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Abstract: A growing presence of distributed energy resources (DER) and the increasingly diverse
nature of end users at low-voltage (LV) networks make the operation of these grids more and
more challenging. Particularly, congestion and voltage management strategies for LV grids have
usually been limited to some elemental criteria based on human experience, asset oversizing, or grid
reinforcement. However, with the current massive deployment of sensors in modern LV grids,
new approaches are feasible for distribution network assets operation. This article proposes a
multi-objective particle swarm optimization (MOPSO) approach, combined with data analytics
through affinity propagation clustering, for congestion threshold determination in LV grids. A real
case study from the smart grid of Smartcity Malaga Living Lab is used to illustrate the proposed
approach. Within this approach, distribution system operators (DSOs) can take decisions in order to
prevent situations of risk or potential failure at LV grids.

Keywords: congestion management; low-voltage networks; multi-objective particle swarm
optimization; affinity propagation clustering; optimal congestion threshold

1. Introduction

Conventional development of the distribution networks has been driven by a worst-case
fit-and-forget principle to tackle most of medium-voltage (MV) and low-voltage (LV) congestion
challenges due to the long lifetime of their assets and planning horizon [1–4]. This led to
limited distributed energy resources (DER) capacity allowed to be connected and costly network
reinforcements, although peak loads generally occur only for a few hours in a year [1]. It is definitely
recommendable to stop operating the distribution networks as static black boxes [5,6].

Despite promising examples of voltage and reactive power regulation that have been implemented
in Germany and Italy according to national standards VDE 4105 and CEI 0-2 respectively [7], congestion
management is normally approached dynamically only in transmission networks [8], for example
by rescheduling and readjusting set points in generation units [9,10]. Nonetheless, the threats posed
by the intermittent and dynamic nature of distributed generators, electric vehicles (EVs), or energy
storage systems, to cite some of the most relevant DER technologies [11,12], require new means to help
distribution system operators (DSOs) in their key function of congestion management in those complex
scenarios [10]. This is the case of control algorithms proposed for operations such as curtailment of
MV wind generators [13] or EV smart charging [14]. Therefore, flexibility in distribution networks is
an active research question, including DER units and end users in market models that exploit their
capabilities to relieve congestion [15] and improve security of supply [16].

However, in the case of LV networks, other means that can be considered as an alternative to
those commonly widespread, such as asset oversizing or reinforcement, are scarce [17]. In addition

Energies 2019, 12, 1295; doi:10.3390/en12071295 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-6741-0264
https://orcid.org/0000-0003-3954-3646
http://www.mdpi.com/1996-1073/12/7/1295?type=check_update&version=1
http://dx.doi.org/10.3390/en12071295
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1295 2 of 20

to this, congestion limits are not clearly defined for LV distribution network assets, such as MV/LV
power transformers or LV feeders, apart from conventional criteria initially designed for static network
planning [18,19] or the maximum admissible power determined by their nominal characteristics.

Determining what we have defined here as optimal congestion threshold may help DSOs in their
dynamic operation of the LV networks. These thresholds provide them with technical references for
the value of current measured individually in a certain distribution network element. Thereby, DSOs
may enable preventive actions, by means of their own controllable network assets or with the help of
other participating agents such as demand aggregators, before congestion definitively takes place and
potential risk of failure may severely increase. Consequently, those thresholds must be optimized, as
detailed in Section 3, considering not only the highest values of current experienced in the distribution
network elements and their admissible congestion limits, but also the time duration and repetition of
those congested or close to congestion situations over time.

Congestion management is addressed by classical methods by means of market mechanisms,
as in the case of demand side management models [20], or by means of network planning-based
methodologies, as in hosting capacity models [21], to cite some relevant examples, but limitations
may arise at the time of their implementation on LV networks. Indeed, these models may be adapted
to this new paradigm, with the help of present innovative solutions such as LV network-monitoring
technologies and MV/LV state estimation algorithms [22]. Particularly, hosting capacity approaches
are strongly conditioned by the nominal admissible limits on the network element of study [21] or
the number and characteristics of scenarios considered [23], while demand side management requires
the development of models oriented to facilitate end users’ decision-making [24] and read locational
market signals in order to boost participation in LV networks [20].

