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Abstract: The development of smart meters that can frequently measure and report power
consumption has enabledelectricity providers to offer various time-varying rates, including
time-of-use and real-time pricing plans. High-resolution power consumption data, however, raise
serious privacy concerns because sensitive information regarding an individual’s lifestyle can be
revealed by analyzing these data. Although extensive research has been conducted to address these
privacy concerns, previous approaches have reduced the quality of measured data. In this paper,
we propose a new privacy-preserving electricity billing method that does not sacrifice data quality
for privacy. The proposed method is based on the novel use of functional encryption. Experimental
results on a prototype system using a real-world smart meter device and data prove the feasibility of
the proposed method.

Keywords: smart meter; electricity billing; privacy; functional encryption; non-intrusive appliance
load monitoring (NIALM); disaggregation

1. Introduction

The traditional electricity metering and billing method, in particular for residential consumers,
involved installing simple electromechanical meters that could be read manually. Meters were typically
read monthly, and customers were charged a rate proportional to their monthly usage. In this situation,
the only option an electricity provider could offer was a “flat” or “fixed” rate, with only slight variations
such as increasing the unit price as consumption increases over the course of the billing period [1].
A typical implementation of this policy is a “tiered” rate plan [2].

With the development and extensive deployment of smart meters, however, providers are now
offering various time-varying rates. The time-of-use (TOU) rate plan divides the day into time periods
and sets a different rate for each period [1]. There are other pricing variations as well, such as critical
peak pricing (CPP) and peak-time rebates (PTR). The most advanced type of plan is real-time pricing
(RTP), which allows price change per hour or even half hour [1,3]. The billing formula for these nonflat
rates can be simplified as follows:

n−1

∑
i=0

riui, (1)
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where n is the number of unit time periods per billing period, ri is the electricity price for time period i,
and ui is the amount of electricity consumed in time period i. Alternatively, the electricity charge can
be represented as the inner product:

〈u, r〉 (2)

of two n-dimensional vectors, r = (r0, . . . , rn−1) and u = (u0, . . . , un−1).
When smart meters measure and report power consumption data more frequently, consumers can

adopt more fine-grained plans regarding their usage. Currently deployed smart meters already deliver
load data with very high resolution, e.g., at five-minute intervals [4]. However, these detailed power
consumption data raise serious privacy concerns, because personal data can be inferred from the energy
use profiles measured by smart meters [5]. Recent advances in non-intrusive appliance load monitoring
(NIALM) and disaggregation techniques make it possible to extract the energy consumption statistics
of an individual appliance from aggregated data involving many appliances [6–13]. Although the
primary goal of these algorithms is to provide the consumer with useful energy feedback, such NIALM
analyses might be misused, compromising privacy by monitoring the consumer’s appliance usage
patterns [14]. Advanced NIALM analysis can reveal significant information regarding the persons
in a household, such as their presence, sleep schedule, and meal times [15]. In extreme cases, if
the sampling interval is sufficiently small, even the television channel that is being watched can be
identified, along with audiovisual content [16]. According to the quantitative analysis in Reference [14],
to guarantee that all appliances are privacy-safe, the measurement interval of a smart meter should be
at least one hour, which is significantly longer than the time resolution of state-of-the-art smart meters.

Consequently, there has been extensive research to resolve this privacy issue [17–19]. Previous
approaches can be classified into the following three categories: (i) Providing only low-resolution data,
i.e., data with decreased time granularity [14,17,18,20], (ii) perturbation or obfuscation of the measured
data by adding controlled noise [21–23], and (iii) aggregation of data from multiple smart meters
using a trusted third party [21], masking [24,25], or additive homomorphic encryption [23,26,27].
However, all of the above methods essentially reduce the quality of the measured data. Consequently,
they cannot be used for granular billing that requires high-resolution metering data from a single
smart meter. As such, there is a tradeoff between the functionality of smart meters and the privacy of
customers.

