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Abstract: The uncertainty of wind power brings many challenges to the operation and control of
power systems, especially for the joint operation of multiple wind farms. Therefore, the study of
the joint probability density function (JPDF) of multiple wind farms plays a significant role in the
operation and control of power systems with multiple wind farms. This research was innovative
in two ways. One, an adaptive bandwidth improvement strategy was proposed. It replaced the
traditional fixed bandwidth of multivariate nonparametric kernel density estimation (MNKDE) with
an adaptive bandwidth. Two, based on the above strategy, an adaptive multi-variable non-parametric
kernel density estimation (AMNKDE) approach was proposed and applied to the JPDF modeling for
multiple wind farms. The specific steps of AMNKDE were as follows: First, the model of AMNKDE
was constructed using the optimal bandwidth. Second, an optimal model of bandwidth based on
Euclidean distance and maximum distance was constructed, and the comprehensive minimum of
these distances was used as a measure of optimal bandwidth. Finally, the ordinal optimization (OO)
algorithm was used to solve this model. The scenario results indicated that the overall fitness error of
the AMNKDE method was 8.81% and 11.6% lower than that of the traditional MNKDE method and
the Copula-based parameter estimation method, respectively. After replacing the modeling object the
overall fitness error of the comprehensive Copula method increased by as much as 1.94 times that
of AMNKDE. In summary, the proposed approach not only possesses higher accuracy and better
applicability but also solved the local adaptability problem of the traditional MNKDE.

Keywords: kernel density estimation; multiple wind farms; joint probability density;
ordinal optimization

1. Introduction

In the past decades large-scale wind power integration has become a trend [1]. As a result, a variety
of uncertainties have been identified in the power systems [2–7]. The outputs of wind farms are greatly
influenced by natural environmental factors such as wind speed, which are random and, therefore,
difficult to accurately predict and control [8]. There are many giant wind farms in the northwest of
China. When these wind farms are connected to the power grid, a large number of random output
generating nodes form in the power system. This brings enormous challenges to the scheduling and
planning of the power system because these schemes usually need the accurate prediction data of
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the generating node outputs. Consequently, it is widely believed that the impacts of wind power
uncertainties should be considered in the scheduling and planning of power systems [9–11]. Currently,
the best way to describe the uncertainties of wind power is to construct a probability density function
(PDF) [12–16].

The outputs of the wind farms maintain a random and probabilistic correlation in the scenario
that multiple wind farms are connected to power systems, simultaneously, in the same wind belt [17].
According to the probability theory, when the probability density function is established for multiple
subjects with a probability correlation, these subjects cannot be viewed as independent events.
Therefore, these wind farms cannot be considered independent [18–21]. That is, the PDF for a single
wind farm is not applicable when the uncertainties of these wind farms need to be described. Therefore,
it is necessary to construct the joint probability density function (JPDF) for wind farms. Accordingly, it
is well-known that the precise construction of the JPDF of wind farms is a foundation for the scheduling
and planning of power systems with multiple wind farms. For example, Reference [22] proposes that
the probabilistic correlation between multiple wind farms should be considered in the scheduling of
power systems. The systematic planning method, considering the probabilistic correlation of multiple
wind farms, is studied in Reference [23]. In general, it is of significance to research a method of
constructing the JPDFs of multiple wind farms accurately and conveniently.

There exists much literature studying the construction of a JPDF for multiple wind farms. The
Copula theory is the most common method used to study this problem, given that it can be used to
characterize the probabilistic correlation in multiple wind farms. In Reference [24], the wind farms
near the Dutch coastline are equated as two wind farms and a Gaussian-Copula function is introduced
to establish their JPDF. In Reference [25], the Copula function is used to build a probabilistic correlation
model for the wind speed and the wind power output, and then the model is used to assess the
state of the generators. In Reference [26], a variety of two-element Copula functions are utilized to
study the dependent structures of wind farms and the goodness of fit of different Copula functions is
compared. In Reference [27], a number of basic Copula functions are summed with weights to form a
comprehensive Copula function. As a result, compared with the single Copula function model, the
JPDF of wind speed can be described more accurately by the comprehensive function [28]. According
to previous research, the regular steps are as follows: First, a number of Copula function forms are
selected according to the cumulative distribution characteristics of the wind farm outputs, in advance.
Second, the unknown parameters are estimated. Finally, the most appropriate Copula function is
determined by the optimization method. However, this method, based on Copula function for JPDF
modeling of wind farm outputs, is essentially parameter estimation (PE). This kind of method depends
on the multiple, prior definition of the JPDF forms. On one hand, once the form selection is wrong, no
accurate modeling results can be obtained no matter how accurate the PE process is. Although, for the
purpose of improving the accuracy of modeling, some scholars tried to estimate the parameters of all
forms of Copula functions, and then selected the most accurate function. However, this kind of thought
undoubtedly increases the complexity of the modeling process. On the other hand, a large number of
wind farms are scattered throughout China. Consequently, the joint probability characteristics of wind
farm clusters on different wind belts may follow different JPDF forms, and it is difficult to ensure the
universal applicability of the modeling method based on the Copula function.

