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Abstract: Energy management technology of demand-side is a key process of the smart grid that helps
achieve a more efficient use of generation assets by reducing the energy demand of users during peak
loads. In the context of a smart grid and smart metering, this paper proposes a hybrid model of energy
disaggregation through deep feature learning for non-intrusive load monitoring to classify home
appliances based on the information of main meters. In addition, a deep neural model of supervised
energy disaggregation with a high accuracy for giving awareness to end users and generating
detailed feedback from demand-side with no need for expensive smart outlet sensors was introduced.
A new functional API model of deep learning (DL) based on energy disaggregation was designed
by combining a one-dimensional convolutional neural network and recurrent neural network (1D
CNN-RNN). The proposed model was trained on Google Colab’s Tesla graphics processing unit
(GPU) using Keras. The residential energy disaggregation dataset was used for real households and
was implemented in Tensorflow backend. Three different disaggregation methods were compared,
namely the convolutional neural network, 1D CNN-RNN, and long short-term memory. The results
showed that energy can be disaggregated from the metrics very accurately using the proposed
1D CNN-RNN model. Finally, as a work in progress, we introduced the DL on the Edge for
Fog Computing non-intrusive load monitoring (NILM) on a low-cost embedded board using a
state-of-the-art inference library called uTensor that can support any Mbed enabled board with no
need for the DL API of web services and internet connectivity.

Keywords: smart grid; deep neural networks; non-intrusive load monitoring; supervised energy
disaggregation; deep feature learning; tensor flow; GPU; uTensor

1. Introduction

Commercial and residential buildings consume about 60% of electricity in the world. For instance,
buildings use 74.9% of the generated electricity in the United States of America, and this figure
in Africa is 56%. It is estimated that by 2050, the energy demand by construction sector and use
of energy in roofed spaces will increase by around 80%. These figures highlight the potential of
reducing the energy demand through frugal energy use in buildings [1]. Effective frugal energy
use in residential buildings can be accomplished through real time (RT) monitoring of the energy
consumption of electrical appliances, providing RT feedbacks to end users to improve their awareness
of what electrical appliances should be used at specific times, how much, and the reason for energy
consumption by electrical appliances [2]. In this way, end users have the opportunity to play an active
role in controlling and preventing energy waste. In addition, the way in which they contribute to the
frugal use of energy will be a measure of their motivation to save energy. Studies have shown that
awareness about energy consumption, along with RT feedback to a household, create positive changes
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and lead end users toward sustainable energy use [3]. In general, instant energy usage of electrical
appliances can be determined using smart outlet sensors that determine the energy consumption of
each appliance. Such devices are expensive and demand unique communication protocols [4].

Currently, the use of smart sensors at a large scale has drawn attention to the development
of NILM methods [5]. These methods refer to computational methods where aggregated data of
energy usage from a unique source of data like a smart sensor is used to determine the energy use
of every single electrical appliance in the house. These methods guarantee saving household costs
through implementing RT monitoring of frugal energy consumption of electrical appliances. They also
provide the chance to preserve and save energy. Moreover, the NILM system helps policy makers
to measure the success of their energy performance strategies and predict energy demands. In this
way, the suppliers can plan to supply the demands in an optimum way [6]. The NILM concept is
decades old; however, recently, we have seen a trending interest in this field of research inspired
by parallel advancements in data communications, networks, sensing technology, machine learning,
GPUs, and deep learning methods. The NILM is a principal prerequisite for identifying appliances
and providing energy feedback to the residential consumers; however, it is equally beneficial for the
industrial sector because of its applicability in remote load monitoring and fault detection services,
with no need for intrusive metering and expensive smart sensors.