The methodology proposed here is especially designed for LV networks and seeks a compromise
between the subjective human-based criteria and the precise but limited, as explained before, classical
models. A data analysis is proposed here to address this challenge by means of clustering a significant
group of distribution network elements. The aim is to provide insight into underlying patterns
of data, to accelerate knowledge discovery, elements’ classification, and subsequent computational
efforts [25,26]. In addition to this, an optimization problem is formulated in order to help make
decisions for preventing and managing congestion in heterogeneous massive sets of distribution
network elements [27]. This provides DSOs with enriched objective criteria for the proactive preventive
operation and maintenance of their assets, unlike the mentioned precedents based on their subjective,
conservative, and generalized experience. In particular, particle swarm optimization (PSO) is proposed
here thanks to its applicability to solve multi-objective optimization problems, and to its capability to
avoid finding solutions biased by predetermined human initial decisions [28].

Authors in Reference [9] surveyed some applications of PSO on power systems, emphasizing its
capabilities in facing issues such as uncertainty in load demand incorporating distributed generation,
EV charging management, or economical dispatch to determine generation operating conditions while
network constraints are met. Other relevant applications are those oriented to optimal power flow
calculation and congestion management [10]. PSO-based algorithms can also deal with non-smooth
functions, especially those related to frequency regulation and voltage constraints [10]. Further
approaches are outlined in Reference [9], such as balancing loads between feeders or deciding on the
optimal configuration, size, and topology of the distribution system.

PSO bears similarities to other advanced optimization algorithms, such as evolutionary
computation techniques, where genetic and ant colony algorithms stand out for their popularity.
Nevertheless, those techniques are more complex and present some serious restrictions to be applied
in our methodology. Genetic algorithms may be faster than PSO and restrict the reproduction of weak
solutions, but their crossover and mutation operations result as incompatible with our optimization
problem [29], since it is formed by load duration curves, with individuals defined by non-independent
characteristics [30]. Ant colony algorithms, despite of being based on swarm behavior [31] as in
the case of PSO, assure convergence in problems where source and destination are predefined and
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specific [32], unlike in the congestion threshold determination problem proposed here. The objective
of this article is threefold: (1) To determine optimal technical thresholds to prevent congestion in
distribution network assets, such as MV/LV power transformers and LV feeders; (2) to contribute
with an optimization methodology not based on subjective previous experience and replicable in any
kind of network, by employing clustering and multi objective particle swarm optimization (MOPSO);
and (3) to apply the methodology to a real dataset obtained from Smartcity Malaga Living Lab, an area
with more than 15,000 real end users, where 750 sensors installed in 56 MV/LV secondary substations
are measuring current, voltage, power, and energy every 5 min [33].

This article is organized as follows. Section 2 addresses the congestion management problem
in LV distribution networks, presenting the limitations of the DSOs to tackle saturation problems.
In Section 3, the methodology for optimal congestion threshold determination is presented, detailing
the data analytics-based and optimization algorithm developed, as well as its objectives, formulation,
constraints, and pseudocode. The results of this methodology are discussed in Section 4 thanks
to its application on power transformers and LV feeders from a real case of study from Smartcity
Malaga Living Lab. Finally, Section 5 presents the conclusions and the fundamental ideas discussed in
the article.

2. Congestion in LV Distribution Networks

Distribution networks have their end users spread, distributed in any form, independently
if regarding a LV feeder and its phases, or among different feeders connected to the same power
transformer in a secondary substation [4,34,35]. Moreover, each end user, whether consumer,
prosumer, or generator, has its own arbitrary pattern, even more diverse with the proliferation of
DER technologies.

A clear example of this highly heterogeneous distribution of clients of the LV networks can be seen
in Figure 1 for two MV/LV (medium voltage/low voltage) secondary substations of Smartcity Malaga
Living Lab [36], despite being located in the same geographical area, having the same number of LV
feeders and nominal rating in their power transformers, and also the same number of predominantly
residential single-phase end users, which is slightly above 500 in each case.
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Figure 1. An example of single-phase (in orange, green, and blue) and three-phase (in red) client
distribution per low-voltage (LV) feeder in two secondary substations (a,b) of Smartcity Malaga
Living Lab.

This heterogeneity influences severe congestion and voltage in the network. In order to
compensate for the voltage drop and to avoid subsequent undervoltage at the end of the feeder,
the voltage at the LV side of a MV/LV power transformer has been traditionally set over 1 p.u. [1] with
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a conventional off-line fixed setting [37]. Meanwhile, conventional options to tackle congestion go
predominantly through network oversizing and extension, as in the case of rating upgrade of power
transformer or construction of new secondary substations to overcome critical situations that take
place in short periods of time [38,39], as can be seen in the load duration curves of a set of Smartcity
Malaga power transformers displayed in Figure 2.
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year of Smartcity Malaga Living Lab.