In this paper, we aim at achieving both functionality and privacy by taking a completely different
approach to privacy-preserving billing methods. Our method allows a smart meter to send the provider
all measured data with full granularity and without privacy leaks. Our proposal is based on the novel
use of a recently developed advanced cryptographic primitive, viz. the functional encryption (FE)
algorithm [28–30]. Using the proposed system, a smart meter encrypts the measured consumption
data u = (u0, . . . , un−1) and sends them to the electricity provider. The provider is provided with
a restricted decryption key associated with r = (r0, . . . , rn−1), with which it cannot directly recover
u, and only obtains the weighted sum (Equation (2)). This approach naturally resolves the privacy
issue because the provider never sees the individual consumption statistic ui for each time period. To
verify the feasibility of the proposed method, we implemented a prototype billing system composed
of a smart meter, a provider’s billing server, and a regulatory agency. In particular, we used an
off-the-shelf smart meter device to represent a real-world scenario. The proposed system does not
require special-purpose hardware. It is realized merely through a software update of the smart meter.
Our experimental results with real measurement data prove that the proposed system performs well
with currently deployed smart meters, eliminating the need to decrease data granularity. According
to the experimental results, only 0.5 s are required for the entire procedure, including the tasks for
the smart meter to encrypt the consumption data u and for the provider to compute the weighted
sum. It should be noted that the proposed method does not render previous methods obsolete; rather,
it can be combined for advanced services. For example, it may be possible to use the new method
for billing and either an aggregation or perturbation method for power generation and distribution
network control.
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2. Preliminaries: Function-Hiding Inner Product Functional Encryption

Functional encryption (FE)is an encryption schemethat supports operations on encrypted
data [28,29]. In FE schemes, the owner of the master key can delegate arbitrary secret keys that
allow decryptors to learn only specific functions of the data. For example, given a ciphertext of a
message x and a secret key restricted to a function f , the decryptor only receives the value f (x), and
does not learn anything about x. If the data x of FE are represented as a vector and the function f is
defined as the inner product of x with a predefined vector v, then a decryptor can recover the inner
product 〈v, x〉 by inputting the ciphertext of vector x and the restricted secret key associated with v.
This FE scheme is called an inner product encryption (IPE) scheme [30–34].

Some IPE schemes provide an additional property, viz. function hiding. In these schemes, both x
and v are kept secret from the decryptor, even though the decryptor possesses the secret key associated
with v. In 2015, Bishop et al. first proposed function-hiding inner product encryption (FHIPE), which
considered these capabilities [31]. Moreover, extensive research is currently under way to improve
the performance of the FHIPE [30,32–34]. In this paper, we used the practical scheme ΠIPE proposed
by Kim et al. in 2018 [30]. The ΠIPE scheme consists of four probabilistic polynomial time (PPT)
algorithms, Setup,KeyGen,Encrypt and Decrypt, as follows. For more details regarding the operations
using bilinear groups, refer to Reference [30].

• Setup(1λ) → (pp,msk): Given a security parameter λ, the setup algorithm Setup outputs the
public parameters pp and the master secret key msk corresponding to λ. More precisely, the setup
algorithm samples an asymmetric bilinear group (G1,G2,GT , q, e), where G1 and G2 are two
distinct groups of prime order q, and e : G1 ×G2 → GT is a function that maps two elements
from G1 and G2 onto a target group GT , also of prime order q. The setup algorithm then chooses
generators g1 ∈ G1 and g2 ∈ G2. Next, the algorithm samples B ← GLn(Zq), where GLn(Zq)

is the general linear group of (n× n) matrices over Zq. Throughout the paper, bold uppercase
letters, e.g., B, refer to matrices. Then, the algorithm sets B? = det(B) · (B−1)>, where det(B)
and (B−1)> denote the determinant of B and the transpose matrix of B−1, respectively. Finally,
the setup algorithm outputs the public parameters pp = (G1,G2,GT , q, e) and the master secret
key msk = (pp, g1, g2, B, B?).

• KeyGen(msk, v) → SKv: Given the master secret key msk and a vector v = (v0, . . . , vn−1), the
key generation algorithm KeyGen chooses a uniformly random element α ∈ Zq and outputs a
secret key:

SKv = (K1, K2) = (gα·det(B)
1 , gα·v·B

1 ).

Note that the second component of SKv is a vector of group elements. That is, according to the
notation in Reference [30], for a group element g ∈ G1 and a row vector u = (u0, . . . , un−1), gu

denotes the vector of group elements, (gu0 , . . . , gun−1).
• Encrypt(msk, x)→ CTx: Given the master secret key msk and an input vector x = (x0, . . . , xn−1),

the encryption algorithm Encrypt chooses a uniformly random element β ∈ Zq and outputs
a ciphertext:

CTx = (C1, C2) = (gβ
2 , gβ·x·B?

2 ).

• Decrypt(pp, SKv, CTx) → z: Given the public parameters pp, a secret key SKv = (K1, K2), and a
ciphertext CTx = (C1, C2), the decryption algorithm Decrypt computes:

D1 = e(K1, C1) and D2 = e(K2, C2).