Hart introduced the primary techniques of NILM in the 1990s to disaggregate the energy
consumption of residential units [7]. Later, researchers introduced different methods for energy
disaggregation and improved the primary disaggregation plan [8]. Following different methods like
the Hidden Markov model (HMM) [9], graph signal processing (GSP) [10], and deep learning (DL) [11],
several advanced NILM algorithms have been proposed. Before 2012, the top technique to extract
features for the classification of images included hand-crafted detectors such as scale invariant feature
transfer (SIFT) and difference of Gaussian [12]. In 2012, the AlexNet proposed by Krizhevsky et al.
won the ImageNet Large Scale Visual Recognition competition with an error score of 15%, chased
by the second algorithm with an error score of 26%. Krizhevsky et al.’s winning algorithm [13] did
not employ a hand-crafted feature detector. As an alternative method, Krizhevsky et al. utilized a
deep neural network (DNN) trained to automatically extract a features hierarchy out of a raw image.
The proposed 1D CNN-RNN method is a DNN-based automatic feature learning method located in
the artificial neural networks (ANN) field, as shown in Figure 1.
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Currently, the use of deep learning is not limited to image classification and it is used in machine
translation, automatic speech recognition, and even learning for playing computer games [14–16].
The present study examines the ability of using DNNs for energy disaggregation. Roos et al. (1999) [17]
utilized NILM in small neural networks for the first time. The mentioned study was a proposal only,
which was in [18] as well. However, a small neural network did not appear as a suitable choice to teach
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recognition of the hierarchy features. A great innovation in image classification took place when the
graphics processing unit (GPU) was introduced to compute power for DNN learning in a huge dataset.
Apart from the traditional methods such as HMM, neural networks, and optimization, the DL methods
are capable of deep feature learning for recognizing appliances with a high accuracy. The advantages
of DL are automatic feature learning, multilayer feature learning, a high accuracy, a high power of
generalization, and hardware and software support by Nvidia, Google. At this point, we examined
DNNs in terms of having a desirable performance for energy disaggregation. The major contribution
of this work is adding a hybrid functional API model to NILM in the area of DNNs.

Three algorithms were examined for each model and one DNN was trained for each target device.
Two benchmark disaggregation algorithms (ConvNet and LSTM (long short-term memory)) were
used to compare the disaggregation performance of the three models based on metrics. Moreover,
generalizability of the proposed method was examined for appliances not seen in the training process
because, eventually, when NILM is deployed at a scale running environment, we very infrequently
have ground truth data of appliances for the houses for which the aim is to disaggregate. Therefore,
it is important that NILM methods are able to generalize to unseen houses. It is notable that after
training, the designed model of energy disaggregation does not require data of appliances of ground
truth from each house. End users just need to acquire aggregate data. That is because each DNN model
trains the extract of its target appliance so that it has the power of generalization to unseen samples of
that appliance. In the same way, DNNs trained to perform the classification of images are trained on
many category samples, such as cats, dogs, etc., and generalize to unseen samples of each category.

To provide more background, we will summarily sketch how presented DNNs could be deployed
at scale. Each DNN undergoes supervised learning on many samples of its target appliance type so that
each DNN trains to generalize fine to unseen appliances. The training process is very expensive and
the processing, even with fast GPU, takes several days. However, processing the training more than
once is not necessary, because after the training of deep neural nets, the model is ready to deploy on a
server or edge device for real-time NILM and appliance classification. In addition, it can be trained on
the 12 h free GPUs named Tesla K80 powered by Google Colaboratory. The inference is much cheaper
when these DNNs are trained; it takes approximately a processing second per network of DNN for a
week of aggregate data on a GPU. In this paper, the DL network is trained with Google Colab on the
free Tesla K80 GPU [19] using Tensorflow backend. Colab is a research tool for machine learning (ML)
research and education. A Jupyter notebook environment requires no setup to use [20]. From unseen
houses, data would be fed to each DNN. Each network of DNN should extract the energy demand
for its target appliance. This application would be computationally high-cost in terms of processing
for a processor embedded in a smart meter. This processing would run on new STM32CubeMx.AI
(3.4.0, STMicroelectronics, Geneva, Switzerland), which is a software tool for the fast mapping of
pre-trained ANN models (generated using off-the-shelf DL frameworks) and is optimized for the
STM32 Microcontroller family [21].