Furthermore, congestion variations experienced in adjacent LV feeders and their phases,
as displayed in Figure 3, evidence a totally decoupled unbalanced performance, leading to highly
diverse characteristic values. Therefore, this means having situations close to congestion along a LV
feeder, or particular phase, at the same moment the neighbor ones may not.
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Unlike voltage, network congestion limits are not clearly defined by international grid codes,
such as in EN50160 [40], which states that voltage on MV and LV distribution network nodes must
remain within ±10% for 95% of the week, and between +10% and −15% for all time. Apart from the
maximum limit determined by the nominal admissible power of each asset of the network, other values
commonly used to set maximum congestion thresholds are 95% by the transmission system operator
in Spain for their cables [18], or 75% by the regulator of the electric sector in Peru for both cables
and power transformers [19], to cite some examples. However, these values are based on their
local experience.
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Power transformers are critical expensive assets in distribution networks, hence special attention
must be given to their operation and maintenance [41,42]. Nonetheless, detailed information is
scarce at the LV network level, such as the particular phase where a single-end user or DER unit is
connected [43], despite successful smart grid pilot projects such as Smartcity Malaga [44], INTEGRIS [5],
IDE4L [45], or MONICA [46] have dedicated special efforts in distribution network digitalization and
state estimation. Therefore, technical solutions are available today to address congestion in singular
elements such as LV feeder phases, avoiding bottlenecks that may arise even earlier in the case of
significant DER penetration or demand growth [47,48], since technical constraint violations may occur
at an earlier stage [49].

Therefore, DSOs may operate the distribution networks by means of a permanent dynamic
supervision of the congestion level, taking into account the optimal congestion threshold assigned by
this methodology to any particular network element. As pointed out in Section 1, those thresholds
provide DSOs with technical references that prevent them before congestion definitively takes place
in a particular distribution network element and, consequently, potential risk of failure increases.
This lets them leave behind corrective processes and act before an incident occurs, therefore optimizing
budget allocation and the quality of service provided to end users [50] by means of preventive actions,
such as adjusting on-load tap changing (OLTC) MV/LV power transformers [51] or interacting with
DER units so that they adjust their operating regime to the existing network conditions [7].

3. Proposed Approach for LV Congestion Determination

The proposed methodology consists of three stages, as displayed in Figure 4. Firstly, data
acquisition allows for the creation of the search space, which is formed in this problem by load
duration curves of distribution network elements. They may represent a numerous diverse dataset
for modern DSOs, hence, data analysis techniques must be applied. On the one hand, this allows for
the classification of assets by grouping them regarding their similarities. On the other hand, the most
representative elements can be identified, so deeper studies can be performed on them, and later be
extrapolated to the rest of similar assets for the sake of the efficiency of the analysis.
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Data analytics is approached here by means of an affinity propagation clustering technique [25].
Apart from initially considering any of those distribution network elements as potential cluster centers,
this technique is characterized by not requiring any previous specification about the number of clusters
to be formed, in addition to exchanging messages iteratively between elements until a high-quality
set of exemplars and clusters emerges, doing so in less than one hundredth the time and at a lower
error rate than other exemplar-based methods [25,52]. Consequently, only a basic identification and
characterization of those assets to be clustered is needed to initiate the analytics.

The second stage focuses on determining the optimal congestion thresholds. For this, a particle
swarm optimization (PSO) problem is formulated, which is a stochastic-based artificial intelligence
search technique inspired on natural life [28]. A population of particles, called swarm, formed by
points, flows through the search space taking into consideration the historical best position for each
particle itself and the rest as a whole, naturally orienting the search towards an optimal or near-optimal
solution [9,17].
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Multi-objective PSO (MOPSO) is proposed here due to its capacity for simultaneous resolution of
multiple conflicting objectives in congestion threshold determination [17]. In addition to this, MOPSO
presents a low computational cost to provide a set of solutions, that, unlike classical multi-objective
methods, are diverse and spread enough [17]. This allows for finding the best, non-trivial trade off
among more than one objective, since no single solution may simultaneously optimize the whole
search objective [53].