Then, the algorithm checks whether there exists z, such that (D1)
z = D2, and either outputs z or

an error symbol implying that decryption is impossible. If there is such z, it satisfies z = 〈v, x〉. In
other words, z is the inner product of v and x.

An important property of the above FHIPE is that the decryptor computes z = 〈v, x〉 from SKv and
CTx but does not learn anything about either v or x. It should be noted that the roles of KeyGen and
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Encrypt are symmetric. This symmetry is used to design our system, as explained in the next section
(see Section 3.3).

3. Privacy-Preserving Electricity Billing System

3.1. System Model

Figure 1 shows the proposed system model. We considered a system involving three parties: An
energy service provider (ESP), a smart meter, and a regulatory agency (RA). The ESP is a company
that wants to collect electricity charges in return for the electricity used by smart meter owners. The
smart meter is a device that periodically reports the power consumption of its owner, who agrees to
pay the electricity charges, yet prefers to hide power usage patterns from the ESP. Because electric
power companies are generally monopolies, it is common for RAs to approve prices for electricity [35].
Our model reflects this situation and considers the RA to be a trusted third party with the following
roles: (i) Generating the master secret key and public parameters for FHIPE at the registration stage of
a smart meter, and (ii) encoding the electricity price for each time period according to the request of
the ESP. We remark that the security of the proposed system relies on the trusted RA. That is, if the
RA is compromised, the privacy of users may be invaded. Therefore, appropriate technical measures
should be provided to protect the RA. In addition, we should consider the possibility that the RA might
collude with the ESP. However, as the examples of RA, we considered government agencies such as the
Korea Electricity Regulatory Commission or the US Federal Energy Regulatory Commission [36,37].
These government agencies aim to protect consumers’ rights and interests [36] and assist consumers in
obtaining economically efficient, safe, reliable, and secure energy services at a reasonable cost through
appropriate regulatory and market means [37]. Therefore, it is reasonable to assume that they would
not collude with the ESP. Because RA is a trusted party, it never deviates from the protocol. We assume
that the smart meter is tamper-proof, and accurately measures and reports the electricity usage. Finally,
we assume that ESP is honest-but-curious, i.e., it performs the billing protocol honestly and correctly,
but might try to extract useful information about the electricity usage patterns if the data from the
smart meter are not encrypted.

Figure 1. Proposed system model.

3.2. Representation of Power Consumption Data

For our billing system, we generalized the billing Formulas (1) and (2) as follows. We first defined
a reporting period as the time interval at which the smart meter reports the measured data to the
ESP. This is not necessarily the same as the measurement interval. Therefore, let n be the number of
measurements of power consumption data in each reporting period. For example, if the length of
a reporting period is two hours and the measurement interval is 15 min, then n = 8. Let ui be the
electricity consumption measured at the i-th measurement interval in a reporting period. Let ri be
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the electricity rate at the i-th interval. Then, the electricity charge c for this reporting period can be
determined by the inner product:

c = 〈u, r〉, (3)

of the rate vector r = (r0, . . . , rn−1) with the consumption vector u = (u0, . . . , un−1).

3.3. Redefining the Roles of KeyGen and Encrypt

In this paper, we used the FHIPE scheme proposed in Reference [30]. As explained in Section 2,
the algorithms KeyGen(msk, v) and Encrypt(msk, x) hide the vectors v and x, respectively, from the
decryptor. Although KeyGen was named “key generation” and its result SKv was defined as a secret
key associated with v, SKv can also be viewed as a ciphertext of v. Then, the decryption algorithm
essentially computes the inner product of the two hidden vectors v and x given the two input
ciphertexts SKv and CTx. This property was already mentioned in Reference [30] as a building block to
construct a general two-input functional encryption. In Reference [38] (the full version of [30]), KeyGen
and Encrypt were redefined as “left” and “right” encryption algorithms, respectively. Moreover, it was
estimated in Reference [30] that the speed of KeyGen was faster than that of Encrypt by 1.8 to 5.3 times.
Because it is reasonable to assume that the smart meter is the most resource-constrained among the
three parties in Figure 1, we designed our protocol such that the smart meter can hide the measured
power consumption data vector by performing the lighter KeyGen algorithm (i.e., the left encryption ),
instead of Encrypt (i.e., the right encryption).

3.4. Proposed Privacy-Preserving Electricity Billing Protocol

In this section, we present the privacy-preserving electricity billing protocol, ΠPPB, for our system.
The protocol comprises two stages: The registration stage and the reporting stage.

