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Abstract: This paper develops a nonlinear analytical algorithm for predicting the probabilistic mass
flow of radial district heating networks based on the principle of heat transfer and basic pipe network
theory. The use of a nonlinear mass flow model provides more accurate probabilistic operation
information for district heating networks with stochastic heat demands than existing probabilistic
power flow analytical algorithms based on a linear mass flow model. Moreover, the computation
is efficient because our approach does not require repeated nonlinear mass flow calculations. Test
results on a 23-node district heating network case indicate that the proposed approach provides an
accurate and efficient estimation of probabilistic operation conditions.

Keywords: integrated energy system; district heating network; probabilistic mass flow analysis;
nonlinear model; analytical algorithm

1. Introduction

The development of a low-carbon sustainable energy system has generated increasing interest
since energy and environmental issues have become more prominent globally. The present direction of
this development has focused on integrated energy systems (IESs) that integrate various energy-related
tasks, such as cooling and heating, and various forms of energy, such as electricity and natural gas,
to provide a comprehensive utilization and management of energy [1]. However, the increasing
integration of energy systems, such as combined heat and power (CHP), gas turbines, and other
energy conversion facilities, has greatly increased their interdependence [2,3]. This interdependence
necessitates increasingly sophisticated planning and operation of energy systems.

Presently, the planning and operation of IESs is generally based on the steady-state modeling and
analysis of IESs. For example, Liu et al. [4,5] established a steady-state model between electricity and
heating networks and proposed an effective mass flow calculation method. Similarly, steady-state
energy-flow analysis between electricity and natural gas networks has been conducted [6,7].
Moreover, steady-state energy flow analysis has been conducted with integrated electricity-gas-heat
systems [8–10]. However, steady-state analyses are essentially deterministic and cannot effectively
address the many uncertainties arising in IESs, such as random fluctuations in cooling, heating,
electricity, and natural gas loads; intermittent energy output fluctuations; generator failures; electric
transmission line and gas pipeline failures; and market uncertainties. Moreover, different energy
networks have different mutual influences affecting their interdependencies. These studies highlight
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the necessity of investigating the planning and operation problem of gas/heat systems that are
interdependent with power systems.

Recently, numerous studies have sought to develop analysis methods capable of addressing
the influence of uncertainties on power networks [11–13]. For example, Chen et al. [14] considered
the uncertainties of electricity, gas, and heat loads and wind farm outputs within the framework of
steady-state energy flows and employed Monte Carlo simulations to solve the probabilistic energy
flow of IESs. The effects of various uncertainties on IES reliability have also been studied [15].
A probabilistic steady-state analysis of integrated electricity, gas, and heating networks has been
proposed based on Latin hypercube sampling and the Nataf transformation [16]. A stochastic
scheduling model is proposed for the interconnected EHs considering integrated demand response
(DR) and wind variation [17]. In addition, ensemble prediction systems (EPSs) have laid a foundation
for the quantitative analysis and evaluation of the influence of uncertain factors in IESs. In an
EPS, the statistical characteristics of random output variables can be obtained according to the
statistical characteristics of random input variables by the calculation of probabilistic flows. The
methods for solving probabilistic flows include simulation methods [18,19], analytical methods [20,21],
and approximation methods [22–24]. Monte Carlo simulation is the most common simulation method
employed to test the accuracy of probabilistic power flows. The middle semi-invariant method is
the most widely employed analytical method owing to its high calculation efficiency. Finally, the
most representative point estimation method represents a very commonly adopted approximation
method because it requires no knowledge regarding the specific functional relationship between input
quantity and output quantity. At present, the probabilistic power flow calculation in power systems
has been extensively investigated. However, it should be clarified that few studies have investigated
probabilistic mass flows in thermal systems. Moreover, usage of nonlinear analytical algorithms for
solving probabilistic mass flows has not been discussed.

The present work addresses these deficiencies in past works by developing a nonlinear analytical
algorithm for predicting the probabilistic mass flow of a radial district heating network based on the
principle of heat transfer and basic pipe network theory. First, the variance of mass flow through a
pipe connected with a heat source is obtained according to the power balance equation of a district
heating network. Then, the functional relationship between the mass flow variances between pipes
in the network is deduced to obtain the variance of mass flow in the entire pipe network. Second, a
functional expression of the pipe network node temperature is derived, and the covariance matrix of
the mass flow through the pipe network is obtained. Finally, the variance of the node temperature
can be obtained. The validity and rationality of the proposed algorithm is verified by application to
a 23-node radial district heating network with various pipe lengths under thermal load fluctuations
of various magnitudes. The probabilistic results obtained can provide comprehensive information of
real-time IES operating conditions, which is valuable for IES planning, operations, and risk assessment.

