual raw data. Besides, the model’s user can be more involved
in or do the data preparation and aggregation processes and hence, he/she is more familiar with the
actual raw data behind the aggregated data. This might increase confidence in the analysis as well as
enhance the transparency of modeling insights—starting at the raw data, to input data, to output data,
to results, and eventually, insights. In addition, all this in a manner that is inherently tractable.

1.2. Rationale

This paper presents a methodological framework for an empirical deterministic–stochastic
modeling approach to utilize large real-world datasets in long-term energy systems modeling. A new
software system was developed, the so-called “OSeMOSYS-PuLP”. It is a new code implementation
of the open source energy modeling system (the OSeMOSYS modeling framework) [10,11] with the
substantial extension of Monte Carlo simulations (MCS). Other code implementations of OSeMOSYS
(i.e., GNU MathProg, GAMS, and Python using the software library Pyomo [12,13]) have been
extensively used for modeling and analysis of long-term energy planning scenarios in the scientific
literature, e.g., see References [14–21]. However, those studies are limited in their usability to run MCS
in an automated and convenient way. As a result, OSeMOSYS-PuLP overcomes this limitation and
allows the analysis to consider and evaluate exogenous uncertainties of the model’s parameters using
stochastic uncertainty analysis methods. A practical application example of a public bus transport
system is presented to demonstrate the capabilities of OSeMOSYS-PuLP compared to the other code
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implementations. The input data was generated in form of an empirical probability distribution from
real-world data, and hence, one example is provided on how OSeMOSYS-PuLP can be used.

The new software is ready-to-use for future research and the download link is provided at the
end of Section 7. Importantly, the new MCS extension for OSeMOSYS is not limited to any specific
parameter. This means it is possible to choose an arbitrary parameter(s) to be considered in the
MCS. This also enables an application of OSeMOSYS-PuLP for analyses having different scopes than
this paper. Furthermore, it makes it possible to evaluate the overall impact of several combined
exogenous uncertainties on the model’s output as well as stating the probability/likelihood estimated
for each outcome.

1.3. Contributions

This paper makes three contributions: (i) The new software system OSeMOSYS-PuLP can support
the development of more comprehensive and transparent long-term energy planning scenarios.
These can support strategic data-driven decision-making within the areas of energy planning, transport
planning, and policy design by allowing the inclusion of probability distributions to capture more
heterogeneity and randomness of model parameters. For this, OSeMOSYS-PuLP is available for
free and licensed under the Apache License Version 2.0 [22]. (ii) The methodological framework
presents one way how to utilize large real-world datasets in long-term energy systems modeling
with the aim to use raw data rather than aggregated data. This shall strengthen the confidence and
transparency of the input dataset for both a model and the results from a model. (iii) The philosophy
of open-data and open-source models is promoted, since the Python code of OSeMOSYS-PuLP is
completely open-source designed, i.e., the modeling framework of OSeMOSYS-PuLP is open source,
the Python programming language is open source, the default solver “COIN-OR Branch-and-Cut MIP
(Mixed-Integer Programming) Solver” is open source, and the data sources used in this study are open
and free.

Overall (i)–(iii): The paper contributes to the discourse of using large datasets in long-term
energy systems modeling and strategic data-driven decision-making. Following this introduction,
Section 2 describes aspects of data analytics for large real-world datasets in energy research with
a focus on energy demand estimations for the transport sector. Section 3 provides an overview of the
uncertainties and uncertainty quantification methods in energy systems modeling. Then, in Section 4,
the methodological framework is described including the code implementation OSeMOSYS-PuLP.
Moreover, the application example is presented as well as a summary of the data preparation is given.
Then, Section 5 presents the results obtained from OSeMOSYS-PuLP. Section 6 reflects on the pros and
cons of the methodological framework with respect to the use of large real-world datasets in long-term
energy systems models and OSeMOSYS-PuLP. Lastly, in Section 7, the paper finishes off with a short
summary, conclusions, recommendations for future work, and provides the download link to the
source code of OSeMOSYS-PuLP.

The Supplementary Material contains four files: (S1) a description of the data preparation and
analysis; (S2) a short guide for OSeMOSYS-PuLP; (S3) the input dataset, and (S4) the output dataset of
the application example. The files are available in the online version of the paper.

2. Utilization of Large Datasets in Energy Research

The term “big data” has been popularized over the past several years. Meanwhile, many datasets
can be considered as large datasets and not “big data” sets. A large dataset still fits on an ordinary
database and can be processed with a single computer (e.g., as in this study). In contrast, a big dataset
requires another setup to be stored and processed, e.g., a multi-node cluster database for data
storage and a computer cluster for data processing [23,24]. Nevertheless, processing of large datasets
(i.e., not “big data”) can still require considerable computational power [25]. An example of how to
process time-efficiently a large dataset on a single computer is “multiprocessing” [25]. It is a form
of data management that simultaneously and in parallel processes several data files. Mounting
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research has been carried out around the utilization of large datasets and recently to support so-called
“smart city” analysis. Definitions for the collective term “smart city” differ in the literature though,
e.g., see several definitions listed in the study by Joglekar and Kulkarni (2017) [26]. Nevertheless,
this term usually suggests inclusion of measurement and collection of real-world data from different
sources and its analysis to enhance (energy) management, and therefore, life quality and efficiency.
The ubiquitous monitoring, collection, and storage of vast amounts of data, while striving for open
access, gives researchers new possibilities to make more refined assumptions in energy systems (as well
as other types of) models. Thus, the digitalization of energy systems in cities and collaborative efforts
among professionals from different disciplines could fundamentally change cities in their operation
and management according to Zhang et al. (2017) [27].

Many of the published studies that use large real-world datasets focus on the energy demand
of end users and can typically be allocated to two research foci: “residential buildings” and
“urban transport”. One example is the provision of new services. Here, Moreno et al. (2015) [28]
suggest the prediction of traffic congestion in advance of its actual occurrence and to provide
an alternative route to avoid traffic jams. This prevents stop-and-go driving, and thus, saves energy
and consequently, reduces emissions. A couple of studies have explicitly focused on estimating the
energy demand of road vehicles using large real-world datasets. For instance, Gennaro et al. (2016) [29]
monitored two conventional car fleets in the Italian provinces of Modena (52,834 cars) and Firenze
(40,459 cars) during May 2011. The data was obtained from on-board logging devices that recorded
GPS (Global Positioning System) coordinates, engine status, instantaneous speed, and driven distance.
Their analysis focused on investing activity patterns of the two car fleets in urban areas and the
emissions reduction potential when replacing conventional cars (i.e. a car that only has an internal
combustion engine) by hybrid-electric cars (i.e. a car that has both an internal combustion engine and
an electric motor) or battery-electric cars (i.e. a car that only has an electric motor). Overall, the study
demonstrated the opportunity presented by utilizing real-world data to simulate different scenarios
for the assessment transport policies in the European Union. Electric cars were also analyzed by
Fetene et al. (2017) [30], who estimated the energy consumption rate (ECR) and all-electric range (AER)
as a function of driver behavior, road type, and weather conditions. The data were collected from
741 drivers over a period of two years. The results showed that the ECR was 34% higher and AER was
25% shorter in the winter time than in the summer time. They further found a non-linear relationship
between speed, acceleration, and ambient temperature on the ECR, whereas season and precipitation
influenced linearly the ECR. The optimal operation was found to be at a speed between 45–56 km/h
and an ambient temperature of 14 ◦C for battery-electric cars. These findings could consequently be
considered in the operation of electric cars.