As an alternative, the aggregate data could be sent to the cloud from the smart meter. In the
one 16-bit sampling of 0–64 KW in 1 watt steps, for every ten seconds, the data storage requirements
are 17 KB per day in levels of uncompressed data. This data should be compressible because there
many of periods in demand of domestic aggregate power with slight changes. The overall data storage
requirements for one year of data from 10 M users would be 13 TB using a 5:1 compression ratio, and
neglecting the date time index, which could not occur on two 8 TB hard drives. If a week of data can
be processed in a second per home by using further optimizations, then 10 M user’s data could be
processed by 16 GPU; as another possibility, disaggregation could be operated on a processing device
within each home, such as a laptop, mobile phone, or dedicated hub of disaggregation, which could
process the disaggregation. This processing would run on a Raspberry Pi-based state-of-the art Energy
Disaggregation using Intel’s new Neural Compute Stick (NCS). The Intel Movidius NCS [22] promises
to boost the rate at which the Pi can carry out heavy tasks like facial and object recognition. Although
GPU makes processing faster, it is not required for disaggregation.
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NILM Background

For a technical background of NILM, a basic NILM framework consists of three important stages:
data acquisition (DAQ), feature extraction, and pattern recognition. Figure 2 describes these basic
steps for an NILM platform.
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Figure 2. A schematic of NILM workflow.

Primarily, the energy information is gathered from the power inlets using a data logger or data
acquisition device. Then, the collected data is analyzed based on the feature extraction algorithm.
The objective of this phase is to diminish the dimensionality of the original dataset and smooth the
waveforms of raw signals. The machine learning (ML) algorithm finally compares those extracted
features with various appliance patterns in the database. As an example of research problems and
gaps in demand side management (DSM) referring to [23–25] about DSM information, the main
contributions of the study are the intrusive monitoring-based DSM framework comprised of advanced
communication mediums such as a wireless home area network (HAN) and wireless internet access
(ZigBee), and home energy management systems (HEMS) tested on a microgrid environment which
consists of solar PV, wind, and back-up diesel generators. The proposed smart HEMS in DSM is a fuzzy
logic-based load controller which optimizes household appliances based on the available renewable
generation in the microgrid and local voltage measurements from the smart meter. The current
challenge is focusing on NILM and supervised energy disaggregation based on deep feature learning
(DFL). After training, the proposed deep neural model can be deployed on a smart meter like Figure 3,
which is able to classify home appliances from the data of main meters with no need for expensive
smart outlet sensors.
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With the release of smart meters, the significance of effective NILM methods has risen rapidly.
NILM predicts the energy consumption of individual appliances given their aggregate consumption;
at this point, the contributions of the study are a review of the recent research that has provided novel
insights into the deep neural networks (DNN) and the proposal of a more effective hybrid technique.
In this way, an extreme learning machine approach to effective energy disaggregation is presented,
which can only be monitored at a single, central point in the household, providing various advantages,
such as a high accuracy and reduced cost for metering equipment. The structure of this paper can be
summarized as follows: Section 2 presents some information about the Learning process and error
function in artificial neural networks (ANNs); Section 3 provides an introduction to DNN and explains
how to provide the training data for proposed energy disaggregation through DFL; Section 4 presents
how three architectures of DNN are fitted to NILM; Section 5 expands the 1D CNN-RNN based on
Metrics Tensorboard [26] and describes how to create disaggregation with a functional API model;
Section 6 discusses the disaggregation results of the proposed model and the two benchmark NILM
methods; and finally, Section 7 discusses the conclusions, and proposes future work about DL on the
Edge for NILM.

2. Learning Process and Error Function

The learning process in ANNs, also called the training process, is mostly a function of pattern
recognition. Like human beings, ANNs learn based on examples so that they learn about their
environment by adjusting synaptic weights and the bias level. There are two types of ANN learning;
supervised and unsupervised learning. The former happens under the supervision of a teacher, i.e.,
a programmer. When the teacher sets the outputs (also called target), learning is a function of the
response of ANN to teaching and adjacency of the actual output to the expected output (target).
The latter happens without the presence of a teacher [27,28]. In this work, supervised learning is
adopted. Semi-supervised learning is a combination of tagged and untagged data that is used for
the training process and in general, untagged data are far more common than tagged data. This is
the most suitable method for NILM [29]. It is notable that practical aspects (not only the theoretical
aspects) of NILM are confusing for individuals without knowledge in this area. When supervised and
unsupervised learning is used for machine learning, the training/testing data should be of a similar
range. For energy disaggregation in practice, supervised learning is used for training (aggregated and
sub-meter data are used) and unsupervised learning is used for testing on houses that are not part of
the learning process (only aggregated data is used).

