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Abstract: PhotoVoltaic (PV) plants can provide important economic and environmental benefits to
electric systems. On the other hand, the variability of the solar source leads to technical challenges
in grid management as PV penetration rates increase continuously. For this reason, PV power
forecasting represents a crucial tool for uncertainty management to ensure system stability. In this
paper, a novel hybrid methodology for the PV forecasting is presented. The proposed approach can
exploit clear-sky models or an ensemble of artificial neural networks, according to day-ahead weather
forecast. In particular, the selection among these techniques is performed through a decision tree
approach, which is designed to choose the best method among those aforementioned. The presented
methodology has been validated on a real PV plant with very promising results.

Keywords: PV forecasting; hybrid method; clear-sky model; artificial neural networks; basic ensemble
method; decision trees; CART tree; weather type partition; weather classification

1. Introduction

In recent years, global energy demand has increased dramatically. Several factors have contributed
to this rise: the growth of the world population, the industrialization of developing countries, and the
worldwide process of urbanization [1]. The exploitation of the main conventional sources, fossil fuels,
has proven to be detrimental for the environment and, therefore, alternative Renewable Energy Sources
(RESs) have gained wide interest. Among all the RESs, PhotoVoltaic (PV) systems have gained a lot of
attention for their availability, low maintenance and operational cost, lifetime, ease of application, and
environmental benefits.

This has implied a growth of the global solar energy production from 3.7 GW (2007) to
402 GW (2017) [2]. In this context, high PV penetration provides many environmental and economic
benefits, but the stochastic behavior of the solar power may also introduce technical issues (e.g.,
generation schedule, operating reserve, market regulation, etc.) without robust and precise forecast [3].

A reliable forecast is the key for several smart-grid applications [4], such as optimal dispatch, [5],
active demand response, grid regulation [6], and intelligent energy management [7].

PV forecasting represents a large research topic which can be characterized by the time horizon
related to the prediction [8]:

• Very short/short-term forecasting, wherein the time horizon varies from seconds to 24–48 h;
• Medium-term forecasting, which analyzes periods up to one month;
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• Long-term forecasting, wherein the prediction horizon can be set to 1–10 years.

Among these, the 24 h-ahead horizon is crucial for the scheduling of the conventional generation,
and many national grid codes (e.g., [9,10]) require punctual and precise power forecasting. In addition,
in countries with a day-ahead electricity market, large RES plants can act as producers providing
sale bids, wherein the actual production must follow a scheduler offer that is provided through a
forecasting approach. For these reasons, this paper focuses on the day-ahead PV forecasting topic.

1.1. Short-Term PV Forecasting-State of the Art

PV generation forecasting is an important topic within the scientific community that has proposed
a large variety of solutions. The different approaches to this problem allow for a general classification.

A first distinction is made between direct and indirect forecasting methods [8]. In an indirect
forecasting approach, the solar irradiance is forecasted and then exploited in commercial PV simulation
software to predict the PV power generation. Direct methodologies on the other hand aim to directly
predict the PV output. A comparison between the two strategies can be found in [11], wherein the
results show that direct methods perform better.

A more common classification of the forecasting strategies is the following:

• physical models;
• statistical/artificial intelligence approaches;
• hybrid methods.

The physical methodologies model the PV production considering mainly the two variables that
mostly affect the power generation: irradiance reaching the panel and PV modules temperature.

There are many techniques to model these two variables, for each possible physical model. In
general, the irradiance depends mainly on sun position, ambient temperature, relative humidity,
albedo, possible shadings of near objects, and clouds.

On the other hand, the temperature of the module is typically affected by irradiance, ambient
temperature and wind speed [12].

The main advantage of physical models is that they can be employed even without a set of
historical data. In addition, they can be adopted to generate input variables for statistical models,
hence allowing the definition of hybrid models. Two examples of physical methods for the day-ahead
horizon are described in [13]. These two methodologies are based on two physical representations of a
PV cell through an electrical circuit.

Statistical approaches are very popular in the field of short-term forecasting. They are based
on the use of historical data related to weather and PV production defining any type of statistical
method, be it classical, such as time series [14], or advanced, like machine learning [15] or, recently,
deep learning techniques [16]. Statistical methodologies typically outperform physical models and
they are easier to implement.

The most used statistical methods, according to [17], are Artificial Neural Network (ANN)-based.
A reason behind this popularity is the ANN capability to capture the high nonlinearity of PV
production. In this context, Reference [18] shows that also variables characterized by a poor linear
correlation with PV output can help the ANN to improve the forecasting accuracy.

The similar day approach represents another type of statistical method. In [19] a technique
for the identification of the past days with the highest probability of having similar meteorological
characteristics to the day under forecasting is presented. Past days data are then used to perform
the prediction.