3.4.1. Registration Stage of Proposed Protocol

Figure 2 shows the registration stage of our protocol. This stage begins with the RA performing
the Setup algorithm of FHIPE. That is, the RA generates a master secret key msk and public parameters
pp satisfying the security parameter λ for the smart meter. Next, the RA sets an identifier ID and n, the
number of measurements of power consumption per reporting period. In addition, the measurement
interval, m, is also set. For example, if the measurement interval m is 15 min and n = 8, the reporting
period will be two hours. This information is also stored in the smart meter. The above process is
performed when the smart meter is deployed and is marked with the red dotted box in Figure 2. Next,
for every billing period, e.g., a month, the smart meter subscribes to an electricity rate plan P and
transmits the tuple (ID, pp, n, m,P) to the ESP. Subscriptions to rate plans can be changed as often as
desired after deployment. In this paper, we considered the electricity rate plans capable of dividing a
day into multiple time periods, as with TOU or RTP. Finally, the ESP stores the tuple (ID, pp, n, m,P).
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Figure 2. Registration stage of our protocol.

3.4.2. Reporting Stage of Proposed Protocol

Figure 3 shows the reporting stage of our protocol. This stage should only be performed
after completing the registration stage. In the reporting stage, the smart meter measures electricity
consumption u = (u0, . . . , un−1) during a certain reporting period rp. Specifically, the smart meter
measures the consumption n times during rp and represents the measured data to vector u. The
smart meter then encodes this vector to U using the EncodeUsage algorithm, which is defined as
EncodeUsage(msk, u) = KeyGen(msk, u). That is, EncodeUsage performs the left encryption algorithm
of FHIPE using the master secret key msk. Next, the smart meter transmits the tuple (ID, rp, U) to the
ESP. Upon receiving the tuple, the ESP generates an n-dimensional rate vector r = (r0, . . . , rn−1) for rp
according to the rate plan P and transmits ID and r to the RA. The RA checks whether the claimed rate
r is reasonable and approves r by encoding it using msk associated with ID. For this purpose, the RA
performs EncodeRate, which is defined as EncodeRate(msk, r) = Encrypt(msk, r). That is, EncodeRate
performs the right encryption algorithm of FHIPE. Note that EncodeRate does not need to be done for
every reporting period unless the rate changes frequently. In this case, EncodeRate can be performed
once in advance, and the result R can be used for many reporting periods. However, we designed our
protocol, as shown in Figure 3, to cover even the most dynamic rate plans (e.g., RTP) where the price
changes in real time. Smart meter users can optimize their power usage while continuously monitoring
real-time price fluctuations during the reporting period. Immediately after the end of the reporting
period, the ESP generates a rate vector r that reflects the tariff for the most recent reporting period.
Upon receiving the approval from the RA, i.e., the encoded rate R, the ESP calculates the electricity
charge c by performing the FHIPE decryption using pp, U, and R. Finally, the ESP adds the charge c
for the reporting period rp to the bill of the smart meter, which has ID as an identifier. This stage is
performed once each reporting period.

Importantly, the ESP does not learn anything about individual ui even though it is given U and
can recover the charge (Equation (3)) by decrypting U. That is, our security objective is met according
to the nature of FHIPE, which is proven in the next section. The FHIPE scheme [30] also protects ri
from a decryptor through right encryption. However, we do not require this property because r does
not need to be secret. In fact, it is generated by the decryptor itself, viz. the ESP, in our protocol.
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Figure 3. Reporting stage of our protocol.

4. Security Analysis

In this section, we review the security properties of the ΠIPE scheme proposed in Reference [30]
and prove the security of the proposed method using reduction from ΠIPE.

4.1. Review of Security for the FHIPE Scheme ΠIPE

Existing inner product encryption schemes, including the ΠIPE scheme [30] we use, considered
an indistinguishability notion of security [30–34]. Here, we review the security notion for ΠIPE. In
Reference [30], an experiment between a challenger and an adversary A that can make key generation
and encryption oracle queries is defined as follows:

Definition 1 (Experiment ExptIPE−INDb [30]). Let b ∈ {0, 1}. The challenger computes (pp,msk) ←
Setup(1λ), gives pp to the adversary A, and then responds to each oracle query type made by A in the
following manner.

- Key generation oracle. On inputting a pair of vectors x0, x1 ∈ Zn
q \{0}, the challenger computes and

returns SK ← KeyGen(msk, xb).
- Encryption oracle. On inputting a pair of vectors y0, y1 ∈ Zn

q \{0}, the challenger computes and
returns CT ← Encrypt(msk, yb).