2. Probabilistic Energy Flow Model of a Radial District Heating Network

2.1. Steady-State District Heating Network Model

The steady-state model of a district heating network includes a hydraulic model and a
thermodynamic model. The hydraulic model includes the joint flow equilibrium equation and the
pressure head loss equation, which are, respectively, expressed as follows:

Am = mq (1)

hf = Km|m|. (2)

where, A is the node-branch incidence matrix. m and mq represents, respectively, vectors of mass flow
rate within each pipe and the injected mass flow at the nodes (kg/s). hf represents the vector of head
losses (m), and K represents the vector of resistance coefficient of pipes. The thermodynamic model
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includes the thermal load power equation, the pipe temperature change equation, and the node power
conservation equation, which are, respectively, given as follows:

Φ = Cpmq(Ts − To) (3)

Tend = (Tstart − Ta)e−hL/(Cpm) + Ta (4)

(∑ mout)Tout = ∑ (minTin). (5)

where Φ represents the vector of the heat power consumed or supplied (MW). Cp is the specific heat
of water, and Cp = 4182 × 10−3 MJ·kg−1·◦C−1. Ts represents the vector of supply temperatures at
nodes (◦C). To represents the vector of the outlet temperature of flow at the outlet of nodes before
mixing in the return network (◦C). Tstart and Tend represents the temperatures at the start node and
end node of the pipe, respectively (◦C). h represents the total heat transfer coefficient per unit length
(W/(m·k)). L represents the length of the pipe (m). Ta represents the ambient temperature (◦C). mout

and min are, respectively, the mass flow rate leaving and entering the node (kg/s). Tout represents the
mixture temperature at the node (◦C), and Tin represents the temperature of mass flow entering the
mixing node at the end of the incoming pipe (◦C).

Equations (1)–(5) are nonlinear equations, where the coupling relationship between temperature
and mass flow is strong, and exponential terms are involved. Therefore, solving these equations for
realistic thermal pipe networks directly is quite difficult owing to the high computational complexity
involved and the inability for ensuring numerical stability.

2.2. Probabilistic Thermal Load Model

In general, thermal loads can be described probabilistically in terms of a normal distribution.
Accordingly, the thermal load probability density function (PDF) can be described as:

f (ϕ) =
1√

2πσϕ
exp[− (ϕ− µϕ)

2

2σ2
ϕ

], (6)

where µϕ and σϕ are the respective mean and standard deviation of thermal load ϕ.

2.3. Approximate Model of Probabilistic Mass Flow in a Radial District Heating Network

An approximate model of probabilistic mass flow in a radial district heating network consisting
of a heat source node H, three pipes, and three nodes is shown in Figure 1. Here, the circled values
represent pipes, and the arrows represent the direction of mass flow rates. As demonstrated in
Appendix A, the heat loss of a pipe can be estimated as follows:

∆ϕ ≈ hL(TH − Ta). (7)

The thermal power balance equation for the heat source node H and a pipe network consisting of
N pipes and N nodes is described as:

Cpm1(TH − To) = ∑ (ϕi + ∆ϕi), (8)

where m1 is the mass flow rate of pipe 1, TH is the temperature of the CHP source, To is the return
temperature of the CHP source, ϕi is the thermal load of node i, and ∆ϕi is the thermal power loss of
pipe i. Reordering Equation (8) yields an expression for m1:

m1 =
∑ (ϕi + ∆ϕi)

Cp(TH − To)
. (9)
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Figure 1. Probabilistic mass flow model of a radial district heating network consisting of a heat 
source node H, three pipes, and three nodes. Here, the circled values represent pipes and the arrows 
represent the direction of mass flow rates. 
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Figure 2. Illustration describing the calculation of the mass flow rates correlation coefficient. 

Figure 1. Probabilistic mass flow model of a radial district heating network consisting of a heat source
node H, three pipes, and three nodes. Here, the circled values represent pipes and the arrows represent
the direction of mass flow rates.

These expressions can be simplified according to the following discussion:

Lemma 1. If a real value X lies within a normal distribution N(µ,σ2) (i.e., X ∼ N(µ, σ2)), and a and b are
real numbers, then aX + b ∼ N(aµ, (bσ)2).