Any kind of mixture of physical and statistical approach is called hybrid method. For this reason,
it is possible to find a big number of hybrid methods in literature. Physical models can become hybrid
if statistical techniques are used to correct systematic errors. On the other hand, statistical approaches
that exploit physical methods for the design of input variables can be considered hybrid. Examples of
these typologies of hybrid procedures are described in [20,21].
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The literature also presents methods that are called hybrid because of a particular combination of
two techniques [22–24], even if they can be considered data-driven approaches.

In [13] the proposed physical approaches are compared with a hybrid technique, specifically
an ANN that uses another physical model as input. The results prove that the hybrid methodology
outperforms all the physical models.

In general, hybrid methodologies are designed to improve the performance of physical or
statistical techniques.

1.2. Contributions

This article describes the design and the implementation of an innovative hybrid forecasting
technique for the power output of a PV system. The proposed procedure has been validated on a real
PV plant.

The innovation of the proposed hybrid forecasting method consists in the combination modality
of physical and statistical approaches. In particular, two physical models and one statistical method are
developed, while the proposed hybrid technique chooses among them for the PV prediction according
to the day-ahead weather forecasting.

Several works present a methodology based on the selection of different models, trained with
data coming from different types of days.

For example, Reference [25] describes a method composed of four support vector regressors,
one for each identified meaningful weather condition. In [26] five neural networks coupled with a
harmony search algorithm are used according to a fuzzy k-means clustering technique. In that work, a
fuzzy inference approach is used according to the weather prediction. In [27], days are divided into
2 groups: for each of them an ensemble of ANNs is developed. In the forecasting phase one of the
two ensembles is used. In [28], data are grouped in 6 clusters using the variance of five differential
sequences of weather Key Performance Indicators (KPIs). Each cluster is used to train, through a
back-propagation algorithm, a neural network which is employed for the PV forecasting. Recently,
in [29] k-means clustering and gated recurrent unit are employed respectively for classification and
prediction tasks. Finally, the specific problem related to the classification of the day-ahead weather
condition is addressed in [30] and faced through k-nearest neighbor and support vector machines.

In all these cases the weather prediction is used to select among different statistical methods. The
innovative contribution of this work lies on the selection between a physical model (Clear-Sky Model
(CSM)), a statistically corrected physical model (Corrected Clear-Sky Model (CCSM)) and a statistical
approach (Basic Ensemble Method (BEM) of neural networks). The proposed approach represents a
novel hybrid method for the PV forecasting because it is neither a corrected physical approach nor a
statistical technique that uses inputs from a physical model. It is a methodology that, according to
the day-ahead weather forecast, may use a physical or a statistical approach, differently from all the
above-mentioned hybrid strategies, which select among techniques of the same type.

The weather forecast can be used for the selection of the most appropriate method in different
modalities. A decision tree algorithm has been adopted in this work, because of its easy implementation
and straightforward interpretation. Through the analysis of the resulting decision rule, it is possible to
verify the rationality of the proposed approach.

The rest of the paper is organized as follows. In Section 2 the considered KPIs are defined;
Section 3 shows the various components of the proposed hybrid forecasting methodology; the test site
is described in Section 4; Section 5 is dedicated to the results on a real PV plant; finally, conclusions are
drawn in Section 6.

2. Key Performance Indicators-KPI

This section collects all the KPIs used to assess the quality of the proposed forecasting procedure
and for the selection of all the parameters of the methodologies described in Section 3.
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The base for all the considered KPIs is the prediction error. It is defined as the difference between
the forecast and the measured variable at time t:

ε(t) = x f orec(t)− xmeas(t) (1)

From this equation, it is possible to observe that positive errors correspond to over-estimation of
the actual value.

The second KPI proposed in this work is the Root Mean Square Error (RMSE) [12]. It is defined as:

RMSE =

√√√√ 1
N

N

∑
t=1

(ε(t))2 (2)

where N is the samples number. The RMSE can be normalized, obtaining an estimation of the
percentage error. This KPI is called normalized Root Mean Square Error (nRMSE) and can be
evaluated as:

nRMSE =
RMSE√

1
N

N
∑

t=1
(xmeas(t))2

(3)

The Mean Bias Error (MBE) is defined as the mean difference between the prediction and
the measurement:

MBE =
1
N

N

∑
t=1

ε(t) (4)

It represents the systematic part (bias) of the error: if it is positive, the model has the tendency to
overestimate the actual value; if negative it underestimates it.

Finally, the Skill Score (SS) [31] measures the accuracy of a forecasting technique with respect to
the precision of a reference methodology. The SS can be defined for different KPIs. In this work it has
been calculated as:

SS = 1−
|KPIproposed|
|KPIre f erence|

(5)

where KPIproposed represents an estimation of the accuracy of the proposed approach, while KPIre f erence
is the same KPI evaluated on a reference method.

In this paper, SS is used to compare the presented technique with other methodologies.
The range of the SS is [−∞,+1]. A positive value of SS implies that the proposed technique

provides a better result with respect to the other approach, while a negative value corresponds to the
opposite situation. Notice that a SS = 1 represents the perfect forecast.