In addition, semi-supervised learning assumes that tagged and untagged data are from the same
range; while in NILM, the data represent different houses, i.e., different ranges. In addition, while both
tagged and untagged data are used for training, the testing phase only uses untagged data from the
houses not included in the learning phase. Thereby, the issue of terminology is not concluded and
needs further consideration. Computation of feed forward through the training process is always done
using error signal feed backward, which represents a learning network. The concept of training NN
(neural networks) is the same as the definition of network error. Rumelhart and McClelland defined a
term of error that related to the difference between the actual output and target outputs [30]. The actual
output is yielded by feed forward computations. The term of error represents a success measure of
training the network with a specific training set. For minimizing the patterns of total error in the
training set, the gradient descent is applied, and weights are modified in proportion to the negative of
an error derivative as in the following equation:

∆wji = −η

[
θE
θji

]
(1)

where, η represents the learning rate (LR) and E represents the total error. At the next step of the
algorithm, the output signal of network, which is now part of the training data, is compared with
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the target output. The difference between the actual and target outputs represents the error of the
output layer neuron. The signal is fed backward for weights adjustment. The mean square error (MSE)
function [31] is the most common error function used in the backpropagation learning algorithm. The
error is computed using the gradient descent method and it is used to minimize MSE between the
actual output and target output for all the probable inputs. The MSE function is defined as

E = 1/2 ∑
k

(
tkj −Okj

)2
(2)

where, tkj is the value of the target from output node k to the hidden node j and Okj is the actual output
from the output node k to the hidden node j.

3. Deep Learning

Deep learning (DL) is a specific set of machine learning (ML) methods using ANN, which is
aspired, to some extent, by neuron structures of the human brain. In a less formal sense, the term
“deep” refers to several layers in the ANN; however, this meaning has changed over time. Four years
ago, 10 layers were enough to assume a network deep, while today, deep networks are comprised
of hundreds of layers. DL is an actual game changer in ML area as it has used a few smart methods
successfully in many different fields (speech, image, text, audio, and video) and displaced the
boundaries. The success of DL lies with access to more training data (e.g., ImageNet in the case
of images) and less expensive GPUs for highly efficient digital computations. Facebook (Menlo Park,
CA, USA), Google (Menlo Park, CA, USA), Microsoft (Redmond, WA, USA), Apple (Cupertino, CA,
USA), Amazon (Seattle, WA, USA), and many other companies use these DLs to analyze a large
volume of data. The technique is no longer limited to front end scientific researchers and it has become
a common practice in large industrial firms and an integral part of modern software. This indicates the
necessity of mastering skills in this area.

3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) have started a deep revolution in DL given their capacity
for processing image-like data using local connections, shared weights, pooling, and several layers [32].
Although the main influence of CNNs has been on machine vision and they use 2D images as inputs,
this paper uses a 1D CNN since the data under consideration are a set of 1D input vectors. Figure 4 is
a graphical illustration of the CNN sequence. Each layer is explained later.
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Figure 4. Representation of 1D CNN architecture.