Different from the PE method, the probability distributions of objects can be modeled directly,
without the prior judgment process of function forms by the nonparametric kernel density estimation
(NKDE) method. Accordingly, it has higher accuracy and applicability and has been applied effectively
in the field of probabilistic modeling in power systems [2–31]. The main focus of the existing research
surrounds PDF modeling of a single random variable [32]. Some literature has begun to study the
NKDE method for multidimensional random variables [33–38], but few of them are applied to the
field of power systems.

In Reference [39], a JPDF model of grid node loads based on NKDE theory is proposed and
the effects of the node load correlation and uncertainty in the aspect of reliability are analyzed. In
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Reference [40], a node load conditional probability density modeling method based on NKDE theory
is proposed. In these two papers a multivariate nonparametric kernel density estimation (MNKDE)
method for the probabilistic correlation modeling of node loads is successfully proposed. However,
problems with this method still exist when it is applied to the JPDF modeling for multiple wind farms.
The local amplitude of the JPDF for wind farms different from the loads is larger and the bandwidth of
the existing MNKDE method is fixed. This fixed bandwidth may be a problem for local applicability
because the accuracy of the modeling is high in some intervals but lower in other.

In order to solve this problem, the new idea of modifying the bandwidth, based on the samples
themselves and a mathematical model of adaptive univariate NKDE, is proposed in Reference [41].
Based on References [41,42], a new adaptive univariate NKDE model for power system state estimation
is proposed. Moreover, a method to determine the bandwidth, discussed in References [43,44], is
also proposed. The above references have made significant progress in solving the local applicability
problem and provided the idea used in this research. However, the above research was all aimed at
the univariate NKDE model. The study of the MNKDE model has not been reported.

In summary, an approach of adaptive multivariate nonparametric kernel density estimation
(AMNKDE) is proposed in this paper, and it is utilized to model the JPDF of multiple wind farms.
The correctness and effectiveness of the approach is verified by the simulation results, based on the
practical operation data of several wind farms in China.

The main contributions of this paper are as follows:
(1) The AMNKDE approach for the JPDF modeling of multiple wind farms is proposed in this

paper. Compared with the traditional PE method based on the Copula function, the approach does
not require prior judgement of the JPDF forms of multiple wind farms. Consequently, this approach
possesses higher modeling accuracy and applicability.

(2) In order to promote the MNKDE in the specific problem of multiple wind farms, an improved
adaptive strategy is proposed. Specifically, a model of optimal bandwidth is established and
the traditional fixed bandwidth is replaced with the adaptive bandwidth, which can be adjusted
automatically according to the samples. The improved strategy in this paper solves the local
applicability problem of the existing MNKDE method, and further improves the modeling accuracy.

The rest of the paper is organized as follows: The AMNKDE model for multiple wind farms
and bandwidth evaluation indicators are given in Section 2. An optimized method of solving the
bandwidth model based on ordinal optimization (OO) is explained in Section 3. The simulation results
are compared and analyzed in Section 4. The conclusions are presented in Section 5.

2. Adaptive Multivariate Nonparametric Kernel Density Estimation Model for Multiple
Wind Farms

2.1. MNKDE Model for Multiple Wind Farms

Considering m wind farms have n output data samples in each sampling period, the active power
vector of the i sampling point is Xi = [Xi1, Xi1, · · · , Xim]

T i = 1, 2, . . . , n. The random variation of the
power output for m wind farms is x = [x1, x2, · · · , xm]

T . The JPDF is f (x) = f (x1, x2, · · · , xm). The
MKDE model of the JPDF is

f̂ (x) =
1
n

n

∑
i=1

1

|H|1/2 K
[
H−1/2(x− Xi)

]
, (1)

where H is the bandwidth matrix, which denotes an m×m symmetrical positive determined matrix.
K(.) is the multivariate kernel function and must satisfy the following conditions:

∫
Rm K(x)dx = 1∫
Rm xK(x)dx = 0∫
Rm xxTK(x)dx = Im

, (2)
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where Rm is the m-dimensional Euclidean space, Im denotes the m×m identity matrix, and xT is the
transpose of x.

According to Reference [45], if the kernel function satisfies Formula (2), its form has little effect on
the probability density modeling accuracy. Therefore, the Gauss kernel function was chosen as the
kernel function in this paper.

The specific form of the bandwidth matrix H is given in Formula (3),

H =


h11 h21 · · · hm1

h12 h2 · · · hm2
...

...
. . .

...
h1m h2m · · · hmm

. (3)

In MNKDE modeling, the selection of the bandwidth matrix is the most important factor and
can directly affect the modeling accuracy. Generally, the bandwidth matrix is obtained by an optimal
model of bandwidth. Due to the large number of bandwidth matrix elements, the computational
complexity of the optimal model of bandwidth for MNKDE is much larger than that of univariate
NKDE. In order to reduce the computation complexity, the method in Reference [39] was used to
simplify the Formula (1) in this paper.