3. Methodology

The method proposed in this work consists of two Decision Rules (DRs) and three
Sub-Methodologies (SM). Figure 1 describes the flowchart of the proposed hybrid approach. In
this figure diamonds represent the DRs, while rectangles are the available forecasting approaches. The
implemented SMs are:

• CSM, based on well-known sun equations;
• CCSM, a linear model which combines CSM and cloud cover index;
• BEM, that uses outputs of multiple ANNs.

As can be seen from Figure 1, first, a decision based on day-ahead weather forecast is made on
whether to use the BEM or a deterministic model. In case the choice ends up being a deterministic
model, a second decision must be made between the CSM and the CCSM.
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This hybrid approach should achieve an improved prediction, with respect to the single SMs,
because physical models have higher accuracy on clear-sky days and when the weather conditions are
stable, while ANNs are typically preferable in other cases (cloudy/rainy days) [32].

The forecasting has been designed with a 24 h-horizon and a granularity equal to 15 min (which
represents the standard monitoring interval adopted by Italy). Notice that the output of the proposed
method is composed of 96 values representing the PV output for the next 24 h.

Start 

Is the sky totally clear? 
DR2: 

Should the Clear Sky  
Model be used? 

SM3: Ensemble of
Artificial Neural
Networks (BEM)

End 

Is the sky clear? 
DR1: 

Should a Deterministic  
Model be used? 

SM2: Corrected
Clear Sky Model

(CCSM)

SM1: Clear Sky
Model (CSM)

Yes

No

No

Yes

Figure 1. General scheme of the proposed technique.

The rest of this section describes the various part of the proposed strategy. In particular, in
Sections 3.1 and 3.2 the deterministic approaches (CSM and CCSM) are described; in Section 3.3 the
BEM is presented; finally, in Section 3.4 the proposed hybrid methodology is described.

3.1. Clear-Sky Model-CSM

When the sky is clear the PV system is not shaded by any cloud. In this case, there is little to no
uncertainty in the PV output profile. Thus, a deterministic model can be set up for covering scenarios
with this weather condition [8,32]. In this work the predicted PV output (Psystem(t)) is modeled as
follows [33] (notice that (t) indicates the time dependency):

Psystem(t) =
Eg,pv(t) · Ppeak · ηpan(t) · ηinv·ωDEG(t)

ESTD
(6)

where: Eg,pv (t) is the global irradiance on the plane of the array
[

W
m2

]
, Ppeak represents the total

rated peak power of the solar panel [kW], ηpan(t) is the relative efficiency factor of the panels [p.u.],
ηinv indicates the relative efficiency factor of the inverter [p.u.], ωDEG(t) represents the coefficient of
degradation [p.u.] and ESTD is the irradiance of standard test conditions

[
W
m2

]
.
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Ppeak, ηinv are parameters related to technical data of the PV plant, while ESTD is a constant equal
to 1000 W

m2 . The parameter ωDEG(t) can be either set to prescribed values taken from large scientific
reviews (e.g., [34]) or estimated through field measurements [35].

Thus, the main variables of this model are Eg,pv(t) and ηpan(t). The global irradiance is the sum
of three components, weakened by the shading factors. These take into account the possible shadows
due to the surrounding buildings [36]:

Eg,pv(t) = Eb,pv(t) · (1− Sdir(α(t), γ(t))) + Ed,pv(t) · (1− Sdi f f ) + Er,pv(t) (7)

where: Eb,pv(t) is the beam irradiance reaching the plane of the array
[

W
m2

]
, Ed,pv(t) represents the

diffuse irradiance reaching the plane of the array
[

W
m2

]
, Er,pv(t) is the reflected irradiance reaching

the plane of the array
[

W
m2

]
, α(t) denotes the sun azimuth [degree], γ(t) represents the sun elevation

[degree], Sdir(α(t), γ(t)) is the direct component shading factor [p.u.] and Sdi f f denotes the diffuse
component shading factor [p.u.]. In particular, Er,pv(t) is calculated as follows:

Er,pv(t) =

Eg,hor(t) · ρg ·
(

1−cos(β)
2

)
f or 1−cos(β)

2 > 0

0 o/w
(8)

where: Eg,hor(t) represents the global horizontal irradiance [ W
m2 ], ρg is the ground albedo [p.u.] and β

denotes the tilt angle of the PV array [degree].
The shading factors calculation (Sdir(α(t), γ(t)), Sdi f f ) and the ground albedo (ρg) are specific

to the site and therefore described in Section 4.1, while the irradiance components are calculated as
in [37].

The efficiency of the panel is mainly affected by modules temperature. In this work the following
equation has been used for its estimation [23,33]:

ηpan(t) = 1 + βc(Tm(t)− 25◦C) (9)

where βc is the module temperature coefficient.
For the module temperature estimation, several models have been considered [38–41]. The

performance of these models have been compared on a test set composed of clear-sky days and the
following relation has been selected [38]:

Tm(t) = Ta(t) +
Eg,pv(t)

ESTD
· (0.0712 ·Ws(t)

2 − 2.411 ·Ws(t) + 32.96) (10)

where Ta(t) is the ambient temperature [◦C] and Ws(t) is the wind speed [ m
s ].