In addition to private cars, studies were published for taxis, especially for cases in China.
Kan et al. (2018) [31] analyzed the spatio-temporal distribution of energy consumption and emissions
for a cab fleet consisting of 6658 vehicles in the city of Wuhan. The data was collected on 6 May 2015.
The findings from the data analysis generated deeper insights about the mechanisms and relationships
of energy consumption and emissions depending on the vehicles’ activity in Wuhan’s road network.
Similarly, Luo et al. (2017) [32] used large GPS datasets to analyze spatio-temporal energy consumption
and emission patterns of 13,675 taxis in the city of Shanghai. The results identified areas and operation
times in which both energy consumption and emissions peaks occurred during the day. These insights
could be used to improve the planning of an urban infrastructure system in Shanghai, including
improvements in the demand side for an energy-efficient transport sector and ultimately lowering its
carbon footprint. Similar results were found by Cao et al. (2017) [33] who analyzed GPS data from
taxis in the city of Guangzhou. The study divided the city in different area categories such as core
areas, transition areas, and fringe areas. They found that the travel activity in transition areas was
considerable higher during peak hours than in the other two areas. A case across different transport
modes was investigated in the study by Guo et al. (2017) [34], who analyzed the operation data of taxis,
buses, and the metro system in the city of Shanghai. They analyzed the benefits of having a public
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transport planning service for users that combines all three modes and jointly considers travel cost and
travel time. By considering the three modes together, the service mitigates particular drawbacks that
occur when using only one transport mode. These include the slow speeds of taxis and buses during
peak hours; the large-meshed coverage of metro stations; or the high cost of taxis for long-distance
travel. Thus, this service uses real-world data from the urban traffic system to facilitate for passengers
a joint use of three transport modes aiming at a shorter and cost-efficient travel. Other expected
benefits are claimed to be the mitigation of pressure on the urban road system, reduction of the total
energy consumption, and an extended coverage of the city’s public transport system.

The aforementioned studies demonstrate the possibilities to utilize large datasets of and
for transport systems at different scales. Concerning energy consumption, only the study by
Fetene et al. (2017) [27] provides a distribution of the energy consumption estimation for the case
of cars. Interestingly, the underlying dataset was closed though, i.e., it was not publicly accessible.
Besides, more research for other cases than Europe and China would be useful to create multi-regional
models or models across affiliated cities such as the C40 Cities [35]. Since international standardized
driving cycles can considerably differ from the uniqueness of local driving patterns [36–38], there is
a need to estimate energy consumption and to analyze driving cycles for various cases.

In summary, more research is needed to demonstrate the potential benefits of using large datasets
in long-term energy system modeling. In this paper, the new software system OSeMOSYS-PuLP was
developed which can use probability distributions to draw from distributions input data for model
parameters, i.e., the input data are represented as distribution/s and then used in a long-term energy
system model. Thus, the new tool makes exogenous quantification of uncertainties (more information
on this topic follow in the next section) possible, and consequently, promotes transparency of
a model’s outcome and drawn conclusions. An illustrative example is used for demonstration
purposes: the public bus transport system of the city of Curitiba in Southern Brazil. This example also
complements the previous studies by using an example of a public bus transport system instead of
private cars and taxis. Noteworthy is the fact that only open-data and open-source tools were used
in this paper. That gives more control over data quality and can enhance the trustworthiness and
transparency of input datasets in a long-term energy system model. Overall, this paper provides a new
modeling framework and uses a case study to contribute to the discourse of using large real-world
datasets in long-term energy systems modeling.

3. Quantifying Uncertainties

An optimization model typically consists of an objective function, decision variables (or plainly
said: “variables”), model parameters (“parameters”), constraints (“equations”), index sets (“sets”),
and the input dataset. Many models are designed as techno-economic optimization models, i.e., a model
that determines an optimal solution to a given problem by evaluating technology investment options,
or in combination with other factors, e.g., social behavior, as done in the study by Moresino
and Fragnière (2018) [39]. These optimization models are usually designed either deterministically
(i.e., fixed values for parameters), stochastically (i.e., random values for parameters) or as hybrid
models (i.e., a mix of fixed and random values for parameters). A deterministic model will always
produce the same output data from the same input data, whereas a stochastic model will most likely
produce different output data. With respect to the underlying input data, the topic of uncertainty must
be considered, which is a multifaceted issue in energy systems modeling.

Assessing uncertainty is important to indicate the quality of a value for those who would like
to use it and to understand its reliability [40]. Uncertainty can be evaluated and categorized in many
ways. First of all, a measured value (and as used in an input dataset) and true value (as occuring in the
real-world) can potentially differ due to imprecision of measurements or inaccuracy of measurement
devices [40]. Moreover, measurements and values need to be explicitly described to prevent any form of
ambiguity concerning use and interpretation [41]. Eventually, ambiguity in data or wordings can lead
to different interpretations among different people based on their own knowledge background. Thus,
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elimination of ambiguity is highly desired, which can be a difficult task though. Thus, an imperfect
definition can lead to vagueness in the communication of research findings [42].

Presuming a thorough review of measurement practices and definitions before a dataset is
used, let us consider that such a dataset has got the status “as is” in an energy system modeling
study. Then, uncertainty can be distinguished between endogenous and exogenous uncertainties.
Endogenous uncertainty is caused during the model’s design. It is induced when assumptions in the
model’s equation system are made by the model’s developer concerning relationships of variables and
parameters. By comparison, exogenous uncertainty is caused during the model’s use. It is induced
when assumptions in the model’s input data are made by the model’s user. Different analysis methods
are available to quantify uncertainties as illustrated in the Uncertainty analysis matrix (UAM) in
Figure 1. The methods are described in the following sub-sections with focus on deterministic models,
because the considered OSeMOSYS modeling framework belongs to this category.

Energies 2019, 12, x FOR PEER REVIEW 6 of 27 

 

model’s equation system are made by the model’s developer concerning relationships of variables 

and parameters. By comparison, exogenous uncertainty is caused during the model’s use. It is 

induced when assumptions in the model’s input data are made by the model’s user. Different analysis 

methods are available to quantify uncertainties as illustrated in the Uncertainty analysis matrix 

(UAM) in Figure 1. The methods are described in the following sub-sections with focus on 

deterministic models, because the considered OSeMOSYS modeling framework belongs to this 

category. 

 

Figure 1. Uncertainty analysis matrix (UAM). 

3.1. Endogenous Uncertainty in Deterministic Models 

Scenario analysis often appears as a conceptual key element in scientific studies rather than to 

quantify explicitly the endogenous uncertainty in deterministic models by itself, e.g., as used by 

Chollacoop et al. (2015) [43]. Scenarios are developed in form of narratives, models are accordingly 

built and based on this, conclusions (often in the form of “insights”) for potential future outcomes 

are obtained and interpreted. 

Another possibility to quantify endogenous uncertainty in deterministic models is to disclose 

the source code or its algebraic formulation. An open-source code allows the model’s user to review 

the assumptions made by the model’s developer and potentially estimate logical and numeric 

influences on the results. However, applied research fields lag particularly behind concerning both 

open-source models and open data [5]. For instance, only a few models are open source out of 96 

models and simulation tools for long-term energy systems analysis that were identified by Hall and 

Buckley (2016) [44] in the case of the UK. Besides, Pfenninger et al. (2017) [5] stated as potential 

reasons limited guidelines to develop real-world energy systems as well as varying quality of 

heterogeneous data as potential reasons for the limited number of open source models. Both imply 

that there is a key limitation in the field of energy research. Only a few active academic open-source 

models have existed for more than a few years including Balmorel [45], TEMOA [46], and OSeMOSYS 

[10,11]. Preceded by DEECo in 2004, and GnuAE in 2005, OSeMOSYS—with an easy to decipher code 

base—sparked a new wave of open-source endeavors [47]. Noteworthy was an analysis by 

Groissböck (2019) [48], which concluded that only four (Switch, TEMOA, OSeMOSYS, and pyPSA) 

out of the 31 models that were analyzed in the study are mature enough for serious use. The 

evaluation was based on a function comparison. 