The formula is simplified as follows:

f̂m(x) =
1
n

n

∑
i=1

1
h1h2 · · · hm

K
(

x1 − Xi1
h1

, . . . ,
xm − Xim

hm

)
, (4)

where K(x) is defined as
K(x1, x2, · · · , xm) = K(x1)K(x2) · · ·K(xm). (5)

Here, the Gaussian kernel is used as the kernel function

K(x) =
1√
2π

e(−
x2
2 ). (6)

According to Formulas (4)–(6), Formula (7) is as follows:

f̂m(x) =
1
n

n

∑
i=1

1
h1h2 · · · hm

• e−
1
2 (

x1−Xi1
h1

)
2

√
2π

• e−
1
2 (

x2−Xi2
h2

)
2

√
2π

· · · e−
1
2 (

xm−Xim
hm

)
2

√
2π

. (7)

Further simplification of Formula (7) can be obtained as follows:

f̂m(x) =
1
n

n

∑
i=1

1
h1h2 · · · hm

1

(
√

2π)
m e−

1
2 Y(x), (8)

where the specific form of Y(x) is shown in Formula (9) as

Y(x) =

((
x1 − Xi1

h1

)2
+

(
x2 − Xi2

h2

)2
+ · · ·+

(
xm − Xim

hm

)2
)

. (9)

2.2. Optimal Model of Bandwidth

In the MNKDE model, H can directly influence the accuracy and smoothness of the model. If
the value of H is too large it may lead to high smoothness of the probability density function of f̂ (x),
which results in a large estimation error. If the value of H is too low the accuracy of estimation can be
improved. However, the fluctuation of the probability density function of f̂ (x) may be excessively
high, especially for the tail of f̂ (x).
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In conclusion, two kinds of bandwidth evaluation indicators are presented in this paper: the
Euclidean distance and the maximum distance. The former is mainly used to evaluate the accuracy of
the model and the latter is used to evaluate the smoothness of the model.

Assuming that f (x) is the real JPDF of wind power samples, the Euclidean distance is defined as
follows:

dO(H) =

√
n

∑
i=1

d2
Ji(H), (10)

where dJi(H) =
∣∣∣ f̂ (xi)− f (xi)

∣∣∣, which is the geometric distance between the estimation value and the
real value for each sample.

The maximum distance is defined as follows:

dM(H) = max
{

dJi(H)
}

. (11)

Based on Formulas (10) and (11), an optimal model of bandwidth, considering both accuracy and
smoothness of the model, is:

minR(H) = min[dO(H) + dM(H)], (12)

where R(H) is the fitness error function of MNKDE.

2.3. Improved Adaptive Strategy Based on the Optimal Bandwidth Adjustment Model

According to Formula (12), a fixed bandwidth H was used in the previous MNKDE theory, which
involves obtaining only one H to minimize the fitness error sum of all the samples. However, the fitness
error values may be abnormally large for some local sample intervals in that situation. If the adaptive
bandwidth matrix, which is adapted to the local sample interval, is solved by modifying H in the
sample data and the original fixed bandwidth matrix is replaced with the adaptive bandwidth matrix,
the adaptive property of the constructed JPDF in the local sample intervals would be guaranteed. The
modeling accuracy would also be further improved. Taking into account the above analysis, based on
the MNKDE, the following improved strategies have been used for this paper.

After the bandwidth matrix H is solved by the optimal model of bandwidth (12), we discriminate
the fitness of the sample interval. For any local sample intervals, l ∈ [l1, l2] (l2 > l1 and l1, l2 ∈ [X1, Xn]),
we have determined that there exists a local adaptability problem in the local sample interval if the
following inequality holds as follows:

dJl(HBest) ≥ λdJ(HBest), (13)

where l denotes any sample intervals, dJl(HBest) is the geometric distance in l, HBest is the result of
Formula (12), dJ(HBest) is the average geometric distance of the entire sample space, and λ is an
adjustment factor. If λ is smaller, the screening is more strict and more intervals need to be adjusted.
In this scenario, the modeling accuracy is promoted but the complexity of the modeling is higher.
In contrast, the complexity of the solution may be reduced but the modeling accuracy will then be
declined. The specific value can be determined according to tests.

The dJ(HBest) is as follows:

dJ(HBest) =
1
n

n

∑
i=1

dJi(HBest), (14)

Aiming at the interval with local adaptability problems, a bandwidth adjustment model was built
to modify the bandwidth matrix:

Hl =
nldJl(HBest)mid√

−2 ln δ
HBest, (15)
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where Hl is the modified bandwidth in l, nl is the number of samples in l, dJl(HBest)mid is the median
of the geometric distance in l, and δ is the threshold of the kernel function.

Thus, Formula (8) can be modified into Formula (16), which is an AMNKDE model for the JPDF
modeling of multiple wind farms:

f̂m(x) = 1
l1
∑

i=1
ωi

l1
∑

i=1

ωi
∏ HBest

1
(
√

2π)
m e−

1
2 Hbest(x)

+ 1
l2
∑

i=l1
ωi

l2
∑

i=l1

ωi
∏ Hl1

1
(
√

2π)
m e−

1
2 Hl1

(x)

+ · · ·+ 1
lk
∑

i=lk−1

ωi

lk
∑

i=lk−1

ωi
∏ Hlk−1

1
(
√

2π)
m e−

1
2 Hlk−1

(x)

+ 1
n
∑

i=lk

ωi

n
∑

i=lk

ωi
∏ Hlk

1
(
√

2π)
m e−

1
2 Hlk

(x)

, (16)

where k is the number of sample intervals that need to be adjusted, Hlk is the modified bandwidth
matrix in lk, and ωi is the measurement weight. In this paper, the following formula is used for ωi [42]:

ωi = α + exp
(
− si

2

s2

)
, (17)

where α is a small positive number, si is the standard deviation of measurement for each sampling

interval, and s = 1
n

√
n
∑

i=1
si

2 is the geometric mean of the standard deviation for all measurements.