The input is supplied through a series of convolution layers followed by a max-pooling layer that
form conventional deep structures. “N” represents the number of filters on each layer. One “stride
1” and one “stride 2” are taken into account for convolution and max-pooling stages, respectively.
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Without padding, the input sequence is shortened. The classification output is a softmax [33] layer
with M outputs with the same number of batches. To gain a better understanding of the main layers
constituting CNNs, two examples are pictured in Figure 5. Figure 5a illustrates the filtration of
convolution layers and Figure 5b illustrates the max-pooling process (also called secondary sampling).
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The term “max-pooling” is a better choice as it includes the max function (a, b). Moreover, there
are more sub-sampling functions like mean pooling. Each CNN layer contains a set of filters to extract
connected local information and transfer it to the next layer. Therefore, weights from the previous
layer are connected to weights to the next layer. In this way, CNNs can recognize features that remain
unchanged throughout translation and more details are added to them with an increase in the depth
of the network [34]. The reason for this is that CNNs have gradually replaced feature extractors
engineered by humans, including those used to determine audio patterns.

After a stack of convolution and pooling layers, there can be one or several fully connected layers
before implementation of the softmax function. This is equal to adding one MLP to the end of CNN.
In the case of the softmax activation function, the final layer needs an outputs count equal to the
number of classes. For multi-class problems, the last layers perform the softmax operation, so that the
output is squashed to (0,1) and the sum of outputs will be equal to 1. In this way, the classification
output can be assumed as a probability measurement with the following formula:

g(b)
j= e

bj

∑K
k=1 ebk

(3)

This equation consisted of the j ∈ RK output from softmax activation function g; that is, with a
k-dimensional vector called b, it is connected to the output layer. Although, softmax is an activation
function like the rectified linear unit (ReLU) [35], the derivative has a unique feature of dependence to
the output index, as the equation is computed for all j.

Figure 5a shows a filter with input vectors and one convoluted stride 1; that is, the filter is shifted
one stage by one stage toward the input vector. Afterwards, the central value is updated to be equal to
the weighted sum of the input section and weight of the filter. Figure 5b shows that the max-pooling
filter, i.e., max (a, b), is executed on the output layer of convolution with stride 2 so that the output
vector is obtained with one-half length.
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3.2. Recurrence Neural Networks

When the backpropagation algorithm was introduced, the most exciting application envisioned
for it was in RNNs training. These networks are widely different from multilayer perceptron (MLP)
and CNNs as they have a dynamic memory that can be altered through recurrent connections. Studies
have shown that, thanks to this feature, recurrent networks have a better performance compared to
feed forward neural networks (FFNN) with regard to temporary dependent signals. Cleary, recurrent
neural networks (RNNs) contain a very deep FFNN with layers of the same weights [36]. This is
clearly demonstrated in Figure 6, where an RNN network is unfolded through time. It was through the
unfolding that Backpropagation Through Time (BPTT) was developed for RNN. As the name implies,
by taking RNN as an FFNN, it is possible to perform backpropagation. However, although FFNNs
have different parameters that need to be updated for each layer, RNNs have identical parameters
for each temporary layer. Although RNNs are the same as deep FFNNs in terms of performance,
they suffer from the same problems that we see with large networks, like vanishing/exploding and
loss of gradient.

Given the backward flow of gradient computations through time, using the conventional BPTT
causes a tendency to develop high or low values so that the network incurs the cost of vanishing
or exploding. Error through time depends, in an exponential way, on the weights. Therefore, when
the gradient is explosive, oscillating weights are inevitable. On the other hand, when the gradients
vanished, slow learning or failure is inevitable [37].
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On the left, the network architecture is pictured and the arrow represents the recursive connection.
On the right, the connections are pictured in a space where each time step represents a new layer.

4. D CNN and RNN on NILM

This section discusses the theoretical foundations of the experiments to solve at least some of the
problems discussed above. In their study, Kelly and Knottenbelt [38] used DL techniques to solve the
NILM problem.

4.1. REDD Dataset and Preprocessing

The reference energy disaggregation dataset (REDD) is a free database on NILM that contains
accurate information about the power use of several houses. Its purpose is to expand research work on
energy disaggregation (to determine the share of home appliances of aggregated electrical signals).