 

3.2. Exogenous Uncertainty in Deterministic Models 

Like open-source code, open data can contribute to greater transparency. It allows the reader of 

a study to review the assumptions made by the model’s user. Therefore, provision of the whole input 

dataset can support the objective tackling of exogenous uncertainty in the modeling process. Both 

• Scenario 
analysis

• Open-source 
code

• Sensitivity 
analysis

• Open data

• Near-optimal 
solution 
generation

• Stochastic 
optimisation

Deterministic

uncertainty analysis

Stochastic

uncertainty analysis

Exogenous

uncertainty
Endogenous

uncertainty

Figure 1. Uncertainty analysis matrix (UAM).

3.1. Endogenous Uncertainty in Deterministic Models

Scenario analysis often appears as a conceptual key element in scientific studies rather than
to quantify explicitly the endogenous uncertainty in deterministic models by itself, e.g., as used by
Chollacoop et al. (2015) [43]. Scenarios are developed in form of narratives, models are accordingly
built and based on this, conclusions (often in the form of “insights”) for potential future outcomes are
obtained and interpreted.

Another possibility to quantify endogenous uncertainty in deterministic models is to disclose the
source code or its algebraic formulation. An open-source code allows the model’s user to review the
assumptions made by the model’s developer and potentially estimate logical and numeric influences
on the results. However, applied research fields lag particularly behind concerning both open-source
models and open data [5]. For instance, only a few models are open source out of 96 models and
simulation tools for long-term energy systems analysis that were identified by Hall and Buckley
(2016) [44] in the case of the UK. Besides, Pfenninger et al. (2017) [5] stated as potential reasons limited
guidelines to develop real-world energy systems as well as varying quality of heterogeneous data
as potential reasons for the limited number of open source models. Both imply that there is a key
limitation in the field of energy research. Only a few active academic open-source models have existed
for more than a few years including Balmorel [45], TEMOA [46], and OSeMOSYS [10,11]. Preceded
by DEECo in 2004, and GnuAE in 2005, OSeMOSYS—with an easy to decipher code base—sparked
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a new wave of open-source endeavors [47]. Noteworthy was an analysis by Groissböck (2019) [48],
which concluded that only four (Switch, TEMOA, OSeMOSYS, and pyPSA) out of the 31 models
that were analyzed in the study are mature enough for serious use. The evaluation was based on
a function comparison.

3.2. Exogenous Uncertainty in Deterministic Models

Like open-source code, open data can contribute to greater transparency. It allows the reader
of a study to review the assumptions made by the model’s user. Therefore, provision of the whole
input dataset can support the objective tackling of exogenous uncertainty in the modeling process.
Both allow repeatability that helps to improve the quality of science, promote effective collaboration
between science and policy-making, increase productivity, and is relevant for societal debates [5].

Sensitivity analysis is another option. It quantifies the change of the model’s output data to
the change(s) of one parameter or a combination of more parameters in the input data. This method
is frequently used to test the robustness of findings, e.g., see References [49–51]. However, usually
only one or a few parameters are tested. In contrast, Weijermars et al. [52] suggests performing
an extensive sensitivity analysis accompanied with a clear explanation of the underlying methodology.
This, it is argued, shall achieve a more careful and transparent appraisal of findings and drawn
conclusions. Through combining methods to sift through large quantities of results and understanding
their key determinants, hidden insights can be gained [53].

3.3. Limitations of A Deterministic Uncertainty Analysis

Scenario analysis, sensitivity analysis, and disclosure of both source code and input datasets
are depicted options to provide more transparent insights and test the model’s assumptions and
robustness. Yet, all come with the implicit assumption that the values for the parameters (including
their variance) are “representative enough”. This implies an assignment of values to parameters
before a model is actually run, and likewise, a resolution of uncertainty ex ante as pointed out by
DeCarolis et al. (2017) [54]. For example, a critical and influential parameter is often the discount
rate in techno-economic energy system models. It is used to estimate the present cost of investments
to the time point(s) when the investments are made. Considering both that economic growth and
energy consumption are non-linearly related [55] and that empirical findings actually show a negative
relationship between economic growth and energy intensity [56], this complexity requires a clear
justification for the assumed projection of the discount rate [57].

With reference to projections, the recent review by Debnath and Mourshed (2018) [58] illustrates
a variety of available methods to forecast input data for parameters. They found that most forecasting
methods are used to project energy demand and electrical load. Historical trends and the baseline
year often serve as references to develop future projections. However, the assumption of baseline
year data can significantly differ between studies and can lead to different conclusions as found by
Yeh et al. (2017) [59]. Furthermore, a sensitivity analysis cannot quantify the uncertainty caused by
random errors in the input data [49]. For instance, the two academic deterministic energy system
modeling framework Balmore [45] and OSeMOSYS [10,11] typically (except Ref. [19]) assume perfectly
forecasted demands and do not capture stochastic properties of their parameters [10,11,45]. Examples
for varying parameters include solar power [60] and wind power [61] that both depend on weather
conditions. In contrast, the TEMOA model can address these uncertainties due to its design for using
stochastic programming and having the possibility to generate near-optimal solutions. Near-optimal
solution generation takes into account heuristic principles to find a feasible solution through the
means of approximation. However, as stated by the word “near-optimal”, the found solution does not
necessarily give the “optimal” solution.

Evidently, uncertainties are ubiquitous in the modeling process on different levels and must
be addressed through an uncertainty analysis to present transparent input data, results, and more
comprehensive and robust conclusions. Since linking of different models to complement each other
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can be quite difficult, Timmerman et al. (2014) [62] proposed that it is more promising to extend an
existing model instead. Therefore, in this study, the usability of the OSeMOSYS modeling framework is
extended by the feature of Monte Carlo simulations to overcome its limitation concerning the stochastic
behavior of parameters. For this, a stochastic uncertainty analysis for deterministic models is used as
described next.

3.4. Stochastic Uncertainty Analysis for Deterministic Models

One way to quantify uncertainty from the stochastic behavior of parameters in deterministic
models is the use of Monte Carlo simulations (MCS). Monte Carlo simulations draw a random value
from a distribution associated with a selected parameter and assigns it to the parameter before the
model is run. Then, the model is run and output data are obtained. This procedure is frequently
repeated so that a probability distribution of the model’s result can be created and the probability
for a certain outcome can be stated. This technique is not limited to only one parameter and can
include an arbitrary but fixed number of parameters. In any case, the model’s user must either
consider a probability distribution from the literature or make a reasonable assumption about the
distribution. Or, the model’s user combines value estimations made in different studies by generating
an empirical probability distribution based on those rather than calculating an average value out of
all available values. Alternatively, if the model’s user has access to a large amount of data, either
an empirical probability distribution (e.g., as it is done in this study in Section 4.3.1 and File S1 in the
Supplementary Material) or a theoretical probability distribution could be generated and used to draw
from it input data for a parameter. Although, the latter still comes with an exogenous uncertainty for
the probability distribution, MCS still allows for the quantification of the probability for an outcome.
As a result, a more transparent evaluation can be made, that potentially leads to a more comprehensive
interpretation of findings by considering the uncertainty space [63] and more convincing conclusions.

The possibility of running MCS directly in a fully open source implementation of OSeMOSYS
has not existed so far. Leibowicz (2018) [19] developed a stochastic version of OSeMOSYS using
GAMS. However, GAMS is not fully open source. Other studies, e.g., the recent study by
Martišauskas et al. (2018) [64] and Leibowicz (2018) [19], combined MCS tools with the OSeMOSYS
modeling framework. However, the actual process to eventually run the models has been quite
inconvenient. Thus, an automatic way would be desirable. In addition, this is possible with
OSeMOSYS-PuLP now. It allows to run MCS in a convenient and automated way. This substantial
extension particularly contributes to research about stochastic optimization and quantifying exogenous
uncertainties in long-term energy systems models. The OSeMOSYS-PuLP and the application example
are presented next.