3.2. Corrected Clear-Sky Model-CCSM

The model described in the previous paragraph supposes that the sky is completely clear. This
means that its performance can be improvable if the presence of clouds is considered. Thus, a modified
version of CSM has been developed. It is a simple Stepwise Linear Regression (SLR) model [42],
trained on clear-sky or almost clear-sky days, with regressors composed of CSM output and Cloud
Cover index (CC).

The CC index is a number that measures the percentage of the considered sky portion which is
covered by the clouds at a given time. Throughout this work, it ranges from 0 to 100, where CC = 0
indicates a cloudless sky, while CC = 100 indicates a weather condition of completely covered sky.

To estimate nonlinear behaviors, the variables have been taken up to the fifth power.
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The SLR is a linear regression where the regressors are selected through an automated procedure
that iteratively adds and removes regressors by testing their statistical significance through a hypothesis
test on their corresponding coefficients, measured by the p-value of an F-statistic [42].

The proposed procedure is the following:

1. Fit an initial model with only the constant term;
2. Add to the model the candidate regressor with the smallest p-value, provided that it is smaller

than a predetermined entrance tolerance. Repeat this step until no regressor can be added in
the model;

3. Subtract to the model the regressor with the highest p-value, provided that it is higher than a
predetermined exit tolerance. If there is no regressor with such high p-value, end; otherwise
return to step 2.

The final result depends on the initial model and the predetermined tolerances. For this reason,
there is no guarantee that the final result is the best possible model. However, checking all the possible
model candidates would typically take a large amount of time (for p candidate regressors, there
are 2p possible models) and therefore this procedure is used as a compromise between optimality
and feasibility.

In the proposed approach the entrance and exit tolerance have been set respectively to 0.05
and 0.1.

3.3. Artificial Neural Network-Ensemble Approach

ANNs are a wide class of logical structures freely inspired by the human brain. They are vastly
used in PV forecasting. This is testified by the fact that almost 25% of the papers proposed in the
literature on this topic are ANN-based [17].

The architecture adopted in this article is the Multi-Layer Perceptron (MLP) [43]. Figure 2 provides
the general structure of an MLP.

Hidden Layer(s)

Input Layer Output Layer

X1 

X2

X3

Xn

Y1 

Y2

Y3

Ym

Figure 2. A multi-layer perceptron.

Its architecture consists of three parts: input layer, at least one hidden layer and output layer.
Each layer receives the inputs from the preceding layer and, by means of weighting, translation, and a
nonlinear transformation, passes them to the next layer. The input layer processes the original input
vector, while the output layer passes the processed values to the user.

In this work an ensemble technique has been exploited within the ANN approach.
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3.3.1. Basic Ensemble Method-BEM

Ensemble averaging methods are usually implemented to achieve more accurate results than a
single ANN. The basic principle is to combine outputs of several ANNs to have a better forecast of the
PV generation. Two main aspects can help to achieve a better prediction:

• the combined effect of different ANNs compensates for the different random initializations;
• each MLP employs a slightly different number of hidden units.

There are several typologies of ensemble methods. In this work the BEM has been analyzed and
implemented [44]. The BEM output is defined by:

fBEM(t) =
1
n

n

∑
i=1

fi(t); (11)

where n is the total number of ANNs and fi(t) are the single networks outputs defined as a function of
time index t.

3.3.2. Input Variables

A crucial part for the design and the implementation of a reliable forecasting algorithm based on
ANNs is represented by the input selection. The set of inputs chosen for the PV day-ahead forecasting
is the following:

• quarter of hour in the day (number from 1 to 96);
• day of the year (number from 1 to 366);
• ambient temperature [◦C];
• relative Humidity [%];
• wind Speed [ m

s ];
• CC index [%].

The format of days and quarters of hour is chosen to take into account temporal autocorrelations
of the target variable, as suggested in [45]. Temperature and wind speed are selected because they are
involved in the panel efficiency estimation (see Section 3.1). Humidity is included because it influences
temperature and irradiance [46], and it is exploited with interesting results in several literature works
([19,20,45]). Finally, CC represents a numerical index for the estimation of the sky covering. Notice
that all the meteorological inputs must be provided by weather predictions.

An example of inputs for a single ANN within the BEM is reported in Table 1.

Table 1. BEM inputs used for the PV output forecasting (1 November 2018).

Quarter of
Day (1–96)

Day of Year
(1–366)

Ambient
Temperature [◦C]

Relative
Humidity [%]

Wind
Speed [ m

s ]
Cloud

Cover [%]

1 305 11.73 0 0 0
2 305 11.78 8.33 0.21 0
3 305 11.83 16.67 0.42 0
...

...
...

...
...