The affinity propagation clustering previously executed allows for the application of MOPSO only
on the most representative element of each cluster. Then, the third stage addresses the extrapolation of
the result obtained in the optimization process to the rest of assets.

3.1. Data Analytics based on Affinity Propagation Clustering

The affinity propagation algorithm [25] applied here is set with a dumping factor of 0.9 in order
to avoid high numerical oscillations and favor the convergence of the clustering process, and is trained
with a dataset formed by the characteristics listed on Table 1.

Table 1. Characteristic values of each network element of the dataset.

Criteria Characteristic

Loading Maximum congestion value measured

Repetition
Maximum congestion value measured after the 3 most critical days in a year
Maximum congestion value measured after the 10 most critical days in a year
Maximum congestion value measured after the 15 most critical days in a year

Time duration
Maximum congestion value measured after the 0.01% most critical scenarios in a year
Maximum congestion value measured after the 0.1% most critical scenarios in a year
Maximum congestion value measured after the 1% most critical scenarios in a year

Geographical Number of points of delivery
Total length of the element 1

End users
Number of clients

Percentage of domestic clients

Power
Nominal admissible power

Total power contracted
1 Total length of the element: 0 in the case of power transformers; including any segment downstream associated in
the case of power lines.

Standardization in the clustering process is important, since the values of those characteristics
are often measured in different units, meaning that some of them could be dominating other ones,
hence influencing the course of the cluster analysis [54]. To overcome this, the characteristic values
considered in this methodology are re-scaled by using min-max standardization.

In addition to the nominal admissible power or the maximum congestion value for each asset, such
as power transformers or LV feeder, the time duration of those congested situations experienced has to
be carefully considered, as in the case of Spain, where the annual maximum demand is denoted by the
congestion level reached around the 100 most critical hours [55], about 0.01% of the year. Furthermore,
here it is proposed to consider the number of different days where the maximum congestion levels
took place in order to take into consideration the degree of repetition of those risky situations.

Other key aspects, such as the number and type of end users connected to every distribution
network element, its length (which is zero in the case of power transformers, but includes any segment
downstream associated in the case of LV feeder phases), or the total power contracted, are also
considered. Hence, the clustering process provides a data analysis based not only on graphical features
of each load duration curve, but also based on physical parameters of the corresponding asset.
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3.2. Multi-Objective Particle Swarm Optimization

The determination of the optimal congestion threshold is a constrained optimization problem
where a specific multi-objective function is minimized. The aim is to find the optimal characteristic
value of congestion in the load duration curve of a distribution network element considered, valid
for the longest time scenarios of operation and being the closest to the maximum demand level
experienced on it.

The multi-objective function is formed by three subfunctions. The first objective subfunction Fobj1
aims to minimize the standard deviation of the congestion characteristic values φ of the load duration
curve, leading to select groups of points that are more concentrated around a certain congestion level.
This diminishes the influence of abrupt changes in congestion characteristic values, exceptionally
unconnected with neighboring values, and typically corresponding to the highest demand scenarios.

The second objective subfunction Fobj2 tackles the percentage of time scenario characteristic values
ρ of the load duration curve. Having the maximum standard deviation here aims to find a solution far
from unrepresentative short time variations. This subfunction is characterized by the inverse of the
standard deviation in order to fit it in the minimization of the multi-objective problem.

Finally, the third objective subfunction Fobj3 addresses the inclination angle ϕ by scoring linearly
between 0 and 10 points of the linear regression of any group of points forming a particle of the
load duration curve. An inclination angle of 45◦ presents the best compromise between congestion
measurements and time scenarios, namely, between its vertical and horizontal projections. However,
with the aim of not losing the influence of the highest demand experienced, a favorable inclination
angle, called ϕ f av, must be set above 45◦, helping the optimization problem converge towards more
stabilized congestion characteristic values but without being too close to 90◦ and then falling into
unrepresentative, extremely brief, and highest-congestion scenarios. A band of the most favorable
angles, ϕband, is also set in order to help define diverse punctuation areas, as shown in Figure 5.
This objective subfunction is characterized by the inverse, as expressed in Equation (7), in order to fit it
in the minimization of the multi-objective problem, as in the case of objective subfunction 2.
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Therefore, the formulation of this multi-objective is stated as follows:

Minimize : Fobj(φ, ρ, ϕ) = f
(

Fobj1(φ), Fobj2(ρ), Fobj3(ϕ)
)

Subject to : φ ≥ φlimit
(1)

The problem constraint φ ≥ φlimit refers to all those congestion characteristic values above a
particular value, which is considered to represent a realistic, considerable, potential risk of saturation
of the distribution network elements. It is recommended to consider a wider range of congestion states
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than in traditional criteria, as mentioned in Section 2 for 95% [18] and 75% [19], in order to cover a
broader set of representative scenarios and then to avoid extremely singular transient states.