Lemma 2. If X ∼ N(µX, σ2
X) and Y ∼ N(µY, σ2

Y), where X and Y are statistically independent, then the
sum of X and Y also satisfies a normal distribution, i.e., X + Y ∼ N(µX + µY, σ2

X + σ2
Y).

It can be seen from Equation (7) that ∆ϕ is approximately constant, so that its variance is
approximately zero. Assuming that the thermal load obeys an independent normal distribution, it is
known from Lemma 2 that ∑ (ϕi + ∆ϕi) also obeys a normal distribution with a standard deviation
σ. Therefore, the standard deviation of the mass flow rate of pipe 1 can be obtained by Lemma 1
as follows:

σm1 =
σ

Cp(TH − To)
. (10)

Lemma 3. If (X, Y) ∼ N(µX , µY, σ2
X , σ2

Y, ρ), where ρ is the correlation coefficient between random variables X
and Y, then any non-zero linear combination of X and Y also lies within a normal distribution, i.e., aX + bY ∼
N(aµX + bµY, a2σ2

X + b2σ2
Y + 2abρσXσY).

Lemma 4. For two-dimensional random variables, independence and irrelevance are equivalent characteristics.

The correlation coefficient between mass flow rates can be investigated according to Lemma 3
based on the schematic presented in Figure 2. Here, the correlation coefficient between mass flow rates
mi and mj is assumed to be ρij. Because mi and mj originate from the same node, mi and mj mainly
depend on the thermal energy flowing through pipes i and j. Therefore, the value of ρij is very small,
and the correlation coefficient between mi and mj can be approximated as 0. As can be seen from
Lemma 4, mi and mj can be considered to be independent of each other. The flow balance equation for
node k can be determined from Figure 2.
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mk = mi + mj. (11)

Combining Equation (11) and Lemma 3 yields the following:

σ2
mk

= σ2
mi

+ σ2
mj

+ 2ρijσmi σmj. (12)

Because ρij ≈ 0, Equation (12) can be given as:

σ2
mk

= σ2
mi

+ σ2
mj

. (13)

As shown in Appendix B, setting the sum of all thermal loads flowing through pipe i to ∑ ϕi and
its variance as ∑ σ2

ϕi
and setting the sum of all thermal loads flowing through pipe j to ∑ ϕj and its

variance as ∑ σ2
ϕj

yield the following expressions:

σ2
mi
≈

∑ σ2
ϕi

∑ σ2
ϕi
+ ∑ σ2

ϕj

σ2
mk

(14)

σ2
mj
≈

∑ σ2
ϕj

∑ σ2
ϕi
+ ∑ σ2

ϕj

σ2
mk

. (15)

Because the variance σ2
m1

of the mass flow through pipe 1 is known from Equation (10), the
variances of the mass flow rate through pipes adjacent to pipe 1 can be obtained according to
Equations (14) and (15), and the variances of mass flow rates through all other pipes in the network
can be obtained in the same way. This process is generalized as follows.

If n pipes are connected to node k and the pipe indices are defined as i1, i2, . . . , in, then
Equations (14) and (15) can be established for all mass flow rates in the pipe network as follows:

σ2
mi1
≈

∑ σ2
ϕi1

∑ σ2
ϕi1

+ ∑ σ2
ϕi2

+ . . . + ∑ σ2
ϕin

σ2
mk

(16)

σ2
mi2
≈

∑ σ2
ϕi2

∑ σ2
ϕi1

+ ∑ σ2
ϕi2

+ . . . + ∑ σ2
ϕin

σ2
mk

(17)

. . . . . .

σ2
min
≈

∑ σ2
ϕin

∑ σ2
ϕi1

+ ∑ σ2
ϕi2

+ . . . + ∑ σ2
ϕin

σ2
mk

. (18)

Accordingly, the following equations for pipe i can be obtained:

Cpmi(Tstarti − Tendi
) = ∆ϕi (19)

∆ϕi = hiLi(Tstarti − Ta). (20)

Here, Tstarti and Tendi indicates the temperature at the start and the end of pipe i respectively.
Equation (19) can be revised according to Equation (20) as follows:

Cpmi(Tstarti − Tendi
) = hiLi(Tstarti − Ta), (21)

which can be rewritten as:

Tstarti − Tendi
=

hiLi(Tstarti − Ta)