The data are specially designed for energy disaggregation work, which means determining
element appliances connected to an aggregation electrical signal. The REDD is comprised of the total
power use of a house and the power used by a special circuit/device for several houses over several
months. For each monitored house, the following items are recorded: a- total electrical signal of the
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house (current monitors at the both power phase and voltage monitor at one phase) recorded at a high
frequency (15 KHz); b- up to 24 unique circuits at a house, with each tagged with home appliance
categorization at 0.5 Hz; c- up to 20 outlet level monitors at a 1 Hz frequency. The main emphasis is on
input electronic devices where several devices are connected on one circuit. Examples of such data are
pictured in Figure 7. On the 15 June 2011, 10 houses were monitored and the data represents 119 days
(combined for all houses), 268 unique monitors, and more than 1TB unprocessed data.
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As noted in [39], REDD is not free of drawbacks. Therefore, before feeding the system with data,
it should be preprocessed. The absent points were “absent range” is less than 20 s, are filled using
the forward filling method (otherwise a void in the data is unavoidable), and the data is sampled
through computing the mean points with a 4-s time gap. To create mini-batches for the neural network,
the ranges with a gap (ranges higher or lower than 4-s) are omitted. Through this, filters at convolution
layers always look for samples with the same gap, which is very important; otherwise, filters will
learn different things with different attempts. All the inputs are modified to yield a mean value of zero.
The data scale is gradually decreased by a fix factor of 500, which helps the primary value assignment.
It is notable that this is not essential at the batch normalization stage, since the batch normalization
ratio to input value remains constant with a change in the scale (BN (Wu) = BN ((αW) u).

4.2. Combining CNN and RNN

Since 1D methods of convolutional networks process the input batches directly and without
dependence, they are not affected by the sequent of time stage (beyond local scale, convolution
windows size), despite RNNs. However, it is possible to aggregate several convolutional and
aggregation layers to recognize long-term patterns, so that the upper layers will consequently
experience longer pieces of the main inputs. It is notable, however, that these methods are not reliable
enough to induce sequence sensitivity. A strategy to combine the speed and agility of convolutional
layers with the sensitivity of RNNs to the sequence is to use a 1D CNN (see Figure 8) as a preprocessing
stage before the implementation of RNN (see Figure 9). This strategy is useful for series that are too
long to be practically processed by RNNs (e.g., sequences with thousands of steps). The convolutional
forms of long input sequences, through this, are converted into very short sequences (down sampled)
with a higher level of features. The sequence of the extracted feature is converted into the input for the
RNN section.
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4.3. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is an RNN, which was first introduced in 1997 by Hochreiter and
Schmidhurber [40]. The architecture is commonly used to solve vanishing gradient problems in vanilla
RNNS [41]. The LSTM uses gates for better control of gradient flow. However, the error is trapped in the
memory at the backpropagation state and creates the known effect of error carousel [42]. This problem
was solved to some extent after the introduction of the peephole connection by Gers et al. [43], so that
accuracy of the model was improved. Gers et al. also introduced forget gates; the gates resulted in
a considerable improvement in performing several tasks featured with a computational operation.
Using these gates, LSTM can learn the irrelevant contents of the memory until local automatic reset.

The input in Figure 9 is first fed to two convolution layers followed by a maxpool layer.
The extracted feature vectors by these layers constitute the input of RNN with 32node LSTM.
The output size of each layer is determined under the layer. At the end, a softmax layer with 16 nodes
is added, which is not pictured in the schematic view. However, the outputs of the last maxpool layer
are accumulated on a big vector before being fed to the output layer.

4.4. Metrics for Evaluating the NILM

There are different metrics that can be used to assess NILM methods, which also makes it hard
to compare assessments based on different methods and algorithms for load monitoring. At first,
when the algorithms are implemented with two modes (ON/OFF), the metrics of assessment are
based on the percentage of correct load classification to notable change in total used power. There are
several metrics available for this purpose and before introducing them, some of the variables need to
be defined:

TP (total number of real positives): When both the device and ground truth are ON.
FP (total number of fake positives): when the device is ON and ground truth is OFF.
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TN (total number of real negatives): when both the device and ground truth are OFF.
FN (total number of fake negatives): when the device is OFF and ground truth is ON.
P- Total number of positives on ground truth.
N- Total number of negatives on ground truth.