By checking compliance with this restriction, MOPSO is not applied in the case of those clusters
whose elements are not satisfying the problem constraints for none of the points of their load duration
curves, since they are not considered to be above a minimum level of potential risk.

In our methodology, and according to MOPSO algorithm, the swarm is formed by N particles, each
of them composed by n points, as displayed in Figure 6, that move along the search space, that is to
say, in a certain load duration curve. Consequently, each particle j is characterized by the congestion φj
and the corresponding percentage of time scenarios ρj of its center, and its position xj(t) in a moment
of time t along the load duration curve depends on its previous position xj(t− 1) and its velocity
vj(t) [27]:

xj(t) = xj(t− 1) + vj(t). (2)

This velocity vj(t) is composed by terms related to the inertia ωj and the velocity of the particle
in the previous state vj(t− 1) to represent its tendency to continue in the same direction, and the
attraction towards the best position pjbest ever found by the particle and by any of the particles of the
swarm pglobal best [27]:

vj(t) = ωj·vj(t− 1) + ψ1·rand1·
(

pjbest − xj(t− 1)
)
+ ψ2·rand2·

(
pglobal best − xj(t− 1)

)
. (3)

Authors in Reference [27] pointed that the sum of constants ψ1 and ψ2 should be 4.0, meaning
ψ1 = ψ2 = 2 to give the same weight to the individual and group experience. rand1 and rand2 are
random values between 0 and 1 [27], and the inertia of the particle ωj is given by:

ωj = ωmax −
ωmax −ωmin

itermax
·iteri (4)

where ωmax and ωmin are also constant values set at 1 and 0 respectively, in order to reach an initial
high value near to 0.9 as pointed in Reference [27], hence moving fast towards the global optimum.
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Therefore, in each iteration, every φj and ρj corresponding to the center of each particle, in addition
to φi, ρi and the inclination angle of the linear regression ϕj of their n points, will be evaluated in the
following subfunctions of the multi-objective function, leading to a solution:

Fobj1
(
φj
)
=

√
1

n− 1

n

∑
i=1

(
φi − φj

)2
(5)
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Fobj2
(
ρj
)
=

1√
1

n−1 ∑n
i=1

(
ρi − ρj

)2
(6)

1
Fobj3

(
ϕj
) =



8· ϕj

(ϕ f av−ϕband)
i f ϕj ≤ ϕ f av − ϕband

8 + 2· ϕj−(ϕ f av−ϕband)
ϕband

i f ϕj ∈
(

ϕ f av − ϕband, ϕ f av

)
10 i f ϕj = ϕ f av

8 + 2· (ϕ f av+ϕband)−ϕj
ϕband

i f ϕj ∈
(

ϕ f av, ϕ f av + ϕband

)
8· 90−ϕj

90−(ϕ f av+ϕband)
i f ϕj ≥ ϕ f av + ϕband

(7)

where: φj is the mean congestion value in the particle j; ρj is the mean percentage time scenario value
in the particle j.

Pareto dominance must be checked every time the position of a swarm is updated, storing
those non-dominated solutions among the obtained for the N particles after their evaluation on the
mentioned subfunctions of the multi-objective function, in order to approximate the Pareto front [9].

In relation to this, the first stopping criterion is determined for the algorithm developed here:
The global optimum results from the best particle of the swarm after a certain number of consecutive
iterations without any progress in the Pareto front. In addition to this, the second stopping criterion
consists of a maximum number of iterations.

As pointed out in Section 1, other advanced optimization algorithms, such as genetic and ant
colony algorithms, apart from being more complex than this PSO-based approach, present serious
restrictions to be applied in our methodology due to the impossibility to cross and mutate points
defined by non-independent congestion and time characteristics [29,30], and to the absence of a clear,
predefined optimal solution area [32].