Eventually, A outputs a bit b′, which is also the output of the experiment, denoted by ExptIPE−INDb (A).

Then, the security of an FHIPE scheme is defined using an indistinguishability notion as follows:

Definition 2 (Admissibility of A [30]). For an adversary A, let Q1 and Q2 be the total number of key
generation and encryption oracle queries made byA, respectively. For b ∈ {0, 1}, let x(1)b , . . . , x(Q1)

b ∈ Zn
q \{0}

and y(1)
b , . . . , y(Q2)

b ∈ Zn
q \{0} be the corresponding vectors thatA submits to the key generation and encryption

oracles, respectively. We say that A is admissible if for all i ∈ [Q1] and j ∈ [Q2], and we have that:

〈x(i)0 , y(j)
0 〉 = 〈x

(i)
1 , y(j)

1 〉.

Definition 3 (IND-Security for IPE [30]). We define an inner product encryption scheme denoted as ΠIPE =

(Setup,KeyGen,Encrypt,Decrypt) as fully-secure if for all efficient and admissible adversaries A:∣∣∣Pr[ExptIPE−IND0 (A) = 1]− Pr[ExptIPE−IND1 (A) = 1]
∣∣∣ = negl(λ),
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where negl(λ) denotes a negligible function in λ.

Theorem 1 ([30]). The inner product encryption scheme ΠIPE is IND-secure in the generic group model.

Remark 1. The original statement in Theorem 7 in Reference [30] is that ΠIPE is SIM-secure in the generic
group model. It was also remarked in Remark 5 in Reference [30] that a SIM-secure scheme is also IND-secure.
We merged these two statements into the above theorem. For more details regarding the SIM-security and a
generic group model, refer to Reference [30].

4.2. Security for the Proposed Privacy-Preserving Electricity Billing Protocol ΠPPB

In the system model of the proposed system, we assumed that an ESP is honest-but-curious. That
is, the ESP might attempt to extract useful information regarding the consumption vector u. As our
security goal against the honest-but-curious ESP, we defined an indistinguishability notion of security
(IND-security) for ΠPPB. Then, we proved the IND-security of ΠPPB using that of ΠIPE.

We began by defining the following experiment between a challenger and an adversary A∗ that
can make usage encoding and rate encoding oracle queries. Although the experiment is designed
similarly to that in Definition 1, the adversary provides the rate encoding oracle with only a single
vector r, instead of a pair of vectors. This definition reflects the situation where the ESP already
knows r.

Definition 4 (Experiment ExptPPB−INDb ). Let b ∈ {0, 1}. The challenger computes (pp,msk)← Setup(1λ)

using ΠIPE, gives pp to the adversary A∗, and then responds to each oracle query type made by A∗ in the
following manner.

- Usage encoding oracle. On inputting a pair of vectors u0, u1 ∈ Zn
q \ {0}, the challenger computes and

returns U ← EncodeUsage(msk, ub) using KeyGen(msk, ub) of ΠIPE.
- Rate encoding oracle. On inputting a vector r ∈ Zn

q \ {0}, the challenger computes and returns
R← EncodeRate(msk, r) using Encrypt(msk, r) of ΠIPE.

Eventually, A∗ outputs a bit b′, which is also the output of the experiment, denoted by ExptPPB−INDb (A∗).

Then, the security of a billing scheme is defined using an indistinguishability notion as follows:

Definition 5 (Admissibility ofA∗). For an adversaryA∗, let Q1 and Q2 be the total number of usage encoding
and rate encoding oracle queries made by A∗, respectively. For b ∈ {0, 1}, let u(1)

b , . . . , u(Q1)
b ∈ Zn

q \{0}
and r(1), . . . , r(Q2) ∈ Zn

q \{0} be the corresponding vectors that A∗ submits to the usage encoding and rate
encoding oracles, respectively. We say that A∗ is admissible if for all i ∈ [Q1] and j ∈ [Q2], and we have that:

〈u(i)
0 , r(j)〉 = 〈u(i)

1 , r(j)〉.

Definition 6 (IND-Security for ΠPPB). We define a privacy-preserving electricity billing protocol ΠPPB as
fully-secure if for all efficient and admissible adversaries A∗:∣∣∣Pr[ExptPPB−IND0 (A∗) = 1]− Pr[ExptPPB−IND1 (A∗) = 1]

∣∣∣ = negl(λ).