4. Methodological Framework and Application Example

The methodological framework presents an empirical deterministic–stochastic modeling approach
to utilize large real-world datasets in a long-term energy system model (Figure 2).

The empirical component is the use of real-world data as demonstrated in the practical example
of the public bus transport system in the city of Curitiba in Southern Brazil. The deterministic
component is use of the deterministically designed OSeMOSYS modelling framework. The stochastic
component is the extension of the OSeMOSYS modelling framework by adding the feature of Monte
Carlo simulations (MCS) through a new code implementation and embedding it into a larger software
system—OSeMOSYS-PuLP. All steps of the methodological framework and analysis process are
described in the following sub-sections, starting with an introduction to the OSeMOSYS modelling
framework and OSeMOSYS-PuLP, and then followed by a description of the application example
including data preparation and the input dataset.
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Figure 2. Methodological framework and analysis process.

4.1. OSeMOSYS Modeling Framework

At the beginning of an energy systems analysis, the abstraction of the real-world energy system
is first sketched in form of a reference energy system (RES) [65]. The RES illustrates flows of
energy sources at different stages in the energy system—from the energy sources extraction to the
final energy use by services. The OSeMOSYS (Open Source Energy Modeling System) modeling
framework represents one example that allows the consideration of all stages to model the RES.
It is an open-source bottom-up modeling framework aiming at long-term energy systems planning
and optimization [10–12]. The user defines a specific model by providing input data to parameters for
energy demand, energy supply, energy and/or emission targets, techno-economics, capacity-building
constraints, etc. The OSeMOSYS modeling framework has been widely used in scientific studies to
generate outlooks and to enhance understanding concerning the impact of structural transformations
in energy systems concerning economic, environmental, and social aspects, e.g., see References [14–19].
The structure and features of the OSeMOSYS modeling framework have been well described in the
scientific literature, see References [10,11]. Other existing and widely used software tools belonging
to the model family of energy system optimization models, e.g., MESSAGE [66] and TIMES [67],
are similar in their structure and insight generation. However, most of the tools have fully or partially
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closed code. In contrast, the OSeMOSYS modeling framework and most existing code implementations
are open source—from the equations to the default solver (e.g. the latter does not apply to GAMS).
This allows a potential reuse such as was done in this study by coding the OSeMOSYS modeling
framework with the Python software library PuLP [68] and embedding it into a wider software system
consisting of other Python software libraries and any spreadsheet software that can read and write
.xlsx files, giving together “OSeMOSYS-PuLP”.

4.2. OSeMOSYS-PuLP

The OSeMOSYS-PuLP was implemented and tested in Python 3.6.6 [69]. It consists of standard
Python code as well as the Python software libraries: PuLP [68] for the linear optimization model;
Pandas [70] for data handling; Numpy [71] for probability distribution functions; and xlrd [72] to
create a spreadsheet file that can be opened with either Microsoft Excel [73], Apache OpenOffice
Calc [74], LibreOffice Calc [75], or any other spreadsheet software that can read and write .xlsx
files. The open-source mixed-integer programming (MIP) COIN-OR Branch-and-Cut MIP Solver
was used by default as it is the default solver in PuLP [76]. Nevertheless, other common solvers
are supported, too. More information about PuLP including utilizable solvers is available on the
documentation website of PuLP in Reference [77]. Noteworthy is that OSeMOSYS-PuLP has some
distinct differences compared to other existing code implementations such as GNU MathProg [78],
GAMS [79], and Python-Pyomo [80,81] (all code implementations of the OSeMOSYS modeling
framework are available in Reference [12]). The key differences are:

Firstly, the new feature of MCS adds a considerable extension of the functionality to the
OSeMOSYS modeling framework. The user can choose between some predefined probability
distributions (normal, triangular, uniform, choice), as well as has the possibility to add more specific
probability distributions if needed, e.g., from Reference [82]. The input data for the probability
distribution is provided through the input data file.

Secondly, the input data file was a spreadsheet file and was neither a DAT (.dat) file nor a text
(.txt) file, such as for the other code implementations. The advantage of using a spreadsheet software
as an interface is a clearer overview of sets, parameters, and values, as well as a more straightforward
data input for the model’s user. In contrast, the structures of DAT and text files are slightly more
abstract and harder to read for users with little experience in working with GNU MathProg, GAMS or
Python–Pyomo. Therefore, OSeMOSYS-PuLP facilitates the application of the OSeMOSYS modeling
framework and especially, for new users.

Thirdly, the output dataset from the optimization was saved in a new spreadsheet file. In this file,
the determined values for all variables of the optimal solution were saved on separate tabs.
This facilitates a rapid review and analysis of the output data for each variable without any additional
data analysis software. In contrast, other code implementations save the results to text files (.txt) using
a tabular structure with a CSV (comma-separated values) format. Thus, for a good overview of DAT
and TXT files, other tools are needed such as spreadsheet software. Moreover, the user can select which
output data should be saved (in the source code of OSeMOSYS-PuLP). Thus, if an analysis focuses
only on one or a few variables, then only the output for the selected variables can be saved. In turn,
this can considerably reduce the run time of OSeMOSYS-PuLP as only the data are stored and written
to the output data file that is of particular interest.

Fourthly, OSeMOSYS-PuLP is written as a concrete model, whereas the other code
implementations GNU MathProg, GAMS, and Python–Pyomo are written as abstract models.
In a concrete model formulation, all steps to implement the optimization problem into code are
explicitly shown in the code itself, i.e., all parameters, variables, and constraints are directly shown.
This approach makes reading of the actual code more intuitive, and consequently, it is easier to
comprehend the logic of the equation system. In comparison, in an abstract model, all parameters,
variables, and constraints are written as “placeholders”. Once the input dataset is provided, an instance
of the abstract model is generated, and a concrete model is built. For example, a comparison of the
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syntax of all code implementations is shown in Box 1 for the constraint “SpecifiedDemand” and
discussed for the two Python versions Python–PuLP and Python–Pyomo in the following. Reading
the code of Python–PuLP (as used for OSeMOSYS-PuLP) is more intuitive, because the nested
loops at the beginning show that for each element r in the set REGION and for each element l
in the set TIMESLICE and for each element f in the set FUEL and for each element y in the set
YEAR, to the model is added model+=, a new constraint RateOfDemand[r][l][f][y] == . . . named as
EQ_SpecifiedDemand_r_l_f_y . . . where r, l, f, and y are the element names in the respective loops
through the four sets. In comparison, reading the code of Python–Pyomo is more verbose, because
first a Python function SpecifiedDemand_rule is defined having the function parameters model, r, l, f, and
y that returns the constraint model.SpecifiedAnnualDemand[r,f,y]* . . . Then, to the model model is added
the constraint Constraint named as specified demand model.SpecifiedDemand that uses the datasets
REGION: model.REGION; FUEL: model.FUEL; TIMESLICE: model.TIMESLICE; and YEAR: model.YEAR,
while considering the rule rule=SpecifiedDemand_rule as previously defined by the Python function.
However, it is not explicitly visible for a user that this function adds for each combination of elements
from the different sets a separate constraint to the model (this also applies for the code implementations
in GNU MathProg and GAMS). Furthermore, the user must read both the Python function and the line
to add the constraint to the model, to comprehend how the constraint appears and that it is added to
the model. Since the OSeMOSYS modeling framework is also used as a teaching tool [83], the concrete
modeling approach of OSeMOSYS-PuLP would be beneficial to communicate the logic behind the
model and its setup. The programming style of OSeMOSYS-PuLP is procedural and explicit so that it
is relatively easy to follow its logic compared to the other code implementations. Another advantage
of the concrete model formulation is the possibility to use Python specific functions during the
construction process of the model, because parameters, variables, and constraints are initialized as these
are constructed, i.e., the model is initialized and constructed step by step—or parameter-by-parameter,
variable-by-variable, and constraint-by-constraint. During each step, Python-specific functions could
be used to take advantage of their functionality. For instance, this advantage is used for setting up and
running MCS with OSeMOSYS-PuLP. All parameters are initialized and constructed at the beginning
of the script. Then, the script is run and only the selected parameters to be included in the MCS are
updated with new data. For this purpose, Python-specific functions are used to randomly draw data
from probability distributions and overwrite the values of parameters before the next simulation of
the MCS begins. In contrast, this would be impossible with an abstract model formulation, because
all parameters would be initialized and constructed whenever a new MCS starts rather than only
overwriting the values of selected parameters. Since the input dataset is provided to an abstract model
at once, the whole model is simultaneously initialized and constructed without the possibility to use
Python-specific functions during this process.