3.3. Applications in LV Networks

This methodology can be applied on wide groups of distribution network elements by means
of the ratio between the optimal congestion threshold φ

opt_calc
k determined by the MOPSO algorithm

and the maximum congestion value measured φmax
k for each cluster center k. Therefore, this so-called

threshold ratiok can be employed individually on any of the members m belonging to that cluster k in
order to determine its particular optimal congestion threshold φ

opt
m , where:

threshold ratiok(%) =
φ

opt_calc
k
φmax

k
·100 (8)

φ
opt
m = threshold ratiok·φmax

m (9)

Moreover, the use of the threshold ratio reflects the existing differences among the congestion
experienced in each element, instead of simply imposing the optimal of the cluster center. Thus, the
application of the methodology follows the flowchart described in Figure 7.
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4. Results and Discussion

This methodology has been applied on real data obtained from Smartcity Malaga Living Lab.
In particular, data from five MV/LV secondary substations are considered here, including a total of six
power transformers and their 18 corresponding LV side phases. In addition to this, as displayed in
Table 2, their corresponding 45 LV feeder lines, with three phases in each case, are also here considered,
therefore taking into account their highly dispersed and heterogeneous distribution of clients, as shown
in Figure 1. Consequently, this methodology has been implemented on load duration curves from 153
distribution network elements, a group of elements linked to around 5000 out of the 15,000 real end
users of the Living Lab.

Table 2. Distribution network elements of the group considered in the case study.

Secondary Substation Power Transformers LV Feeders Distribution Network Elements

A 1 7 24
B 1 7 24
C 1 7 24
D 2 12 42
E 1 12 39
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4.1. Data Analytics for Data Pre-Processing

Every distribution network element has been characterized by 5-min data acquisition during a
whole year period, meaning more than 109,000 current measurements in each case. Thus, this group
formed by a total of 153 elements involves handling around 16,000,000 data. Consequently, the size of
this dataset provides a wide, varied dataset to reflect the reality of the operation and maintenance of
the distribution networks, not only because of the number of assets considered, but also because of the
time interval, including summertime, wintertime, working days, and holidays.

According to the methodology detailed in Section 3, the first stage is data analytics. Applying
affinity propagation to cluster those 153 elements results in the composition of four different clusters,
as shown in Figures 8–10, and the identification of their corresponding cluster centers listed in Table 3.
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Table 3. Composition of the clusters.

Cluster Cluster Center Color Cluster Members

1 Secondary Substation D LV Feeder 7 Phase T Dark blue 61
2 Secondary Substation D LV Feeder 14 Phase S Green 47
3 Secondary Substation D Transformer 2 Phase S Light blue 18
4 Secondary Substation E LV Feeder 9 Phase T Red 27

The lowest values obtained at the maximum congestion characteristic can be found in the members
of cluster 4. Although all the power transformers of the group belong to cluster 3, which has the least
number of members, clusters 1, 2, and 4 are highly heterogeneous since they have LV feeder phases
belonging to every secondary substation of the group. In addition to this, three out of the four cluster
centers belong to the same secondary substation, which evidences the diversity among elements that
can be found even in the same asset of the distribution network.

Regarding maximum congestion, 16 distribution network elements have measured values over
95% of their maximum admissible power [18], and 14 out of them reached their nominal maximum
congestion of 100%. Regarding the conventional congestion threshold of 75% [19], 40 elements
experienced congestion over that limit, and only 10 out of them remain over it at 1% of time scenarios.
At the same time, 29 elements present a maximum congestion value measured below 35%, representing
almost the fifth part of the group, and 17 out of them remained below 10%.

The highest number of clients in a secondary substation, by grouping those connected to the three
LV sides of its power transformer, is around 1300 clients, and the lowest is 225, while the average per
LV feeder phase is 37 clients, ranging from 1 to 130. Despite the area being predominantly residential,
representing 50% or more of the clients in 100 LV feeder phases, only 15 LV feeder phases present 100%
industrial clients.

Geographically, more than 600 points of delivery are included in the group of elements, ranging
from 1 to 25 per LV feeder phase and with an average of 14 per each of them. The average length per
LV feeder phase is 200 m. The clustering executed here makes it possible to identify differences that
are not easily discernible a priori, as can be seen in Figure 10, where most of the elements from clusters
1, 2, and 4 are coincident for the represented characteristics.