...
96 305 13.42 100 1.30 7.33

3.3.3. Parameters Selection

After the definition of the inputs for a single ANN, another fundamental step for the
implementation of the BEM is represented by the parameter selection of the single MLPs. A generic
MLP is characterized by the following parameters:

• Number of hidden layers;
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• Neurons number in the hidden layers;
• Transfer functions between each layer. These functions define the relationship of inputs and

outputs between each layer;
• Training algorithm. Any ANN must be trained on a knowledge dataset. This database is composed

of an input vector and a score vector. The training algorithm defines the training method.

For the selection of all these parameters, the approaches proposed in [47–49] have been used.
Table 2 reports the results of this phase. These parameters have been used in all the ANNs within
the BEM.

Table 2. Selected hyperparameters for the single ANNs within the BEM.

Hidden layers number 1

Transfer functions among all the layers
Hyperbolic Tangent Sigmoid Function

tansig(x) = 2
[(1+e−2x)]

− 1

Training algorithm Resilient Back-propagation

In addition to these parameters related to a single ANN, for the BEM methodology is necessary
to determine the number of MLP (i.e., parameter n in (11)) within the ensemble. The selection of this
parameter has been performed using the strategy presented in [49]. The selected number of ANNs is
n = 6: three with 52 neurons, two with 50 neurons, and one with 88 neurons.

3.4. Hybrid Technique for the Selection of the Most Appropriate Methodology

The accuracy of any of the previous forecasting techniques is strongly related to the weather
conditions on the prediction window. Thus, the available information related to weather data could be
exploited before the forecast execution to select the best methodology.

The selection steps can be two or one (see Figure 1):

1. DR1 consists in assessing whether the ANN approach (BEM) or a deterministic model is
more convenient;

2. DR2 takes place whenever in DR1 the ANN methodology is not chosen. In that case, the second
decision rule consists in the selection between two deterministic models: the CSM (see Section 3.1)
or the CCSM (see Section 3.2).

The main idea is to compare, on a training set, the performance in terms of nRMSE of the two
models under consideration in different climate conditions, evaluated through the forecast mean on
the prediction horizon of several weather variables (CC, temperature, humidity, wind speed, and
pressure). This is performed to determine which methodologies must be selected (CSM/CCSM or
BEM) according to the different combinations of the considered weather variables. In this work the
two choices have been implemented through a decision tree technique, but in principle any binary
classifier that takes as inputs multiple numerical variables could be used.

3.4.1. Decision Tree Technique

Decision trees are composed of a series of If/Else rules on the regressors that lead to the output of
the model. To predict a response, the user must follow the decisions in the tree from the root node
down to a leaf node. This last node contains the response. The If/Else rules are also known as splits,
while the regressors are often called attributes in this context.

There are several techniques for the design and implementation of a decision tree. In this work
CART (Classification and Regression Trees) methodology has been employed [50].

CART can process nominal and continuous attributes both as targets and predictors. Given a
training set, the algorithm grows the tree to its full size and then prunes it by eliminating the splits
that give a little contribution to the overall performance and could produce overfitting [50].
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The splits are chosen by inspecting all the possible cases on each attribute. Each possible splitting
value divides the data that has reached the node into two groups.

CART produces a sequence of nested pruned trees that are candidate final trees. The final tree
must be chosen by a comparison on a separate validation set [51].

3.4.2. Hybrid Procedure Implementation

Since the time horizon has been set to 24-h, also the two datasets built for the selection technique
are composed of days. For the choice between the two deterministic approaches (DR2), only clear or
almost clear-sky days are included.

The general procedure for the dataset definition and the implementation of the proposed hybrid
technique is depicted in Figure 3 and can be summarized as follows:

1. the daily mean values of the aforementioned weather variables of all day types are computed;
2. taking into account only clear-sky days:

(A) performance in terms of nRMSE of the deterministic models are computed;
(B) their difference in terms of nRMSE is computed: the sign of the difference tells which

model has performed better. In this block the numerical performance is transformed into
a categorical label

(C) exploitation of weather variables and labels for the implementation of DR2 through a
decision tree approach;

3. considering all day types:

(A) performance in terms of nRMSE of the BEM and the deterministic model selected by
Decision 2 is calculated;

(B) the difference between the two performances for each day is computed: the sign of the
difference tells whether the ensemble or the deterministic model has performed better.
Also, in this case the numerical performance is transformed into a categorical label;

(C) exploitation of weather variables and labels for the implementation of DR1 through a
decision tree approach.

Table 3 collects an example of the results obtained with steps (A), (B) related to DR2 for the
definition of a dedicated database, which is used for the definition of the decision tree. Table 4 reports
the same operation for DR1.

Table 3. Example of database definition for the decision tree—DR2.

Day

Atmospheric
Pressure
(Average)

[hPa]

Ambient
Temperature

(Average)
[◦C]

Relative
Humidity
(Average)

[%]

Wind
Speed

(Average)
[ m

s ]

Cloud
Cover

(Average)
[%]

Label

8 May 1018 17.44 72.93 0.27 18.83 CCSM
14 May 1016 19.26 35.65 1.86 10.42 CSM
29 May 1012 18.75 70.93 0.45 24.69 CSM

...
...