These variables are positive when power usage is above the threshold and they are negative when
power usage is less than or equal to the threshold, i.e., y(t) ≤ γ where y(t) stands for power usage in a
time frame and γ is the threshold. The threshold for each device is set manually. This indicates that
when the device is ON, it is not considered as “standby”, although it cannot measure all the aspects
and this makes the algorithm imperfect. Therefore, it is always better to use more than one metric
to measure the capacity of the algorithm. Some of the most common metrics used in this regard are
discussed below.

4.4.1. Proportion of Total Energy Classified Correctly

The proportion of total energy classified correctly (P.T.E.C.C) metric is widely used as it is
compatible with many monitoring methods. This measure pays special attention to devices with high
energy use, which is a good feature as it is important for correct classification and the control of total
use. In scenarios where users do not have control over some devices, such devices constitute a small
part of energy use; therefore, this metric remains a good measure, even with incorrect classification.
When all the available home appliances are taken into account, P.T.E.C.C. can be written as follows:

Acc = 1−
∑T

t=1 ∑n
i=1

∣∣∣y∧(i)t − y(i)t

∣∣∣
2 ∑T

t=1 yt
(4)

When only one device is taken into account, we have:

Acc = 1− ∑T
t=1|y∧t − yt|
2 ∑T

t=1 yt
(5)

where, y[t]t and y∧(i)t represent the actual and estimated energy use by the ith device at tth time,

respectively and y∧t =
n
∑

i=1
yi

t is the total energy use at tth time. It is notable that this metric is different

from the method proposed by Kelly and Knottenbelt (referenced at Section 4.1). They wrote the total
energy use of all home devices as a denominator of the fraction and total energy use of one device as a
numerator. However, since we assess each device separately, the actual energy use of the device is
writing at the denominator.

4.4.2. Mean Normalized Error

Mean normalized error is the relative error in the energy dedicated to each device through time.

Acc =

∣∣∣∑T
t=1 y∧(i)t − ∑T

t=1 y(i)t

∣∣∣
∑T

t=1 y(i)t

(6)

4.4.3. Recall

With regard to the disaggregation of energy, this metric is a part of energy that is classified and
measured correctly.

recall =
true positives

true positives + f alse negatives
(7)
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4.4.4. Precision

With regard to energy disaggregation, this metric represents what percentage of the total energy
assigned to a device is actually used by that device.

precision =
TP

TP + FP
(8)

4.4.5. Accuracy

The ratio of real results in all cases.

accuracy =
TP + TN

P + N
(9)

4.4.6. F1 Score

Harmonized mean accuracy and recall.

recall = 2 ∗ precision ∗ recall
precision + recall

(10)

4.4.7. Mean Square Error

Mean square error is one of the most common metrics used in ML and minimizing it leads to
several statistical advantages.

MSE =
1
n
∗

n

∑
j=1

(
Y∧i −Yi

)2 (11)

Because MSE is a large number in most of the cases, sometimes, it is preferable to use the root
mean squared error (RMSE) defined as RMSE =

√
MSE.

4.4.8. Categorical Cross-Entropy

Li = −∑
j

ti,j log
(

pi, j
)

(12)

where, i stands for instantaneous time, j stands for status of the device, ti,j stands for target probability
of a device at j at the time i, and pi,j is probability of a device at j at the time i. Categorical Cross-Entropy
was used as a metric for training the network.

5. Houses not Seen During the Training for Testing

The proposed algorithm was tested on the houses that were not part of the training process (see
Table 1). The model was trained using 80% of the data and disaggregation was carried out using the
rest of the data. This method is highly similar to the validation against error test, which is normally
used in ML. The following table lists the houses used for training and testing stages. It is notable
that the tests are aimed at demonstrating generalizability of the system, which is the main goal of an
ML model.

Table 1. Selected houses for training/testing.