3. Solution of the Optimal Model of Bandwidth Based on Ordinal Optimization

For the proposed AMNKDE in this paper, the bandwidth was transformed from a traditional
single parameter matrix, which contributed to the increasing difficulty of the solution. In order to solve
this problem, a solving approach of the optimal model of bandwidth, based on OO, was proposed.

OO is an effective method for solving complex optimization problems. According to the previous
research in Reference [30], this method was successfully applied to solve the optimal model of
bandwidth of univariate NKDE and achieved positive results. In this research, the OO was used to
solve the bandwidth optimization problem of AMNKDE, the solution is shown in Figure 1 and the
detailed steps are as follows:



Energies 2019, 12, 1356 7 of 15

Energies 2019, 12, x FOR PEER REVIEW 7 of 15 

 

(1) In the solution space of the bandwidth matrix H, the N bandwidth matrices were extracted 
to form a characterization set Ω  according to the uniform distribution. The N was closely related 
to the size of the solution space. When the solution space was less than 108, N = 1000 was 
recommended by Reference [46]. 

(2) The N feasible solutions were selected by the rough model of Formula (10). Then, the 
feasible solutions were sorted according to the assessment results. In addition, the ordered 
performance curve (OPC) was constructed. The types of OPC are given in Reference [30]. 

(3) Formula (18) was used to determine the number of solutions in the selected set S, 

S e t ge m v h= + , (18)

where S is the number of solutions in the selected set S, t represents that there exist at least t good 
enough solutions in the selected set S, g represents the size of the good enough solution subset, 
ε μ ϖ η、 、 、  are the parameters associated with the type of OPC, and the values are 8.1378, 
0.8974, 1.2058, 6.00, respectively [29]. 

(4) Taking the objective function of Formula (12) as the exact model, the order of comparison 
of solutions in the solution set S is made and the top t solutions will be selected as real, good 
enough, solutions. 

(5) Utilizing Formula (13), the local sample intervals with low accuracy in the model were 
found. The bandwidths in these intervals were adjusted according to Formula (15). 

N bandwidth matrices are extracted to form a 
characterization set      according to the uniform 

distribution

Feasible solutions are sorted and the ordered 
performance curve(OPC) is constructed

Selected set S is determined according to the OPC 
curve type and the formula (18)

Start

End

Real good enough solution is selected from S  and the  fitness 
error value is obtained by formula (12)

Use formula (15) to modify the bandwidth

Output bandwidth matrix

Y

N

i=i+1

i < n

Y

N

i=0

Ω

( ) ( )J Best J Bestd dl³l H H

 
Figure 1. Flow Chat for the Solution. Figure 1. Flow Chat for the Solution.

(1) In the solution space of the bandwidth matrix H, the N bandwidth matrices were extracted to
form a characterization set Ω according to the uniform distribution. The N was closely related to the
size of the solution space. When the solution space was less than 108, N = 1000 was recommended by
Reference [46].

(2) The N feasible solutions were selected by the rough model of Formula (10). Then, the feasible
solutions were sorted according to the assessment results. In addition, the ordered performance curve
(OPC) was constructed. The types of OPC are given in Reference [30].

(3) Formula (18) was used to determine the number of solutions in the selected set S,

S = eεtµgv + η, (18)

where S is the number of solutions in the selected set S, t represents that there exist at least t good
enough solutions in the selected set S, g represents the size of the good enough solution subset, ε, µ, v, η

are the parameters associated with the type of OPC, and the values are 8.1378, 0.8974, 1.2058, 6.00,
respectively [29].
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(4) Taking the objective function of Formula (12) as the exact model, the order of comparison
of solutions in the solution set S is made and the top t solutions will be selected as real, good
enough, solutions.

(5) Utilizing Formula (13), the local sample intervals with low accuracy in the model were found.
The bandwidths in these intervals were adjusted according to Formula (15).

4. Scenario Study

In this paper, 4773 sampling sequences of wind power outputs from six wind farms in the Hubei
province of China were selected as examples. The sampling time interval was 10 min. The sampling
period was from 19:40 on 17 March, 2009 to 23:00 on 19 April, 2009. For the frequency histogram of
two wind farms, the straight interval chosen for this paper was 30 kW. For the frequency histogram
of three wind farms, the straight interval was 100 kW. For the two wind farms, the total probability
density of the samples was 1.1× 10−3. For the three wind farms, the total probability density of the
samples was 1× 10−6. When λ = 6, the comprehensive performance of the proposed model was best.
The model could improve the overall modeling accuracy by approximately 10% compared with the
traditional MNKDE model and the corresponding calculation time was only 63 s. Accordingly, λ = 6
was chosen for this research. According to Reference [47], δ was 0.79655.