4.2. Optimization

The second stage of the methodology is optimization. To evaluate the different cluster centers
obtained, a particular φlimit = 35% is set in order to focus the analysis only on potentially risky
congestion states, according to the reality observed in the real electrical network of study of Smartcity
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Malaga Living Lab. In addition to this, φlimit adapts the methodology to the search space without
rejecting any predetermined proportion or number of assets.

Once φlimit restrictions have been checked, it is observed that the cluster center 4, in red in
Figures 8–10, does not satisfy it for any of its points. Therefore, this cluster is out of the following
optimization process because of not being in a situation of risk minimally considerable. At the same
time, applying φlimit to the cluster centers 1, 2, and 3 allow for the focus of the optimization problem
in a limited set of points of their load duration curves, listed in Table 4, corresponding to the most
saturated scenarios.

Table 4. Number of points considered for the execution of the multi-objective particle swarm
optimization (MOPSO) algorithm.

Cluster Center Points in Raw Load Duration Curve Points above φlimit

1 1196 600
2 1772 117
3 597 195

MOPSO is then applied on cluster centers 1, 2, and 3, where a favorable inclination angle
ϕ f av = 75◦, a tolerance band ϕband = 5◦, a maximum number of iterations without any progress
in Pareto front iterPareto f ront = 10, and a maximum number of iterations itermax = 100 have been
set. The initialization of the population is carried out by means of a random stochastic process that
distributes them arbitrarily along the search space. The optimization algorithm that has been executed
for the series of particles and their corresponding points is shown in Table 5.

Table 5. Populations considered for the execution in the MOPSO algorithm.

Case Particles Points per Particle

1 15 3
2 20 3
3 30 3
4 30 5
5 20 5
6 15 5

The results obtained from the MOPSO algorithm developed are displayed in Table 6 showing a
good robustness of the method, with a low standard deviation despite being a stochastic-based method.
Therefore, the methodology can be considered to be slightly dependent on the size of the population.

Table 6. Optimal congestion thresholds of the cluster centers.

Cluster
Center

Maximum
Congestion Measured

Optimal Congestion Threshold

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Standard
Deviation

1 76.65% 68.00% 66.62% 66.00% 67.15% 66.00% 66.00% 0.01
2 47.84% 34.97% 35.55% 35.90% 35.65% 39.62% 37.49% 0.04
3 73.44% 60.97% 64.30% 55.15% 64.57% 64.57% 65.68% 0.05

A representation of the evolution in the values obtained in the three objective subfunctions is
displayed in Figure 11. Particularly, those are the values obtained by the best particle in each iteration
of the algorithm in the Case 1, which is formed by a swarm of 15 particles with 3 points each, applied
to cluster center 1. It must be noted that the role of the best particle can be played by different particles
of the swarm along the different iterations, according to Pareto compliance.
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The example displayed in Figure 11 shows how values obtained for objective subfunctions 1, 2,
and 3 are decreasing progressively, but not continuously, towards the minimum, leading to identifying
a particle with the corresponding optimal congestion characteristic value of 68.00% displayed in
Table 6. The global optimum finally results after 25 iterations, meaning that the stopping criterion of
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10 consecutive iterations without any progress in the Pareto front has been applied; hence, the other
stopping criterion of a maximum number of iterations of 100 has not been reached.

Apart from considering a favorable inclination angle of 75◦ ± 5◦, the MOPSO algorithm has
also been executed for 70◦ ± 5◦ and 65◦ ± 5◦. As shown in the results displayed in Figure 11 for
cluster center 2, the algorithm presents a good stability in the results obtained and therefore a low
dependence on this parameter, as evidenced in Figure 12, despite the varied characteristics of the
swarms employed. In addition to this, it evidences that higher values of favorable inclination angles
result in higher optimal values due to the greater influence of the maximum congestion values
measured in the element.
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4.3. Application on the Distribution Network of the Case Study

The third and last stage of the methodology is its application in LV networks. To do so, once
the congestion thresholds have been determined for each cluster center, the mean threshold ratio is
calculated for each cluster center of the case study, as shown in Table 7.

Table 7. Threshold ratios calculated for the cluster centers.