Lastly, as OSeMOSYS-PuLP is written in Python using a concrete model formulation, there are
plenty of opportunities for future development. For instance, other Python software libraries and
their respective specific functions could be used to develop further the code, especially for both pre-
and post-processing of the input data and output data, respectively. For example, data visualization
and statistical analysis could be added for the output dataset so that the user obtains directly a file
(e.g., in an .xlsx file) with tables and figures that are ready to be exported to reports, scientific articles,
etc. Thus, there is a lot of potential to take advantage from the flexibility and open-source design
of OSeMOSYS-PuLP.

The description of the application example is presented in the following to demonstrate
the MCS feature of OSeMOSYS-PuLP and one way how to utilize a large real-world dataset in
long-term energy systems modeling. A short guide for OSeMOSYS-PuLP is provided in File S2 in the
Supplementary Materials.
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Box 1. Comparison of the syntax of all code implementations of the OSeMOSYS modeling framework.

Python-PuLP (OSeMOSYS-PuLP):
for r in REGION:

for l in TIMESLICE:
for f in FUEL:

for y in YEAR:
model += RateOfDemand[r][l][f][y] == SpecifiedAnnualDemand[r][f][y]*
SpecifiedDemandProfile[r][f][l][y]/YearSplit[l][y],
"EQ_SpecifiedDemand"+"_%s"%r+"_%s"%l+"_%s"%f+"_%s"%y

GNU MathProg:
s.t. EQ_SpecifiedDemand{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}:
SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y] /
YearSplit[l,y]=RateOfDemand[r,l,f,y];
GAMS:
EQ_SpecifiedDemand1(y,l,f,r)..
SpecifiedAnnualDemand(r,f,y)*SpecifiedDemandProfile(r,f,l,y) / YearSplit(l,y) =e=
RateOfDemand(y,l,f,r);
Python-Pyomo:
def SpecifiedDemand_rule(model,r,f,l,y):

return model.SpecifiedAnnualDemand[r,f,y]*model.SpecifiedDemandProfile[r,f,l,y]/
model.YearSplit[l,y] == model.RateOfDemand[r,l,f,y]

model.SpecifiedDemand = Constraint(model.REGION, model.FUEL, model.TIMESLICE,
model.YEAR,

rule=SpecifiedDemand_rule)

4.3. UTOPIA and Modifications

The definition of the RES and type of model (e.g., as in this study the OSeMOSYS modeling
framework) give the data requirements for an analysis. The RES in this study was based on an earlier
example of the OSeMOSYS modeling framework—the so-called UTOPIA—given in its introductory
paper published in 2011 [10]. Some updates to the original dataset have been made since then, and
therefore, the latest available dataset for UTOPIA was used, i.e., the dataset “BASE: Utopia Base
Model” [13]. It is provided in File S3 in the Supplementary Materials. The UTOPIA dataset was chosen
to keep the same dimensions for a clearer and more straight-forward comparison between results from
the original OSeMOSYS code implementation in GNU MathProg and new OSeMOSYS-PuLP.

The system of UTOPIA is a single region with no further declaration in terms of geographical
dimension [10]. The RES of UTOPIA is illustrated in Figure 3, in which lines represent energy
carries and services, and white blocks represent technologies. Three energy demands of end users
exist in UTOPIA: lighting, heating, and passenger transport. Lighting and heating demands vary
between the day time and season, respectively, i.e., more lighting is demanded at night and more
heating is demanded in the winter season. The lighting technology are light bulbs (RL1); the heating
technologies are electrical heating (RHE) and oil heating (RHO); and passenger transport can be met
by using one or more of three vehicle technologies: electric (TXE), diesel (TXD) or gasoline (TXG).
Five different electricity generation technologies are considered: coal (E01), nuclear (E21), hydro (E31),
pumped-storage (E51), and diesel (E70). Diesel (DSL) and gasoline (GSL) are imported through the
respective import technologies IMPDSL1 and IMPGSL1, as well as are produced in an oil refinery (SRE)
that converts imported crude oil (IMPOIL1). In addition, the import includes uranium and coal that are
used for electricity generation through the technologies IMPURN1 and IMPHCO1, respectively [10].

All white blocks in Figure 3 require input data, and thus, represent entry points for data analytics
in long-term energy systems modeling. Obviously, utilization of large real-world datasets could be
of interest at all stages of the flow of energy sources and technologies in an energy system model.
In this study, we selected the transport-related energy demand of end users as a subject of our analysis,
and thus, the focus was on the white blocks “TXE”, “TXD”, and “TXG”. The energy demand for
passenger transport was given by the parameter “Accumulated annual demand”. This demand
increased from 5.200 PJ/year to 11.690 PJ/year over the period 1990–2010 (the complete input dataset
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was on a yearly basis from 1990 to 2010, and is available in File S3 in the Supplementary Materials).
The transport demand was connected through the energy service “TX” to the transport technologies
“TXE”, “TXD”, and “TXG”. The input data for the parameter “Accumulated annual demand” was
given as one fixed value per modelled year. This, however, neither gives any possibility for considering
heterogeneity in terms of varying energy demand for this parameter, nor does it allow accounting
for exogenous uncertainty—at least it was impossible in a convenient and automated way. This
would only be possible to do so with any of the other code implementations of the OSeMOSYS
modeling framework by creating several datasets and running the model separately with each
dataset. However, the inconvenience of this approach becomes obvious when, for instance, 100,
1000 or even more simulations are intended to be run. With the aid of the OSeMOSYS-PuLP, this was
possible in a convenient and automated way. In turn, this requires more data in terms of probability
distributions for parameters that are selected for the Monte Carlo simulations. Thus, the determination
of a representative probability distribution for the passenger transport’s “Accumulated annual
demand” of energy is the task that needs to be done first, e.g., by analyzing large real-world datasets.

Since UTOPIA by itself is not further defined than as a generic region, let us consider UTOPIA to
be a city. This specification does not necessarily imply a simplification rather than a more explicitly
defined circumstances of the case. Furthermore, the passenger transport of UTOPIA is assumed
to be a public bus transport system. Then, the bus operations data from Curitiba can be used to
generate an empirical distribution for the input dataset used for the parameter “Accumulated annual
demand”. Although Curitiba’s passenger transport system consists of more transport modes than
public buses (e.g., taxis, private cars, among others, but no metro system), only buses were considered
as transport-related energy demand due to data availability as well as to illustrate more explicitly
a way this particular open data can be used in long-term energy system modeling.