Program simulation was achieved in the MATLAB platform and related computing was completed
on a computer with an Intel Core i5-4460 (3.20-GHz) CPU with 8 G of RAM. The computer time of
the OO in this paper was 63.350 s. To verify the validity and applicability of the proposed approach,
three-dimensional and four-dimensional JPDFs were obtained from two wind farms and three wind
farms for comparison and analysis. The active power output sampling sequence of six wind farms is
listed in Figure 2.
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Figure 2 shows the differences between the output trends of the former three wind farms and
those of the latter three wind farms. The differences are most obvious for the sampling points between
1300 and 2300. We concluded that the JPDFs of the former three wind farms and the latter three wind
farms are different.

4.1. Joint Probability Density Function Modeling of Two Wind Farms

The JPDF of Wind Farms 1 and 2 were obtained via the approach described previously. The
frequency histogram is of Wind Farm 1 and Wind Farm 2, based on the sample data. It is shown in
Figure 3b. The comparison between them is shown in Figure 3.
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Figure 3. Joint probability density function and frequency histogram of Wind Farms 1 and 2.

From Figure 3, we found that the outputs of Wind Farms 1 and 2 had a tail correlation. The
correlation in the upper tails was stronger, which meant that both wind farms were more likely to
produce larger outputs. From the function curve of the model, the modeled JPDF fit well with the real
joint distribution of Wind Farms 1 and 2. The detailed calculation results are listed in Table 1.

Table 1. Detailed calculation results of JPDF for Wind Farms 1 and 2 by AMNKDE.

Model H
Sample Interval dO dM R(H)

Wind Farm 1 Wind Farm 2

AMNKDE
[38.7,38.7]

[30,60] [30,60]

6.09 × 10−5 4.1 × 10−6 6.50 × 10−5[90,900] [90,900]
[34.5,34.5] [0,30] [0,30]
[34.7,34.7] Other interval
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From the results of Table 1, the modeling error was relatively low and the overall fitness error
was only 6.50× 10−5.

4.2. Multipart Figures

To guarantee the generalizability of the results, the four-dimensional JPDF of three wind farms is
presented. Based on this scenario, a comparative study was carried out. Models 1, 2, and 3 are the
traditional MNKDE model, the AMNKDE model and the comprehensive Copula model, respectively.

4.2.1. Validity Analysis of the Improved Adaptive Strategy for MNKDE

To verify the differences between the proposed AMNKDE and the traditional MNKDE, the JPDFs
of Wind Farms 1, 2, and 3 were constructed in these methods. The results are given in Table 2.

Table 2. Comparison of AMNKDE and MNKDE.

Model H
Sample Interval dO dM R(H)

Wind Farm 1 Wind Farm 2 Wind Farm 3

1
[40.7, 40.7, 40.7] [0,100] [0,100] [0,100] 3.60 × 10−8

3.60 × 10−9 7.15 × 10−8[40.7, 40.7, 40.7] [800,1000] [800,1000] [0,100] 3.60 × 10−8

[40.7, 40.7, 40.7] Other interval 2.83 × 10−8

2
[37,37,37] [0,100] [1,100] [0,100] 3.00 × 10−8

1.60 × 10−10 6.52 × 10−8[38,38,38] [800,1000] [800,1000] [0,100] 1.60 × 10−8

[40.7,40.7,40.7] Other interval 3.20 × 10−8

Compared with Model 1, the Euclidean distance, the maximum distance and the overall fitness
error of Model 2 were reduced by 6.76%, 55.5% and 8.81%, respectively, as shown in Table 2. This
suggests that the modeling accuracy of MNKDE was effectively improved by the new adaptive strategy.
The proposed AMNKDE achieved an adaptive improvement for the bandwidths of the sample interval
in [0,100] [0,100] [0,100] and [800,1000] [800,1000] [0,100]. The elements of the bandwidth matrices in
the sample intervals [0,100] [0,100] [0,100] and [800,1000] [800,1000] [0,100] were changed from 47 to 32
and 33, respectively.

The rest of the interval elements remained as 40.7 and the above matrix as an adaptive bandwidth
matrix. The resulting decline of the Euclidean distance for the corresponding sample intervals was
16.7% and 55.6%, respectively. This improvement resulted in a rise of 13.1% in the Euclidean distance
of the other sample intervals, but, for the entire sample interval, the overall Euclidean distance and
the maximum distance was evidently reduced and the overall fitness error was cut down by 8.81%.
We summarized that the overall modeling accuracy of the MNKDE was effectively facilitated by the
adaptive bandwidth improvement strategy of the sample intervals with the local adaptability problem.

4.2.2. Accuracy Comparison between AMNKDE and Copula Parameter Estimation

To verify the accuracy of the proposed AMNKDE approach, the JPDF of Wind Farms 1, 2 and 3
were established using the comprehensive Copula method from Reference [29]. The compared results
are shown in Table 3. The optimal Copula function was composed of Gumbel Copula, Clayton Copula
and Frank Copula.

Table 3. Accuracy comparison between AMNKDE and Copula parameter estimation.