Cluster Center
Threshold Ratio

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Mean

1 88.71% 86.91% 86.11% 87.61% 86.11% 86.11% 86.93%
2 73.10% 74.31% 75.04% 74.52% 82.82% 78.37% 76.36%
3 83.02% 87.55% 75.10% 87.92% 87.92% 89.43% 85.16%

Therefore, by applying the corresponding mean threshold ratio, an individual, particular optimal
congestion threshold is set for 135 out of the 153 distribution network elements of Smartcity Malaga
Living Lab belonging to clusters 1, 2, and 3. To cite some relevant figures, 22 distribution network
elements have been set with optimal thresholds over the conventional 75% [19] of their maximum
admissible power, 63 elements over 60%, and 78 over 50%.

The numerical results here obtained, as displayed in Figure 13, provide the network operators
with an objective, individual determination of the optimal congestion threshold in order to establish
supervision and control strategies such as those mentioned in Sections 1 and 2. In addition to this,
as shown in Table 8 in the case of the cluster centers, this methodology provides the time scenarios
corresponding to those optimal congestion thresholds.
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Table 8. Threshold ratios and time characteristics of the cluster centers.

Cluster
Center

Maximum
Congestion
Measured

Optimal
Congestion
Threshold

Threshold
Ratio

Optimal
Percentage of
Time Scenario

Optimal
Number of

Time Scenarios

Different
Days of

Occurrence

1 76.65% 66.63% 86.93% 0.025% 27 13
2 47.84% 36.53% 76.36% 0.038% 40 22
3 73.44% 62.54% 85.16% 0.050% 53 28

For instance, in the case of cluster center 1, the optimal congestion threshold determined at 66.63%
potentially means intervening in 0.025% of the year of time considered in this dataset. Even more,
27 different scenarios experienced congestion above that threshold, each one of a 5-min duration,
taking place over 13 different days. In this way, the distribution network elements of the group can be
ranked according to their optimal congestion threshold but also considering the number of congested
time scenarios, as displayed in Figure 14, given the useful additional information provided.Energies 2019, 12, x FOR PEER REVIEW 17 of 21 
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Moreover, the previous set of distribution network elements can also be ranked according to their
optimal congestion threshold but considering now the number of different days presenting congestion,
as displayed in Figure 15; hence, a totally different ranking can be composed, since there is not a direct
relation between them.
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Consequently, this methodology allows DSOs to tackle potential congestion states in their assets
by prioritizing the operation of those distribution network elements which are closer to saturation
according to both the optimal threshold determined and the expected congested situations.

5. Conclusions

This methodology provides a tool that supports DSOs in making decisions to manage congestion
in any of the elements of the distribution network, such as MV/LV power transformers or LV feeders
and their corresponding phases. It allows them to operate and maintain their assets in a preventive way
beyond the classic planning criteria traditionally used, hence bringing an alternative to oversizing and
reinforcements, and not based on previous, subjective precedents. Moreover, the methodology has been
validated with real data obtained from Smartcity Malaga Living Lab, under real operating conditions.

Due to the means available today for the digitalization of the network, the large volumes of data
to be handled far outweigh human experience, as in the case study presented here, based on a dataset
formed by more than 16,000,000 data for a single year from a network related to around 5000 real end
users. The pre-processing performed by means of affinity propagation clustering results in a more
efficient computational analysis. Thus, the 153 distribution network elements considered here were
divided into four clusters, with three of them meeting the restrictions of the optimization problem.
In the case of the fourth cluster, formed by 18% of the distribution network elements, their congestion
levels were not considered to be over a minimum level of risk.

The optimization process carried out provides enriched criteria with respect to traditional methods,
such as considering a fixed threshold of 75%, which implies only 26% of the elements were considered to
be over a minimum risky saturation level, and even less in the case of 95% fixed threshold. Meanwhile,
our MOPSO algorithm not only takes into account congestion, but also time scenarios, in order to
determine an optimal congestion threshold to 82% of the elements of the group of study, characterizing
them individually and under an objective basis. Furthermore, 41% of the elements of the case study
were provided with optimal congestion thresholds over 60% of their nominal admissible power,
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evidencing that using this methodology gives an expanded view of congestion situations that are not
negligible under preventive operation and maintenance standards.

The methodology can be applied to online processing. Nonetheless, an adaptation of the
methodology may be necessary. The computational time required, and the granularity and size
of the dataset considered, must be carefully assessed, having in mind that, as in the case of the
clustering process considered here, data analytics techniques may help in handling those massive
datasets. In addition to this, the availability of online data is a major issue, since proper data acquisition,
processing, and provision to the methodology must be designed, for example by means of big data
techniques [56], since, as the network conditions change, the optimization solution and clusters might
change as well.
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