In summary, the RES of UTOPIA is kept the same as in the introductory paper of the OSeMOSYS
modeling framework in Reference [10], but the input dataset is modified by considering an empirical
distribution for the parameter “Accumulated annual demand” of the energy demand of the passenger
transport (the necessary data preparation process for this distribution is summarized in the next
sub-section). In addition, a constraint is added: UTOPIA’s carbon dioxide (CO2) emissions should be
stabilized and must not exceed the amount of total CO2 emissions of 163.5168 tons over the period
1990–2010 (value obtained from running the default model of UTOPIA with GNU MathProg—the
reference case). Thus, the CO2 emissions estimated for UTOPIA in the Monte Carlo simulations must
not exceed the amount as in the default case. This represents an analogous to today’s real-world in
which we target to stabilize and reduce CO2 emissions, too.Energies 2019, 12, x FOR PEER REVIEW 14 of 27 
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4.3.1. Generation of the Empirical Distribution:

The data preparation process to generate an empirical distribution for the accumulated annual
demand for UTOPIA’s passenger transport included several steps. While most of those are summarized
here in the paper, a more detailed description of the data preparation and analysis is provided in
File S1 in the Supplementary Materials.

The operation data of the operating bus fleet in Curitiba is stored online in Reference [84].
The data records the GPS coordinates (latitude, longitude) with a time stamp (date, time) to document
where and when each bus was driving on a specific route in the city. The data analysis started with
downloading the data files for the period 30 January 2017 to 15 July 2018, i.e., 532 files covering
approximately 1.5 years of operation. Then, the data was sorted and cleaned, e.g., incomplete data
points were removed.

Next, some additional calculations were made to estimate the speed, longitudinal acceleration,
and road gradient for each data point. This information was necessary to describe more refined the
bus fleet’s operation in terms of driving cycles (speed versus time) and elevation profile (road gradient
versus time or distance). Then, the data was again cleaned to remove outliers due to GPS measurement
error, e.g., for the speed. The driving cycle data is described in File S1 in the Supplementary
Materials. The driving cycle data and also elevation profile data were then used to estimate the
energy consumption of the buses, since neither of this information existed in the data files. For this,
a backward-facing energy consumption rate estimation method was used that considered the speed,
longitudinal acceleration, and road gradient of each bus at each data point. However, since energy
losses occur in the powertrain components, the actual energy consumption was rather impossible to
calculate analytically. Therefore, a prediction model was created based on the theory/equations
of a backward-facing energy consumption rate estimation method. The prediction model was
developed by using multiple linear regression and was fitted with the output data from vehicle
simulations. The simulations approach was chosen due to the favorable reasons that it is cost-efficient,
time-efficient, safe, and exact reproducible compared to physical real-world tests. The simulations
were run in the software tool ADVISOR (advanced vehicle simulator) [85–87]. The ADVISOR is
an open-source software tool that is implemented in the MATLAB®/Simulink® environment [88].
This software tool has been frequently used in scientific studies, e.g., to simulate buses such as in
References [89–99]. The ADVISOR’s work principle is well described in References [85–87]. Overall,
the prediction model approximates the energy consumption of a conventional bus model as simulated
in ADVISOR. The prediction model is provided in File S1 in the Supplementary Materials. With the
aid of this prediction model, the energy consumption per distance (MJ/km) was estimated for all
data points. Then, the estimations were validated by comparing those to real-world data from
Curitiba as obtained from Reference [100]. The energy consumption values estimated for weekdays
(17.17 MJ/km), Saturdays (16.99 MJ/km), and Sundays (16.84 MJ/km) only deviated by −6.4%,
−7.4%, and −8.2% from the mean real-world energy consumption values from Curitiba (18.34 MJ/km),
respectively. Similar magnitudes of prediction errors were found in another case presented in the
study by Frey et al. (2007) [101]. Note the energy consumption value from Curitiba (18.34 MJ/km)
is based on the mean value for the real-world fuel consumption costs of 1.2987 R$/km for the bus
fleet [100]. The conversion was done using the local fuel costs of 2.5621 R$/L [102] and fuel properties
of 42.272 MJ/kg and 0.856 kg/L for the locally used biodiesel blend consisting of 93% petroleum diesel
and 7% biodiesel [89,103].

Next, the annual energy consumption per distance was calculated considering the number of
day types (weekday, Saturday, Sunday), annual frequency of those (i.e., one year includes 52 weeks
and each week includes five weekdays, one Saturday and one Sunday, plus one weekday to complete
a whole year having 365 days), and daily accumulated mileage of the bus fleet for each day type
(i.e., on weekdays: 291,723.398 km/day [104]; on Saturdays: 194,654.388 km/day [105]; and on
Sundays: 147,716.628 km/day [106]). Note that the bus fleet operates on fixed routes and follows
a fixed time-table in Curitiba. Therefore, the daily mileage for each day type can be considered as
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constant throughout the year. Eventually, altogether it made it possible to calculate an annual energy
consumption value. Since more data were available than days per year (i.e., more than 365 data files),
the method of bootstrapping could be used to generate a set of random values for the annual energy
consumption, i.e., an empirical distribution of annual energy consumption values. The descriptive
statistics of this empirical distribution are summarized in Table 1. The annual energy consumption
amounts to (1608.62 ± 1.31) TJ/year. The differences between the minimum value (1605.82 TJ/year)
and maximum value (1611.46 TJ/year) amounts to 5.64 TJ/year or 0.35% of the mean. Despite this
rather small spread of values, they still resulted in some structural changes to UTOPIA (described later
in Section 5). Lastly, a normalization of this distribution was necessary to keep the dimensions the same
as in the original UTOPIA model (i.e., the model without modifications). Therefore, the distribution
data were normalized to each modelled year (i.e., from 1990 to 2010), which gave one normalized
distribution per year (Figure 4). As shown, the accumulated annual demand also increases gradually
over time as in the original UTOPIA model. Note that all input data were provided in File S3 in the
Supplementary Materials.

Table 1. Descriptive statistics of the annual energy consumption values. Unit: TJ/year if not otherwise
stated in parentheses.

N (-) Mean SD Min. Q25 Median Q50 Q75 Max. Skew. (-) Kurt. (-)

100 1608.62 1.31 1605.82 1607.66 1608.60 1609.47 1611.46 0.011 −0.616Energies 2019, 12, x FOR PEER REVIEW 16 of 27 
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Figure 4. Normalized empirical distribution of the accumulated annual demand (energy consumption)
by year for UTOPIA’s passenger transport sector.

4.4. Run-Time

The OSeMOSYS-PuLP was run in the IDE (integrated development environment) PyCharm
Edu 2018.1.1 [107] (note that the Python script can be also run in a command line, as stated in
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File S2 in the Supplementary Materials). The run-time of the OSeMOSYS-PuLP (without Monte
Carlo simulations) took approximately one minute on a laptop running on the 64-bit operating
system Windows 10 Education and with the following technical specifications: processor: Intel® Core™
i7-4600U CPU @ 2.10 GHz 2.70 GHz; working memory (RAM): 16 GB; storage: 512 GB SSD. When using
MCS in OSeMOSYS-PuLP, the run-time for each succeeding simulation after the first simulation took
approximately 30–45 s. Importantly, tests revealed that the run-time for each simulation in the
MCS was only marginally influenced by the number of parameters included in the MCS, because
most of the time it was used to generate and solve the optimization model as well as to save the
solution of the values for the selected variables. In particular, the saving of the determined values for
variables can take a significant amount of time. Thus, it is suggested to carefully consider what output
data should be saved. The MCS included 100 simulations, i.e., for each simulation, the parameter
“Accumulated annual demand” for the passenger transport was overwritten with new data drawn
from the probability distribution for each modelled year, and then run with the new data.