Theorem 2. If ΠIPE is IND-secure (according to Definition 3) in the generic group model, then ΠPPB that is
defined using ΠIPE is IND-secure (according to Definition 6) in the generic group model.

Proof of Theorem 2. To conduct a reduction proof, assume that there exists an efficient and
admissible adversary A∗. We showed that A∗ can be used as a subroutine for the adversary
A. We designed A such that it can simulate usage encoding and rate encoding oracles by
forwarding A∗’s corresponding queries to key generation and encryption oracles, respectively.
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Algorithm 1 shows our construction of A. It is straightforward to see that if A∗ is an
admissible, polynomial time algorithm, Algorithm 1 is so, too. In addition, A’s advantage
is the same as that of A∗. That is,

∣∣∣Pr[ExptIPE−IND0 (A) = 1]− Pr[ExptIPE−IND1 (A) = 1]
∣∣∣ =∣∣∣Pr[ExptPPB−IND0 (A∗) = 1]− Pr[ExptPPB−IND1 (A∗) = 1]

∣∣∣. However, this construction contradicts
Theorem 1, which states that an admissible A with non-negligible advantage does not exist. This
completes the proof.

Algorithm 1 Construction of A using A∗

Input: public parameters pp.
Output: a bit b′.

1: Give pp to A∗.
2: while true do
3: if A∗ returns b′ then
4: Return b′.
5: Wait until A∗ submits a query Q.
6: if Q = (u0, u1) is a usage encoding oracle query then
7: Set x0 ← u0 and x1 ← u1.
8: Submit (x0, x1) to the key generation oracle and receive SK.
9: Provide SK to A∗.

10: else . Q = r is a rate encoding oracle query.
11: Set y0 ← r and y1 ← r.
12: Submit (y0, y1) to the encryption oracle and receive CT.
13: Provide CT to A∗.

5. Experimental Results

In this section, we verify the feasibility of the proposed privacy-preserving billing system through
implementation on a real-world smart meter device. To implement the system presented in Figure 1,
we constructed an ESP and RA on separate servers. Both servers were equipped with an Intel Core
i7-7700 CPU (3.60 GHz) and 16 GB RAM. For the smart meter, we used DS-125 Aggregator, a smart
meter device manufactured and deployed by RETIGRID, a company providing smart grid solutions in
Korea. This device was equipped with an ARM Cortex-A8 processor and 512 MB RAM. The software
for the RA, ESP, and the smart meter was implemented in the C++ programming language. We used
the Pairing-Based Cryptography library (PBC) [39] for cryptographic operations involving bilinear map
computation e, as well as the GNU Multiple Precision Arithmetic Library (GMP) [40] for big-number
arithmetic operations, and the Library for doing Number Theory (NTL) [41] for operations over a finite
field, vector, and matrix.

The decryption operation to find z satisfying (D1)
z = D2 essentially solves a discrete logarithm

problem for a small restricted space for z. To accelerate this process, we used the baby-step giant-step
method [42].

Figure 4 shows the software and hardware components of the RA, ESP, and the smart meter. The
storage and network modules were in common, and DS-125 Aggregator contained a measurement
module to measure the amount of consumed electricity. The RA, ESP, and smart meter also differed
with regard to their FHIPE modules. Although their subcomponents were common and all used
PBC, GMP, and NTL, their high-level functions were different, as explained in Section 3.4. That is,
the FHIPE module in RA performed Setup(1λ) and EncodeRate(msk, r) = Encrypt(msk, r), whereas the
FHIPE module in the ESP performed Decrypt(pp, U, R), and that in the DS-125 Aggregator performed
EncodeUsage(msk, u) = KeyGen(msk, u).
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Figure 4. Component modules of proposed system.

To evaluate the proposed system with real-world data, we used measurement data collected by
the Korea Electric Power Corporation (KEPCO) [43] from three sources, viz. an apartment building, a
commercial building, and a factory. Each record in these datasets represents the daily electricity usage
measured at 15-min intervals. The unit of measurement is kWh, and the valid digit of measured values
is up to the second decimal place. Table 1 presents more details of the data, including the measured
period, the number of records, minimum usage, maximum usage, and average usage.

Table 1. Electricity data details [43].