...
...

...
...

...
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Table 4. Example of database definition for the decision tree—DR1.

Day

Atmospheric
Pressure
(Average)

[hPa]

Ambient
Temperature

(Average)
[◦C]

Relative
Humidity
(Average)

[%]

Wind
Speed

(Average)
[ m

s ]

Cloud
Cover

(Average)
[%]

Label

9 May 1017 17.91 74.06 0.30 21.54 DR2
10 May 1012 17.90 81.91 0.87 61.41 BEM
11 May 1007 18.61 53.82 1.55 25.63 BEM

...
...

...
...

...
...

...

  
  
  
  
 

  
  
  
  
  
   
   

                                                                3. All Day Types

  
  
  
  
  
   
   

                                                                2. Clear Sky Days

Start

B: Days are labelled
according to the
performance

Compute mean of
weather variables
of all types of day 

End

A: Performance
evaluation of
deterministic
models

(CSM, CCSM)

B: Days are labelled
according to the
performance of the
described methods 

C: Exploitation of
weather variables
and labels to
implement
DR2 

A: Compute
performance of BEM
and deterministic
models chosen by

DR2 

C: Exploitation of
weather variables
and labels to
implement
 DR1 

1. All Day Types

Figure 3. General procedure for the implementation of the hybrid selection method.

3.4.3. Selection of the Optimal Tree

A decision tree is grown on different training sets, i.e., one for the clear-sky choice (DR2, see
Figure 1) and another one for the selection among a deterministic approach or BEM (DR1, see Figure 1).

To understand the process for the selection of the optimal pruning level, it is necessary to introduce
two fundamental concepts:

• trivial tree, which is the tree that always labels the observations with the most frequent class.
In DR1, for example, the trivial tree always selects the same method among the three proposed
techniques (CSM, CCSM, and BEM). For this reason, it is not a suitable tree: it makes useless the
hybrid technique of this section;

• pruning levels. These represent the orders of the nested pruned trees produced by CART. Pruning
level 0 is the complete tree, which achieves perfect performance on the training set (and therefore
is affected by overfitting problems). The maximum pruning level corresponds to the trivial tree.

The methodology adopted in this work for the selection of the best pruning level is to use the tree
corresponding to the smallest pruning level that improves the trivial tree on a validation set. Moreover,
only the first split of the resulting tree is considered.

3.4.4. Final CART Trees

The proposed decision tree technique applied to the considered test site (see Section 4) provides
the hybrid method reported in this section. Figure 4 illustrates the final rules for the selection of the
methodologies described in this paper.

Notice that despite different weather variables have been considered during the tree
implementation, both the decisions are only based on the CC index. From Figure 4 it can be noticed
that in DR1 the BEM is chosen when the CC index is particularly high, confirming that the ANN
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technique is better in cases wherein the sky is far from being clear (cloudy/rainy days), confirming
that the intuition behind the use of deterministic models is correct.

DR1: 
Cloud Cover <= 39.8 %?

BEM

Yes

Yes No

No

CSM CCSM

DR2: 
Cloud Cover <= 13.6 %?

Figure 4. The final hybrid technique for the selection of the most appropriate model.

4. Test Site

The test system considered in this work for the validation of the proposed hybrid forecasting
procedure is a PV plant located in the harbor of Genova. In particular, the PV system is positioned
on the rooftop of the Economics School of the University of Genova (see Figure 5). The building is
oriented with respect to the south of about 30◦ towards west.

Figure 5. The considered PV system. Picture from the rooftop of the Economics School.

The considered PV system presents a peak power of about 20 kWp and it is directly connected
to the electric system of the underneath building. The photovoltaic modules are supported by an
aluminum structure of 51 m × 3.3 m, which has a 30◦ inclination (tilt angle) with respect to the horizon.
The modules are composed of multi-crystalline silicon and each of them can produce 180 W. The
dimension of each panel is 1.3 m2. A total of 108 panels are installed on the structure. The modules are
supplied by 2 inverters, with nominal power equal to 12.5 kW.
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Table 5 collects all the main parameters of the test site considered in this work. This table reports
also the symbols related to the parameters.

Table 5. Technical parameters of the test site.

Parameter Value

Peak Power (Ppeak) 20 kWp
Efficiency of the Inverter (ηinv) 0.971
Temperature Coefficient (βc) −0.045 1

◦C
Tilt Angle (β) 30◦

Latitude 44.4141◦

Longitude 8.9221◦

Local Time Zone 15◦

Orientation regarding S, positive W 30◦

Number of Inverters 2
Inverters Nominal power 12.5 kW

Number of Panels 108
Nominal Power of each Panel 180 W

Surface of each Panel 1.3 m2

Coefficient of Degradation (ωDEG) 1

4.1. Shading Modeling

The PV modules are positioned on the roof to minimize the losses of irradiance due to the shadows
of the higher surrounding buildings. Nevertheless, the considered PV system is slightly shaded by
surrounding buildings (see Figure 6), especially in the morning and in the late afternoon.