5. Results

The first simulation of OSeMOSYS-PuLP determined the same output data as the other code
implementations (“Scenario_0” in the output data in File S4 in the Supplementary Materials). This data
were used as a reference case for comparison with the Monte Carlo simulations. Since the UTOPIA
BASE dataset was used to normalize the empirical distribution for the accumulated annual demand of
the passenger transport in UTOPIA to it, it can also be presumed that the reference case represents
the most likely scenario. The first simulation of OSeMOSYS-PuLP found as an optimal value of the
objective function “cost”—representing the net present cost (NPC) for UTOPIA over the period from
1990 to 2010—an NPC of 29,446.9 USD. This value the exact same as, for example, when using the
GNU MathProg version of the OSeMOSYS modeling framework. Thus, the new OSeMOSYS-PuLP
was validated. After that, the Monte Carlo simulations started and the output data from the remaining
100 simulations were generated.

Figure 5 shows the cumulative distributions of absolute changes for NPC, CO2 emissions,
electricity consumption, and diesel consumption in UTOPIA’s energy system over the period 1990–2010,
as obtained from the 100 simulations and reference case. All scenarios were sorted in ascending order
according to the NPC value in all plots from left to right on the horizontal axis. Figure 5a confirms
that the constraint to limit CO2 emissions (according to the value found in the reference case) was not
exceeded. In approximately half of the simulations, the accumulated annual demand for passenger
transport was smaller than in the reference case. This means that less diesel needs to be consumed
for the transport service, and likewise, less CO2 emissions were released. As a result, the NPC was
lower as less capacity needs to be built for the import technology for diesel IMPDSL1 (this can be
found in File S4 in the Supplementary Materials). Thus, a structural change of the energy system was
found. Both Figure 5c,d also show these observations for both diesel consumption and CO2 emissions.
As CO2 emissions decreased in this case, no investments were made for the transport technology
“electric” (TXD), because diesel was more competitive in terms of cost.

However, opposite to this, when the annual accumulated demand was higher than for the
reference case, investments were made in technology TXE to meet the transport demand while
satisfying the CO2 emissions limit (Figure 5b). Consequently, this resulted in higher NPC due to the
much higher capital cost and fixed cost of technology TXE. Meanwhile, this also prevented additional
investments in the diesel transport technology TXD, which keeps both diesel consumption and CO2

emissions at a constant level (Figure 5e,f).
No capacity was built in any of the simulations for the transport technology TXG (gasoline).

Despite TXG’s lower fixed cost (48 M$/GW) compared to TXD (52 M$/GW), yet, its variable cost—the
fuel cost—were higher than for diesel (DSL): import technology for diesel (IMPDSL1) cost 10 M$/PJ,
whereas import technology for gasoline (IMPGSL1) cost 15 M$/PJ. Meanwhile, capital cost and
operational lifetime were the same for TXD and TXG. Besides, the emission activity ratio (ton/PJ) of
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diesel and gasoline were the same, too. Hence, TXG did not represent a competitive fuel option against
TXE either, when considering jointly NPC and CO2 emissions.Energies 2019, 12, x FOR PEER REVIEW 18 of 27 
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Figure 5. Cumulative distributions of absolute changes for net present cost (NPC), CO2 emissions,
electricity consumption (ELC), and diesel consumption (DSL) in UTOPIA’s energy system over the
period 1990–2010. Data was obtained from the 100 simulations and reference case (horizontal axis:
percentage of the cumulative distributions from 0% to 100%). (a) Changes of NPC and CO2 versus
NPC distribution; (b) Changes of NPC and ELC versus NPC distribution; (c) Changes of NPC and DSL
versus NPC distribution; (d) Changes of CO2 and DSL versus NPC distribution; (e) Changes of ELC
and DSL versus NPC distribution; (f) Changes of CO2 and ELC versus NPC distribution.

Now that the influence of the accumulated annual demand for passenger transport on UTOPIA’s
energy system is known, next, the probability for certain outcomes is presented. This allows to
evaluate the importance of the observed trends. The absolute changes of the NPC (compared to
the reference case) is used as an example here, but likewise CO2 emissions, electricity consumption
or diesel consumption could be considered. For that, the values stating the absolute change of
the NPC are allocated to value intervals and plotted in a histogram in Figure 6. The figure shows
an absolute change of the NPC within the range of ±4 M$ that can be expected with a probability of 60%
(i.e., 13% + 17% + 17% + 13%). Another insight is that a deviation of more than 8 M$ from the expected
NPC (reference case) is very unlikely with a probability of 6% (2% + 1% + 2% + 1%). This is an important
insight considering the non-linear increase of the NPC above a value of 8 M$ (as previously observed
in Figure 5a–c). This means in the context of UTOPIA’s energy system, the probability for an increase
of more than 8 M$ of the expected NPC, due to exogenous uncertainty in the projected accumulated
annual demand for passenger transport in UTOPIA, is very unlikely.
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Figure 6. Probability distribution of absolutes changes for the net present cost (NPC).

Note that the actual changes are quite small compared to the absolute values for the NPC
in the reference case. This was caused by the quite evenly distributed empirical distribution for
the annual energy consumption by year in UTOPIA’s passenger transport sector from Figure 4.
Nevertheless, it demonstrated a data-driven approach and the results still show potential structural
changes (e.g., the capacity-building of import technology for diesel IMPDSL1 or transport technology
TXD) in UTOPIA’s energy system. Moreover, it demonstrated the new analysis capabilities when
using OSeMOSYS-PuLP. Considering that more parameters could be included in the MCS as well as
that other probability distributions for the input data could be used, the complexity of the analysis
can be certainly increased. Nevertheless, for the demonstration purpose of the stochastic modeling
framework of OSeMOSYS-PuLP, the simple modification of the input dataset should be considered as
enough in this study. Some reflections on the pros and cons are given concerning the methodological
framework and OSeMOSYS-PuLP in the next section.

6. Reflections

The application example of UTOPIA and integration of real-world operation data from the bus
fleet in Curitiba presented a data-driven decision-making approach. Some reflections concerning the
pros and cons are given about the methodological framework and OSeMOSYS-PuLP in the following:

The OSeMOSYS-PuLP allows a direct consideration of probability distributions in the input
dataset for a model. This makes it possible to account and quantify the impact of exogenous
uncertainties on the results in a convenient and automated way. Moreover, sets of conclusions can be
potentially evaluated together with their respective probabilities. Opposed to this, the generation of
such estimations would be inconvenient with the other code implementations. For those, additional
efforts would be necessary to generate the input data for the Monte Carlo simulations with the aid of
additional software tools first. Those would provide plenty of data files that must be run separately,
and eventually, the output data files must be separately analyzed or merged first. In this respect,
OSeMOSYS-PuLP extends and facilitates the analysis process for the case that several simulations are
desired (which is an advantage). However, large amounts of data are needed to generate probability
distribution/s for the input dataset (which is a drawback).

Although large amounts of data may represent an obstacle, open-data movements and evolving
data analysis technologies provide new possibilities and solutions to tackle this. For instance,
the operation data from the bus fleet can be found among the open data from Curitiba. While the
development of data-processing software requires some efforts, once the data-processing software and
IT infrastructure are established, they can be used and reused. Reuse is particularly advantageous
to run again an analysis with more data once they are available. Moreover, some (potentially small)
adjustments in the data-processing software and IT infrastructure might only be needed to apply them
to other cases and data sources. A vision would be to setup an automated large-scale data-processing
IT infrastructure that utilizes real-world data from all stages of an energy system. Then, this model
can be a heterogenous energy system model that approximates the real-world case including periodic
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and automatic data updates (e.g., all white blocks in Figure 3). For instance, entire networks of
cities or regions consisting of several countries could be modelled and analyzed faster in this way.
Such a large-scale system could be used to analyze the impact of joint efforts, such as those made in the
C40 network [35]—a network of mega cities around the world. Thus, the utilization of large real-world
datasets in energy systems modeling reveals the potential to generate probability distributions, refine
assumptions, and increase heterogeneity (which is an advantage). However, first the data-processing
infrastructure must be established (which is a drawback).