Dataset Building Type Period #Records Min. (kWh) Max. (kWh) Avg. (kWh)

A Apartment January 2018–December 2018 365 0.04 64.84 21.58
C Commercial January 2018–December 2018 365 17.47 77.62 40.36
F Factory January 2018–December 2018 365 3.90 1096.50 320.18

Along with the above data, we considered the rate plans proposed by KEPCO [44]. The rate
plans were TOU rate plans, and the rates were determined by the month ∈ {summer (June to August),
spring/fall (March to May and September to October), winter (November to February)}, the hour
in a day ∈ {the off-peak period of spring/summer/fall/winter (23:00–09:00), the shoulder period of
spring/summer/fall (09:00–10:00, 12:00–13:00, 17:00–23:00), the shoulder period of winter (09:00–10:00,
12:00–17:00, 20:00–22:00), the peak period of spring/summer/fall (10:00–12:00, 13:00–17:00), the peak
period of winter (10:00–12:00, 17:00–20:00, 22:00–23:00)}, and the purpose of electricity usage ∈ {general,
industrial}. The range of the unit rate varied between 21.6 KRW/kWh and 244.1 KRW/kWh, and the
valid digit was up to the first decimal place. We assumed that Datasets A and C used the general rate
plan and that Dataset F used the industrial rate plan. We further assumed that the smart meter reported
the electricity consumption data every two hours. That is, according to the definition in Section 3.2,
the reporting period length was two hours. Because the measurement interval in all datasets was 15
min, the number of measured items per reporting period, i.e., the length of the consumption vector u,
was n = 8. The rationale for setting the reporting period length at two ours was as follows. According
to the analysis in Reference [14], the minimum interval to retain privacy is one hour, as mentioned in
the introduction above. We thus provided a reasonable security margin by setting the interval as twice
the minimum.

The power consumption amount recorded in the datasets listed in Table 1 and the above rates
are represented with decimal fractions. Meanwhile, the operations of the FHIPE scheme [30] are only
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defined over integers. Therefore, to use the FHIPE operations properly without losing significant digits,
u and r need to be quantized. For this purpose, u and r are converted to integer vectors before encoding.
Because the valid digits in u are up to the second decimal place, the elements in u are quantized by
u× 100. Similarly, r is quantized by performing r× 10, because the valid digits in the original r are up
to the first decimal place. Then, the correct electricity charge is recovered by computing c/1000, i.e.,
z/1000.

Here, we present our experimental results. The experiments separately measured the execution
times and data volume exchanged in the two stages: Registration and reporting. The experimental
results for the execution time of the registration stage are presented in Table 2. Note that the
performance of this stage depends on the security parameter λ and the vector size n, which also
decides the dimension s of the matrices in the master secret key. We used the MNT 159 curve for
bilinear group operations. It corresponds to λ = 80, which implies that the time complexity of the
best-known attack algorithm to break the underlying FHIPE is roughly 280. We set n = 8, as explained
above. The measured times are the averages over 10,000 executions. The column SetupRA represents
the time for the operation (msk, pp) ← Setup(1λ) by the RA. The columns StoreRA, StoreSM, and
StoreESP represent the times to perform Store(ID, pp,msk, n, m) by the RA, Store(ID, pp,msk, n, m) by
the smart meter, and Store(ID, pp, n, m,P) by the ESP, respectively. The Network column represents
the overall network overhead for the registration stage. As shown in the table, the registration stage
completed quickly, i.e., in less than 50 ms in total.

Table 2. Breakdown of execution time of the registration stage (milliseconds).

SetupRA StoreRA StoreSM StoreESP Network Total Time

11.54 0.53 9.51 0.02 24.39 45.99

Next, Table 3 presents the experimental results for the execution time of the reporting stage. The
datasets listed in Table 1 and the above rate plans provide us with the electricity consumption vectors
u and the rate vectors r, respectively, for the corresponding reporting periods. Because the length
of a reporting period is 2 hours, the number of reports per day is 12. Because every record in the
datasets corresponds to a single day’s usage, the total number of reports for a dataset is calculated
by #Records× 12. The columns EncodeSM, EncodeRA, and DecryptESP represent the time required
for the operations U ← EncodeUsage(msk, u), R ← EncodeRate(msk, r), and c ← Decrypt(pp, U, R) in
Figure 3, respectively. The figures in Table 3 were obtained by applying these operations for each
reporting period and computing the 10% trimmed means (after eliminating outliers) over each dataset.
We did not separately present the time for generating r in the table because it was negligible. That is,
its average execution time was less than 0.01 ms. However, it was counted in the total time. As shown
in the table, the reporting stage can be completed in less than 1 s. Note that the EncodeUsage operation
required more time than EncodeRate, even though the complexity of EncodeUsage, i.e., KeyGen, is
lower than that of EncodeRate, i.e., Encrypt, according to Reference [30]. This is because EncodeUsage

was performed on a relatively resource-constrained device. This proves that our design strategy of
assigning the smart meter KeyGen instead of Encrypt was effective.