Figure 6. Top view of the considered PV system.

The software used in this work for the shadows modeling is PVSyst 6.6.4 [52]. This software
allows the user to draw the shape and the dimension of the buildings surrounding the PV plant
(Figure 7). The measurements needed for the modeling are obtained through Google Earth Pro. It is
possible to have good measurements of both lengths and angles through the ruler functionality.

The shapes of the near buildings are various and therefore the most appropriate geometrical
model must be carefully chosen for each of them. In addition, also the colors of the building are
important to set because they influence the outcome of the ground albedo, which in turn influences
the value of Er,pv (see (8)).

Once the drawing has been made, the software is able to estimate all the shadow-related
parameters involved in (7) (Sdir, Sdi f f and ρg). In particular, the software provides a table that
presents values of Sdir for different combinations of the sun position (see Table 6). Using linear
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interpolation, these values can be exploited to compute the parameters for any combination of azimuth
and solar altitude.

Figure 7. Shadows modeling of the surrounding buildings.

Table 6. Sdir approximation as a function of Azimuth (Az.) and Height (Hgt.).

Az.
Hgt. −180◦ −100◦ −80◦ −60◦ −40◦ −20◦ 0◦ 20◦ 40◦ 60◦ 80◦ 100◦ 180◦

90◦ 0 0 0 0 0 0 0 0 0 0 0 0 0
80◦ 0 0 0 0 0 0 0 0 0 0 0 0 0
70◦ 0 0 0 0 0 0 0 0 0 0 0 0 0
60◦ 0 0 0 0 0 0 0 0 0 0 0 0 0
50◦ 0 0 0 0 0 0 0 0 0 0 0 0 0
40◦ 0 0 0 0 0 0 0 0 0 0 0 0 0
30◦ 1 0 0.1 0.1 0 0 0 0 0 0 0 0 1
20◦ 1 0.1 0.2 0.2 0.1 0.1 0 0 0 0 0 0 1
10◦ 1 1 0.4 0.4 0.4 0.2 0.1 0.4 0.3 0 0.1 0.1 1
2◦ 1 1 1 1 0.5 0.2 0.3 0.8 1 1 1 1 1

4.2. Available Data

This section describes the available data for the considered test site.
An historical database of the PV plant, described in this section, collects data from 2014 related to

the power production. For the weather variables, two different sources have been considered:

1. A weather station located just outside the PV array. This device can provide measurement
data related to the actual temperature, humidity, and wind speed with a granularity of 15 min.
In addition, the weather station has its own historical database that collects measurements
since 2014;

2. A web weather provider [53]. From this website it is possible to download a historical bulk
dataset that contains all the weather information and, in particular, the crucial data related to
the CC index. This weather provider has been employed for the weather forecasting of the
variables used by the proposed hybrid procedure. Weather data have been imported from the
provider through the dedicated Application Programming Interface (API) to be quickly stored
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and analyzed. The data obtained from [53] are related to a position which is one kilometer away
from the PV system.

To have a reliable dataset, several preprocessing actions have been performed (such as outlier
identification and missing data management). The result of the preprocessing stage is a database
with measurements related to more than 70,000 quarters of hour (2 years) of complete, reliable
data. According to literature, this represents a robust dataset for the implementation of an accurate
forecasting procedure [20]. The preprocessed, historical data have been used in the training phase of
all the described methodologies.

5. Results

In this Section, the hybrid model, the ANN Ensemble (BEM), the CCSM and the CSM models
described in Section 3 are tested on two months (November–December 2018) for a total of 61 days.

All the proposed methodologies need weather forecast, provided by [53]. Thus, for each day
of the testing period a MATLAB routine has launched at 23:45 p.m. to retrieve the meteorological
predictions. The PV forecasting is then executed automatically at midnight by making use of the
weather forecast.

Table 7 reports the performance of the base methodologies (CSM, CCSM, BEM), as well as the
hybrid approach.

Table 7. Hybrid and non-hybrid methods performance on online test set.

Method
KPIs Days Number

nRMSE RMSE [kW] MBE [kW] BEM CCSM CSM

BEM 0.6090 2.4384 −0.8092 61 0 0
CCSM 0.6702 2.6833 0.7194 0 61 0
CSM 0.8143 3.2601 1.1996 0 0 61

Hybrid Tree 0.3892 1.5583 −0.0694 20 13 28
Ideal Hybrid 0.2761 1.1053 −0.0127 21 13 27

The best stand-alone method is the BEM, which outperforms the two clear-sky methods. However,
thanks to the decision rule, the BEM can be enhanced by the two CSMs, whose individual performance
are worse than the ANN approach. The last line of Table 7 reports the results of an ideal hybrid
method, which is a hypothetical technique that chooses always the most accurate methodology. Since
its nRMSE is lower with respect to the error committed by the proposed approach, it is possible to
understand that there is a margin for an improvement of the described decision rule. This can lead to
an increment of the accuracy of the proposed hybrid methodology.