The use of data analytics also allows to perform more case-specific data-driven analyses and
decision-making. In the case of data limitations, a common practice in energy systems modeling is the
assumption of values from other cases and transferring them to the actual analyzed case. Moreover,
aggregated data such as average values are usually used as input data. The field of data analytics can
promote the use of raw data and self-generated aggregated data. This can potentially increase both
confidence and trustworthiness of the input dataset. Thus, data analytics can support data-driven
decision-making and enhance the control and insight about the actual raw data used to generate
aggregated values (which is an advantage). However, this depends on the availability of open data
(which is a drawback). Nevertheless, first efforts and increasing demand for open data have started to
promote this movement and hopefully even more data will be disclosed in the future.

The vehicle model of a conventional bus in the software tool ADVISOR was approximated
using multiple linear regression to derive a prediction model. The model was used to generate
the data for the empirical distributions for all modelled years that were used in the application
example for OSeMOSYS-PuLP. The prediction model made is possible to analyze cost-efficiently
and time-efficiently the large amount of bus operation data from Curitiba (which is an advantage).
This methodological approach highlights the possibility to approximate estimations of software
tools, and by this, a considerable amount of time can be saved. It can be claimed that simulating
the entire operation data (bus fleet data containing data from 1.5 years of operation) would be
effectively impossible to run within ADVISOR considering the amount of time and work. However,
first a prediction model had to be derived (which is a drawback). Nevertheless, the prediction model
derived in this study was already ready and available to use. Thus, software tools aiming at short-term
energy consumption estimations of vehicles (such as ADVISOR) can be effectively used for the purpose
of input data generation for long-term energy systems modeling.

Developing the previous thought further, other software tools could also be approximated using
regression modeling. Now, let us imagine a complex representation of a real-world energy system,
i.e., much more complex than the example of UTOPIA in terms of a larger number of energy sources,
import/export flows, conversion technologies, end users, time slices, etc. One simulation of such
a system can potentially take several hours, and hence, it must be carefully considered how many
simulations shall be run. Furthermore, if Monte Carlo simulations or a sensitivity analysis shall
be run for such a model, the number of simulations could exceed 1000 or more. Consequently,
this implies a tremendous time requirement. Meanwhile, computational equipment and financial
resources are usually constrained. For such an extensiveanalysis, again OSeMOSYS-PuLP could
be used in combination with (e.g., regression) modeling. First, OSeMOSYS-PuLP would be run to
simulate an energy system modelled with the OSeMOSYS modeling framework, e.g., 50 simulations.
Then, the output data can be used to derive a prediction model of the modelled energy system.
As the equation system of the OSeMOSYS modeling framework is known and it is linear, the method
of multiple linear regression could be a starting point in this case. Once, a prediction model is derived,
it could be used to perform many simulations in short time (as it was done with the prediction model
representing the conventional bus from ADVISOR, see File S1 in the Supplementary Materials).
This approach generates near-optimal solutions between the optimal solutions found from the
previous 50 simulations in a rapid manner (which is an advantage). However, as the wording says
“near”-optimal, it is not optimal (which is a drawback). Nevertheless, near-optimal solutions might be
potentially enough to generate some insights concerning the impact of random behavior of parameters
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on economic, environmental, and/or social aspects in a complex energy system. Overall, the synthesis
of software tools and methods can potentially save time in the research process.

The OSeMOSYS-PuLP is written in Python (as a fully open and rapidly advancing software
system, which is an advantage). As hinted at the end of Section 4.2, there are plenty of opportunities for
future development. The increasing development speed of the Python programming language [108],
and likewise its community, provide the base to create more advanced software tools and
modelings frameworks. The OSeMOSYS-PuLP can be easily extended by other Python software
libraries. In addition, linkages or integrations to other software(s) could be created. At the present,
OSeMOSYS-PuLP is a software system that depends on spreadsheet software as an interface to
insert input data and to review output data. However, some work for the analysis of the output
dataset is still required before results can be presented in a publishable format (which is a drawback).
In this respect, more development for the processing of the output data would be useful to generate
directly publishable tables and figures. This would further increase the speed of research. Moreover,
extensions to perform statistical analysis and visualization could be interesting, especially for the case
of Monte Carlo simulations. The concrete modeling approach of OSeMOSYS-PuLP allows the use of
user-defined functions or functions from other Python software libraries directly in the initialization
and construction process of a model (which is an advantage). Moreover, the concrete modeling
approach of OSeMOSYS-PuLP facilitates the understanding of the OSeMOSYS modeling framework,
which is beneficial as it is used as a teaching tool (which is an advantage).

7. Conclusions

The paper presented a methodological framework to utilize large real-world datasets in long-term
energy systems modeling. As part of this, the new software system OSeMOSYS-PuLP was developed.
The OSeMOSYS-PuLP includes a new code implementation of the OSeMOSYS modeling framework
and extends its functionality by the feature of Monte Carlo simulations. In addition, the data handling
for the input dataset and output dataset was improved by using a spreadsheet software that can read
and write .xlsx files. Now, the consideration of probability distributions is directly possible in the
input dataset for the OSeMOSYS modeling framework and allows to run Monte Carlo simulations in
a convenient and automated way.

The application example of UTOPIA was used to validate and compare the results of
OSeMOSYS-PuLP to the result of the reference case (i.e., only one simulation run with the GNU
MathProg code). For the demonstration of MCS, a large real-world dataset was used obtained from
the bus fleet in Curitiba in Southern Brazil. A prediction model for estimating the energy consumption
of buses was created that approximates the vehicle model of a conventional bus in the simulation
tool Advanced Vehicle Simulator (ADVISOR). The vehicle prediction model allowed to analyze
time-efficiently the large amount of bus operation data, which would have been basically impossible
to do so with ADVISOR. Noteworthy is that all the data and tools needed to replicate this paper were
open source and available for free. This further demonstrates the value of open data and benefits from
open-source development, particularly for the research community. The methodological framework
is potentially transferable to model other stages in an energy system or could be used as a starting
point there.

This paper has an exploratory nature and aims to primarily present OSeMOSYS-PuLP and to
demonstrate the possibilities on how to utilize large real-world datasets in long-term energy systems
modeling. This allows to use large sets of raw data, or well calibrated uncertainty distributions directly
in energy system models. Ultimately, this allows scientific studies to be more transparent, repeatable,
and re-constructible. In turn, this enables the audit of energy modeling studies. As such studies
influence the spending of trillions of US dollars of both private and public funds, such audits are
critical. Where those funds are public—or the impact of private funding impacts the public—openness
is critical, too. Here, we demonstrate a new open-source energy modeling advance that helps to
remove opaqueness. However, advances in the availability of reliable open-data are equally needed.
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Based on the research work of this paper, some recommendations for future work are:
(1) development of data-processing infrastructure to enable an automation of data preparation
with periodic updates of input datasets for OSeMOSYS-PuLP for all stages in an energy system
(e.g., again, potential entry points for (big) data analytics are represented by the white blocks
in Figure 3); (2) development of analysis software to prepare directly publishable tables and figures of
the output dataset from OSeMOSYS-PuLP; and lastly, (3) development of a graphical user interface
for OSeMOSYS-PuLP that can facilitate the use of this new software system to all types of users and
to make it independent from external spreadsheet software. The latter could be an adjusted version
of the Model Management Infrastructure (MoManI) [109], which is a browser-based open-source
graphical user interface for the OSeMOSYS modeling framework based on the GNU MathProg
code implementation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/7/1382/s1.
S1: Description of the data preparation and analysis; S2: Short guide for OSeMOSYS-PuLP; S3: Input dataset for
the application example; S4: Output dataset for the application example.
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