Model H
Sample Interval dO dM R(H)

Wind Farm 1 Wind Farm 2 Wind Farm 3

1
[40.7, 40.7, 40.7] [0,100] [0,100] [0,100] 3.60 × 10−8

3.60 × 10−9 7.15 × 10−8[40.7, 40.7, 40.7] [800,1000] [800,1000] [0,100] 3.60 × 10−8

[40.7, 40.7, 40.7] Other interval 2.83 × 10−8

2
[37,37,37] [0,100] [0,100] [0,100] 3.00 × 10−8

1.60 × 10−10 6.52 × 10−8[38,38,38] [800,1000] [800,1000] [0,100] 1.60 × 10−8

[40.7,40.7,40.7] Other interval 3.20 × 10−8
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From Table 3, Model 3, based on the comprehensive Copula method, the Euclidean distance,
maximum distance, and overall fitness error of Model 2, based on the proposed AMNKDE approach,
were compared and shown to be reduced by 7.8%, 57.9% and 11.6%, respectively. It can be seen that
the proposed AMNKDE approach has higher modeling accuracy than the comprehensive Copula
method. The reason is that the proposed AMNKDE approach directly models the JPDF based on the
sample data. Accordingly, it does not need to choose the specific form of the JPDF in advance and the
modeling accuracy is only related to the selection of bandwidth, rather than the prior definition of the
JPDF forms.

4.2.3. Comparison of Applicability between AMNKDE and Copula Parameter Estimation

To verify the applicability of the proposed AMNKDE approach, the wind farms were changed for
the comparison. The JPDFs of Wind Farms 4, 5, and 6 were established using the AMNKDE and the
comprehensive Copula method from Reference [29]. The optimal Copula function still consisted of
Gumbel Copula, Clayton Copula and Frank Copula. The detailed results are presented in Table 4.

Table 4. Comparison of Applicability between AMNKDE and Copula Parameter Estimation.

Model H
Sample Interval dO dM R(H)

Wind Farm 4 Wind Farm 5 Wind Farm 6

2
[38,38,38] [0,100] [0,100] [0,100]

6.78 × 10−8 1.1 × 10−10 6.89 × 10−8[39,39,39] [800,1000] [800,900] [0,100]
[41.7,41.7,41.7] Other interval

3

Copula function λ θ

7.83 × 10−8 2.50 × 10−9 8.08 × 10−8Gumbel 0.386 5.60
Clayton 0.403 4.940
Frank 0.211 8.586

From Table 4, the proposed AMNKDE approach still maintained high modeling accuracy for the
different wind farms. Compared with Table 3, the overall fitness error of the AMNKDE increased
by 5.67%. In contrast, the overall fitness error increase of the comprehensive Copula method was
larger, 10.99%, and the increase was 1.94 times that of the AMNKDE. It can be concluded that the
proposed AMNKDE approach possesses high applicability compared with the Copula PE method
when the modeling object is changed. The reason is that the latter method needs to judge the form of
the JPDF, and the joint probability distribution of different wind farms may follow different function
forms. Consequently, it may cause a large error if the same function form is used to model different
wind farms.

4.2.4. Comparison of Algorithms

To analyze the validity of the OO algorithm in this paper, the calculation efficiency was proposed.
The GA, PSO and OO algorithms were used to solve the optimal model of bandwidth in this paper. The
optimal bandwidth matrices of these three algorithms, Hbest, were [48.7,48.7,48.7], [55,55,55], [52,52,52],
respectively. The results of the fitness error R(H) and the computation time are shown in Figure 4.
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Figure 4 compares the traditional genetic algorithm and the PSO algorithm. The proposed OO
algorithm was relatively limited in terms of improving the computational accuracy. However, the OO
possessed a significant advantage in computational efficiency. It can be concluded that the proposed
OO algorithm can effectively guarantee the computational efficiency and accuracy.

5. Conclusions

As the accuracy and applicability of many JPDF modeling methods for multiple wind farms need
to be improved, it is of significance to promote the accuracy and applicability of the modeling method
of JPDF. This is exactly the purpose of this study.

The specific steps of AMNKDE are as follows. First, the model of AMNKDE was constructed
using the optimal bandwidth. Second, an optimal model of bandwidth based on Euclidean distance
and maximum distance was constructed and the comprehensive minimum of these distances was used
as a measure of optimal bandwidth. Finally, the OO algorithm was used to solve this model.

The specific conclusions of this paper are as follows:
(1) The adaptive bandwidth improvement strategy proposed in this paper replaces the traditional

fixed bandwidth of MNKDE with the adaptive bandwidth. It effectively facilitates the overall modeling
accuracy of MNKDE by adjusting the bandwidth of local sample interval adaptively. Simulation
results in this paper indicate that the overall fitness error of AMNKDE was 8.81% lower than that of
traditional MNKDE.

(2) Based on the above strategy, an AMNKDE approach was proposed and utilized to build the
JPDF model for multiple wind farms. The simulation results in this paper indicated that the overall
fitness error of AMNKDE was 11.6% lower than that of Copula-based PE method. After replacing the
modeling object the overall fitness error of the comprehensive Copula method increased by as much as
1.94 times that of AMNKDE. Consequently, the accuracy and applicability of the AMNKDE approach
were better than that of the traditional Copula PE method.

In summary, the proposed AMNKDE approach clearly performed better than MNKDE and Copula
hybrid models and was suitable for building a multi-wind farm joint probability density model.