Table 3. Breakdown of execution time of the reporting stage (milliseconds).

Dataset #Reports EncodeSM EncodeRA DecryptESP Network Total Time

A 4380 60.23 42.82 397.44 14.25 514.75
C 4380 60.33 42.81 400.39 14.26 517.80
F 4380 60.48 42.79 424.77 14.33 542.37

Average 60.35 42.81 407.53 14.28 524.97
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Finally, we evaluated the data volume exchanged among the involved entities in the two stages.
Table 4 presents the experimental results for the packet sizes in each stage. In the table, PacketA→B
represents the average size of the packet transmitted from A to B, including the network header and
payload. According to the experimental results, all packets require only moderate bandwidth. The
packet from the RA to the smart meter in the registration stage, which contains msk with two (n× n)
matrices B and B?, consumes the most traffic, but its size is smaller than 8KB. However, we have
to examine the reporting stage more carefully because it is expected to occur more frequently than
registration. In particular, we should also consider the situation where the ESP receives reports from
multiple smart meters. As shown in Table 4, the data volume exchanged between one smart meter, the
ESP, and the RA during a reporting stage is approximately 6 KB in total. If there are N smart meters,
the amount of data exchanged in a reporting stage will be 6N KB. This capacity will be sufficient
to cover a reasonable number of smart meters, but it should be verified though an implementation
involving multiple smart meters. We leave this issue for future research.

Table 4. Data volume exchanged among the entities in the two stages (bytes).

Registration Reporting
PacketRA→SM PacketSM→ESP Dataset PacketSM→ESP PacketESP→RA PacketRA→ESP

7770 860
A 1736 875 3351
C 1740 878 3351
F 1735 871 3351

6. Discussion

In this paper, we proposed a privacy-preserving electricity billing method using FHIPE. To our
knowledge, this is the first method that does not sacrifice data granularity for privacy. We implemented
a prototype billing system composed of a smart meter, an ESP, and an RA. The experimental results
with real measurement data show that the power consumption data of a smart meter can be reported to
a service provider and accumulated for invoicing in less than 1 s and in a privacy-preserving manner.
This proves the feasibility of the proposed system.

We remark that although our experiment was done with TOU, where the rates do not change
frequently, the proposed method can be just as effectively applied to RTP, because the performance of
our cryptographic operations—e.g., EncodeRate and Decrypt—does not depend on whether the values
of ri are identical or distinct.

We finally remark that for advanced services, the proposed method may be combined with other
privacy-preserving protocols. For example, consider a situation where the ESP wants to use the
collected data for a real-time load shedding purpose apart from billing. In this case, the ESP requires
fine-grained readings, i.e., each ui, to control power generation and distribution in real time, which
is not possible with the proposed method. However, note that for this real-time control purpose, the
electricity usage data from each individual smart meter are not necessary, but the aggregate data from
multiple smart meters in a certain geographic region are sufficient. Therefore, we may adopt the
previous research results aiming at spatially aggregating data from multiple smart meters in a cluster.
For example, the method in Reference [23] aggregates spatial consumption of smart meters using a
modified version of the Paillier homomorphic encryption [45]. In the spatial consumption aggregation
protocol proposed in Reference [23], each smart meter j performs a modified Paillier encryption Epk(u

j
i)

using a public key pk, where uj
i is the measurement of smart meter j (0 ≤ j ≤ N− 1) in the i-th interval

(0 ≤ i ≤ n− 1). Then, any smart meter can play the role of an aggregator and aggregates the encrypted
data from N smart meters into ∏N−1

j=0 Epk(u
j
i). According to the property of the Paillier cryptosystem,

Dsk

(
∏N−1

j=0 Epk(u
j
i)
)
= ∑N−1

j=0 uj
i , where Dsk denotes decryption using the private key sk. This protocol

can be combined with ours as follows: The key pair can be set up in the registration stage of the
proposed method, and aggregation may be performed in the reporting stage. However, the aggregation
should be performed n times in each reporting period. It is also possible to set independent reading



Energies 2019, 12, 1237 13 of 15

granularity for each purpose, e.g., 15 min for billing and 5 min for real-time control. However, to realize
the combination of the proposed method and spatial aggregation protocol, many practical issues, such
as optimal parameter-tuning to make the most of the limited resource of a smart meter, should be
addressed through implementation and experiments. We leave these issues for future research.
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