Device Training Testing

Microwave 1, 3 2
Dish washer 1, 3 2, 4
Refrigerator 1, 3 2, 6

The results of this scenario are pictured in Figures 10–14.
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6. Results

The proposed model was suggested as an effective solution to guarantee energy disaggregation in
smart grids. It was proposed to apply DFL to NILM. The main advantage of RNN DFLs over LSTMs
and denoise autoencoders is that there is no need to fine-tune the whole network by the iterative
back-propagation algorithm. This can quicken the learning speed and strengthen the generalization
performance. The results of the previous sections showed the power of DFL on NILM. All the models
introduced in the paper achieved good results, even when the disaggregation of houses was not taken
into account. Based on the metrics of P.T.E.C.C, Accuracy, Recall, Precision, F1 Score, and MSE are
widely used as they are compatible with many monitoring methods. The 1D CNN-RNN architecture
had the best total performance on House 2 test on Refrigerator and the CNN network had the lowest
performance. This indicates that specially designed architecture is very important for performance,
even in NN of the same type.

In the case of microwave sets, none of the networks demonstrated a considerable performance
and in the case of dishwashers and refrigerators, this indicates the complicated temporary behavior
of these machines. Although RNNs have a good performance with regard to temporary patterns,
the length of the big window used for disaggregation of the refrigerator may jeopardize optimization.
Therefore, any improvement in this regard my lead to a higher performance. The results for house
No.2 were better than other houses. This might be due to the fewer number of circuits in this house
(11 circuits) compared with other houses (20 circuits; see REDD mentioned at Section 4.1). The results
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showed how DNNs can be a good choice for NILM. The final simulation using Google Colab Tesla
K80 GPUs took one day.

The advantages of this study are as follows:

• Implementation of DL in NILM and its potential for problem solving were examined.
• A combined method was introduced to show the approach of implementing DL methods using a

small amount of real data.

7. Conclusions

Energy and sustainability issues raise a large number of problems that can be tackled using
approaches based on data mining and machine learning; however, traction of such problems has been
slow due to the lack of publicly available data. To test the capability of DFL on NILM, we conducted
a series of experiments on the standardized UK Domestic Appliance-Level Electricity (UK-DALE)
dataset. Notably, the amount of training data in this dataset is limited in comparison to that used
for speech and image recognition. This permits us to prove that DFLs are indeed a viable solution to
energy disaggregation when the amount of training data is limited, which hinders the training and
generalization capabilities of state-of-the-art deep models, such as CNN and LSTM. The REDD is the
data that can be downloaded from an initial version of the data set, containing several weeks of power
data for six different homes and high-frequency current/voltage data for the main power supply of
two of these homes. The data itself and the hardware used to collect it were described thoroughly.
Those wishing to use the dataset in academic work should cite REDD paper as the reference. Although
the data set is freely available, for the time being, they still ask those interested in the data to email
(kolter@csail.mit.edu and mattjj@csail.mit.edu) and receive a username/password to download the
data. This paper used the REDD, and we discussed the DL approach to disaggregation and presented
benchmark disaggregation results using the DL technique.

8. Future Works

The solution proposed in this study still needs improvements. The development of combined
models is a good option for several problems like speech recognition. Therefore, combined models are
good options for NILM. It is important to study better Adversarial samples in NILM and create more
stable NNs to work with such samples. It is notable that the models used here can be improved through
using a group of models. Moreover, the objective of the study was to show the potential of DNN in
NILM, not to obtain the best results. NILM can be cost effective, especially when DL is working on a
low-cost embedded platform. Ever since the uTensor [44] project started, a microcontrollers (MCUs)
artificial intelligent (AI) framework, AI on MCUs has enabled cheaper, lower power, and smaller edge
devices. It reduces latency, conserves bandwidth, improves privacy, and enables smarter applications.
uTensor is an extremely light-weight ML inference framework built on Mbed and Tensorflow (see
Figure 15). It consists of a runtime library and an offline tool. The total size of graph definition and
algorithm implementation of a 3-layer MLP produced by uTensor is less than 32 kB in the resulting
binary (excluding the weights).
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As future work, we want to introduce the DL on the Edge devices for NILM on a low-cost
embedded board using a novel uTensor inference library that should support any Mbed enabled board.
uTensor is young and undergoing rapid development.
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