This study can be further extended. The proposed approach in this paper can be further applied
to many other fields of uncertain modeling, such as the JPDF modeling problems of photovoltaic
power systems and wind-solar combined power systems.
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Nomenclature

f̂ (x) probability density function
H bandwidth matrix
K(.) multivariate kernel function
xT transpose of x
dO Euclidean distance
dM maximum distance
R(H) fitness error function
l any sample intervals
dJl(HBest) geometric distance in l
dJ(HBest) average geometric distance of the entire sample space
Hl modified bandwidth in l
dJl(HBest)mid median of the geometric distance in l
nl number of samples in l
δ threshold of the kernel function
k number of sample intervals needed to be adjusted
Hlk

modified bandwidth matrix in lk
ωi measurement weight
α a small positive number
si standard deviation of measurement for each sampling interval
S number of solutions in the selected set S
t there exist at least t good enough solutions in the selected set S
g size of the good enough solution subset
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14. Altunkaynak, A.; Erdik, T.; Dabanlı, İ.; Şen, Z. Theoretical derivation of wind power probability distribution
function and applications. Appl. Energy 2012, 92, 809–814. [CrossRef]

15. Tina, G.; Gagliano, S. Probabilistic analysis of weather data for a hybrid solar/wind energy system. Int. J.
Energy Res. 2011, 35, 221–232. [CrossRef]

16. Wang, C.; Li, X.H.; Tian, T.; Xu, Z.R.; Chen, R. Coordinated control of passive transition from grid-connected
to islanded operation for three/single-phase hybrid multimicrogrids considering speed and smoothness.
IEEE Trans. Ind. Electron. 2019. [CrossRef]

17. Liu, T.H.; Wei, H.K.; Zhang, K.J. Wind power prediction with missing data using Gaussian process regression
and multiple imputation. Appl. Soft Comput. 2018, 71, 905–916. [CrossRef]

18. Yin, H.; Zivanovic, R. Using probabilistic collocation method for neighbouring wind farms modeling and
power flow computation of South Australia grid. IET Gener. Transm. Distrib. 2017, 11, 3568–3575. [CrossRef]

19. Zhang, L.; Luo, Y. Combined Heat and Power Scheduling: Utilizing Building-level Thermal Inertia for
Short-term Thermal Energy Storage in District Heat System. IEEE Trans. Electr. Electron. Eng. 2018, 13,
804–814. [CrossRef]

20. Olauson, J.; Bergkvist, M. Correlation between wind power generation in the European countries. Energy
2016, 114, 663–670. [CrossRef]

21. Luo, G.; Chen, J.; Cai, D. Probabilistic assessment of available transfer capability considering spatial
correlation in wind power integrated system. IET Gener. Transm. Distrib. 2013, 7, 1527–1535.

22. Xie, Z.Q.; Ji, T.Y.; Li, M.S. Quasi-Monte carlo based probabilistic optimal power flow considering the
correlation of wind speeds using Copula function. IEEE Trans. Power Syst. 2018, 33, 2239–2247. [CrossRef]

23. Li, C.X.; Dong, Z.Y.; Chen, G. Flexible transmission expansion planning associated with large-scale wind
farms integration considering demand response. IET Gener. Transm. Distrib. 2015, 9, 2276–2283. [CrossRef]

24. Hu, B.Q.; Wu, L.; Marwali, M. On the robust solution to scuc with load and wind uncertainty correlations.
IEEE Trans. Power Syst. 2014, 29, 2952–2964. [CrossRef]

25. Papaefthymiou, G.; Kurowicka, D. Using Copulas for modeling stochastic dependence in power system
uncertainty analysis. IEEE Trans. Power Syst. 2009, 24, 40–49. [CrossRef]

26. Gill, S.; Stephen, B.; Galloway, S. Wind Turbine Condition Assessment Through Power Curve Copula
Modeling. IEEE Trans. Sustain. Energy 2012, 3, 94–101. [CrossRef]

27. Louie, H. Evaluation of bivariate archimedean and elliptical Copulas to model wind power dependency
structures. Wind Energy 2014, 17, 225–240. [CrossRef]

28. Zhang, J.; Chowdhury, S.; Messac, A. A Multivariate and Multimodal Wind Distribution model. Renew.
Energy Int. J. 2013, 51, 436–447. [CrossRef]

29. Wang, J.W.; Zhou, B.X.; Li, H.B. Modeling of wind farm output correlation based on comprehensive Copula
function. Electr. Meas. Instrum. 2016, 53, 100–105.

30. Yang, N.; Cui, J.Z.; Zhou, Z. Research on nonparametric kernel density estimation for modeling of wind
power probability characteristics based on fuzzy ordinal optimization. Power Syst. Technol. 2014, 40, 335–340.

31. Yang, N.; Ye, D.; Zhou, Z.; Cui, J.Z.; Chen, D.J.; Wang, X.M. Research on modelling and solution of stochastic
SCUC under AC power flow constraints. IET Gener. Transm. Distrib. 2018, 12, 3618–3625.