The proposed hybrid methodology can be seen as a three categories classification problem.
Tables 8 and 9 report respectively the confusion matrices related to the hybrid model and to the BEM
(which can be viewed as a hybrid model that always chooses the ANN approach).

Numbers on the main diagonal identify the days wherein the actual ideal model is chosen.
The BEM is included because it is the best trivial classifier (i.e., a classifier that chooses the most
populated category).

As a classifier, the BEM has been right 24 times out of 61 (39% accuracy, see Table 9) while the
proposed hybrid method has been right twice more: 50 out of 61 times (85% accuracy, Table 8).
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Table 8. Confusion matrix for the hybrid technique.

Method
Ideal

CSM CCSM BEM

Predicted
CSM 18 2 0

CCSM 2 8 3

BEM 1 3 24

Table 9. Confusion matrix for the BEM method.

Method
Ideal

CSM CCSM BEM

Predicted
CSM 0 0 0

CCSM 0 0 0
BEM 21 13 27

This analysis is very important because it provides a performance estimation of the DRs that
define the proposed hybrid approach.

Table 10 reports the Skill Scores for the comparison of the proposed hybrid approach with the
single SMs implemented in this work and other recent methodologies. In addition, this table collects
also the different KPIs used in (5) for the evaluation of the SS. Notice that for the literature comparison
it has been considered the KPI average obtained in all the experimental tests.

Table 10. Skill Scores evaluation for a comparison with different day-ahead methodologies.

Reference Method SS KPI

CSM +0.5220 nRMSE
CCSM +0.4192 nRMSE
BEM +0.3609 nRMSE
[54] +0.1147 nRMSE
[55] +0.0137 RMSE/Ppeak
[56] +0.1018 (Average(|ε(t)|))/Ppeak

In [54] a hierarchical approach based on machine learning methods has been implemented, while
in [55] a similar day PV forecasting technique has been adopted. The authors in [56] present an
ensemble of five methods (Grey-Box Model, ANN, K-Nearest Neighbors, Quantile Random Forest and
Support Vector Regression), proving that their strategy provides a more accurate forecast with respect
to the single approaches.

As can be seen from Table 10, all the SSs are positive highlighting the precision of the
forecast approach.

This literature comparison, even if on different test sites/sets, suggests that the proposed hybrid
technique is a robust and an accurate procedure, representing a useful and reliable functionality for
the uncertainty management.

Focusing on the hybrid model, Figures 8–10 are useful to inspect the improvement of this approach
with respect to the versatile ANN-based approach. As can be seen from these Figures the results of the
proposed methodology are very satisfying.

As testified by the Figures 8–10, the BEM can attain a large error in clear days, wherein the
deterministic models provide better results. For this reason, the proposed hybrid technique gives an
important contribution to improve the overall accuracy of the PV forecast.
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Figure 8. PV output, BEM (yellow dotted line) and proposed hybrid technique (red solid line) for five
days of December 2018.
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Figure 9. PV output, BEM (yellow dotted line) and proposed hybrid technique (red solid line) for four
days of November 2018.
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Figure 10. PV output, BEM (yellow dotted line) and proposed hybrid technique (red solid line) for the
first four days of December 2018.
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6. Conclusions

A novel hybrid methodology for the day-ahead forecasting has been implemented and validated
on a real PV plant. The presented approach can exploit CSMs or an ensemble of ANNs, according to
day-ahead weather forecast. The selection among these techniques is performed through a decision
tree approach.

The novel hybrid procedure looks promising, as testified from all the results of Section 5.
The proposed methodology presents all the good properties of an ensemble method, coupled

with a robust performance on clear-sky days. In particular, it has outperformed the BEM method in
realistic forecasting tests, giving an accurate prediction in all weather conditions. In addition, the
performance of the presented approach has been very satisfactory, as indicated by a comparison in
terms of accuracy with the literature.

The final decision tree provides good results for the selection of the most appropriate method and
it reflects the intuition behind the use of deterministic models or an ANN-based approach.

For all these reasons, the presented approach can be employed as an input of optimization
or advanced algorithms within generation scheduling/unit commitment applications, energy
management strategies, grid regulation procedures, etc.

Several parts of the proposed algorithms could be investigated to improve the
forecasting accuracy:

1. the CCSM procedure could include more inputs (currently only CC is considered to be a weather
regressor) to be more competitive with respect to the other methodologies;

2. more sophisticated ensemble techniques can be considered;
3. different architecture of ANNs could be analyzed;
4. the hybrid technique could be designed to select different methods within the same day;
5. a three-category classifier could substitute the two decisions that compose the hybrid approach;
6. Model Output Statistics (MOS) could be performed on weather forecasts to understand if they

are affected by any bias;
7. Irradiance data could be used instead of CC index by the proposed hybrid approach.

In particular, points 1, 5, and 7 have potentially the greatest impact on the performance, and
therefore they would be the first to be investigated in future works.
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