32. Soleimanpour, N.; Mohammadi, M. Probabilistic load flow by using nonparametric density estimators. IEEE
Trans. Power Syst. 2013, 28, 3747–3755. [CrossRef]

33. Ren, Z.Y.; Yan, W.; Zhao, X. Chronological probability model of photovoltaic generation. IEEE Trans. Power
Syst. 2014, 29, 1077–1088. [CrossRef]

34. Carbone, P.; Petri, D.; Barbé, K. Nonparametric probability density estimation via interpolation filtering.
IEEE Trans. Instrum. Meas. 2017, 66, 681–690. [CrossRef]

35. Zhu, B.X.; Ren, L.L.; Hu, X. Kind of high step-up dc/dc converter using a novel voltage multiplier cell. IET
Power Electron. 2017, 10, 129–133. [CrossRef]

36. Kristan, M.; Leonardis, A.; Skoc, D. Multivariate online kernel density estimation with Gaussian kernels.
Pattern Recognit. 2011, 44, 2630–2642. [CrossRef]

37. Li, Z.H.; Tao, Y.; Abu-Siada, A. A New Vibration Testing Platform for Electronic Current Transformers. IEEE
Trans. Instrum. Meas. 2019, 68, 704–712. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2011.08.038
http://dx.doi.org/10.1002/er.1686
http://dx.doi.org/10.1109/TIE.2019.2903749
http://dx.doi.org/10.1016/j.asoc.2018.07.027
http://dx.doi.org/10.1049/iet-gtd.2017.0162
http://dx.doi.org/10.1002/tee.22633
http://dx.doi.org/10.1016/j.energy.2016.08.036
http://dx.doi.org/10.1109/TPWRS.2017.2737580
http://dx.doi.org/10.1049/iet-gtd.2015.0579
http://dx.doi.org/10.1109/TPWRS.2014.2308637
http://dx.doi.org/10.1109/TPWRS.2008.2004728
http://dx.doi.org/10.1109/TSTE.2011.2167164
http://dx.doi.org/10.1002/we.1571
http://dx.doi.org/10.1016/j.renene.2012.09.026
http://dx.doi.org/10.1109/TPWRS.2013.2258409
http://dx.doi.org/10.1109/TPWRS.2013.2293173
http://dx.doi.org/10.1109/TIM.2017.2657398
http://dx.doi.org/10.1049/iet-pel.2016.0354
http://dx.doi.org/10.1016/j.patcog.2011.03.019
http://dx.doi.org/10.1109/TIM.2018.2854939


Energies 2019, 12, 1356 15 of 15

38. Pulkkinen, S.; Mäkelä, M.; Karmitsa, N. A continuation approach to mode-finding of multivariate Gaussian
mixtures and kernel density estimates. J. Glob. Optim. 2013, 56, 459–487. [CrossRef]

39. Chang, M.S.; Wu, X.M. Transformation-based nonparametric estimation of multivariate densities. J. Multivar.
Anal. 2015, 135, 71–88. [CrossRef]

40. Gramacki, A.; Gramacki, J. FFT-based fast computation of multivariate kernel density estimators with
unconstrained bandwidth matrices. J. Comput. Graph. Stat. 2017, 26, 459–462. [CrossRef]

41. Zhao, Y.; Zhang, X.F.; Zhou, J.Q. Load Modeling Utilizing Nonparametric and Multivariate Kernel Density
Estimation in Bulk Power System Reliability Evaluation. Proc. CSEE 2009, 29, 27–33.

42. Zougab, N.; Smail, K.; Célestin, C. Bayesian estimation of adaptive bandwidth matrices in multivariate
kernel density estimation. Comput. Stat. Data Anal. 2014, 75, 28–38. [CrossRef]

43. Sreevani, N.; Murthy, C.A. On bandwidth selection using minimal spanning tree for kernel density estimation.
Comput. Stat. Data Anal. 2016, 102, 67–84. [CrossRef]

44. Zhao, Y.; Yang, J.G.; Li, S.X. Nonparametric disaggregation load model in power system reliability evaluation
incorporating the additive correlation. IEEE Trans. Power Syst. 2008, 23, 6039–6047.

45. Van Kerm, P.; Mohammadi, M. Adaptive kernel density estimation. Stata J. 2003, 3, 148–156. [CrossRef]
46. Liu, Y.S.; Lin, J.K.; Guo, L.X. A robust state estimation method based on adaptive kernel density estimation

Theory. Proc. CSEE 2012, 19, 4937–4946.
47. Epanecnikov, V.A. Nonparametric estimation of a multidimensional probability density. Theory Probab. Appl.

2003, 14, 156–161.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10898-011-9833-8
http://dx.doi.org/10.1016/j.jmva.2014.11.010
http://dx.doi.org/10.1080/10618600.2016.1182918
http://dx.doi.org/10.1016/j.csda.2014.02.002
http://dx.doi.org/10.1016/j.csda.2016.04.005
http://dx.doi.org/10.1177/1536867X0300300204
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Adaptive Multivariate Nonparametric Kernel Density Estimation Model for Multiple Wind Farms 
	MNKDE Model for Multiple Wind Farms 
	Optimal Model of Bandwidth 
	Improved Adaptive Strategy Based on the Optimal Bandwidth Adjustment Model 

	Solution of the Optimal Model of Bandwidth Based on Ordinal Optimization 
	Scenario Study 
	Joint Probability Density Function Modeling of Two Wind Farms 
	Multipart Figures 
	Validity Analysis of the Improved Adaptive Strategy for MNKDE 
	Accuracy Comparison between AMNKDE and Copula Parameter Estimation 
	Comparison of Applicability between AMNKDE and Copula Parameter Estimation 
	Comparison of Algorithms 


	Conclusions 
	References