Cpmi
. (22)
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If the temperature of node i is Ti, the mass flow rate is from H to node i, and the pipes transmitting
the mass flow rates are re-indexed as x1, x2, . . . , xk, while the temperatures of the nodes are re-indexed
as Tx1 , Tx2 , . . . , Txk . This yields the following for pipe 1 in Figure 1 (i.e., pipe x1):

TH − Tx1 =
hx1 Lx1(TH − Ta)

Cpmx1

, (23)

while the following is obtained for the pipe 2 in Figure 1 (i.e., pipe x2):

Tx1 − Tx2 =
hx2 Lx2(Tx1 − Ta)

Cpmx2

. (24)

Similarly, this can be extended for an arbitrary pipe xk as follows:

Txk−1 − Txk =
hxk Lxk (Txk−1 − Ta)

Cpmxk

. (25)

Adding Equations (23)–(25) yields the following:

TH − Txk =
hx1 Lx1(TH − Ta)

Cpmx1

+
hx2 Lx2(Tx1 − Ta)

Cpmx2

+ . . . +
hxk Lxk (Txk−1 − Ta)

Cpmxk

, (26)

which can be written as:

Txk = TH − {
hx1 Lx1(TH − Ta)

Cpmx1

+
hx2 Lx2(Tx1 − Ta)

Cpmx2

+ . . . +
hxk Lxk (Txk−1 − Ta)

Cpmxk

}. (27)

Lemma 5. Assume that a continuous random variable X has a probability density function fx(x). It is also
assume that a function y = g(x) is monotonous and its inverse function is x = g−1(x). Accordingly, Y = g(X) is a
continuous random variable whose probability density function is:

fY(y) = fX [g−1(y)]|dg−1(y)
dy

|.

The PDF of a random variable x = m obtained from a normal distribution is:

f (x) =
1√

2πσi
e
−(x−ui)

2

2σ2
i , (28)

where ui and σi
2 are the mean and variance, respectively. Therefore, the probability density function of

y = 1/x = 1/mi is given from Lemma 5 as follows:

f (y) =
1
y2 ·

1√
2πσi

e
−( 1

y−ui)
2

2σ2
i , (29)

which can be written in the following form:

f (y) =
1
y2 ·

1√
2πσi

e
−(1−uiy)2

2σ2
i y2

=
1
y2 ·

1√
2πσi

e−(y−
1
ui
)

2
/(2σ2

i y2/u2
i ). (30)

Based on the form of Equation (28), if the mean of y in Equation (30) is 1/ui, the standard deviation
is (σi·y)/ui, where y = 1/ui. As such, the standard deviation of Equation (30) is σi/ui

2, and Equation (30)
can be rewritten as follows:
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f (y) =
1√

2π(σi/u2
i )

e−(y−
1
ui
)

2
/(2σ2

i /u4
i ). (31)

Therefore, if the mean and standard deviation of a random variable x = mi obtained from a normal
distribution are, respectively, ui and σi, then y = 1/x = 1/mi approximates a normal distribution, and
its mean and standard deviation are 1/ui and σi/ui

2, respectively.
Similarly, as shown in Appendix C, the correlation coefficient between mass flow rate mk and mi

in Figure 2 (ρki) and the correlation coefficient between mass flow rate mk and mj (ρkj) can be obtained
as follows:

ρki ≈
σmi√

σ2
mi

+ σ2
mj

(32)

ρkj ≈
σmj√

σ2
mi

+ σ2
mj

. (33)

Lemma 6. Assuming that the correlation coefficient between mass flow rate mA and mB for adjacent pipes A
and B, respectively, is ρAB and the correlation coefficient between mass flow rate mB and mC for adjacent pipes B
and C, respectively, is ρBC, then the correlation coefficient between mA and mC is ρAC = ρAB·ρBC if only a single
unique path leads from pipe A to pipe C.

The correlation coefficients of any two mass flow rates through pipes x1, x2, . . . , xk can be obtained
from Equations (32) and (33) and Lemma 6. Accordingly, assuming that the correlation coefficient
between mass flow rate passing through pipes x1 and x2 is ρ12, and ρ21 = ρ12, the covariance matrix ∑
of the district heating network can be given as follows:

∑ =


σ2

1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ1σ2 σ2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρn1σ1σn ρn2σnσ2 σ2
n

. (34)

When a thermal load fluctuates, the temperature change of the corresponding node is relatively
small. Then, the temperatures TH , Tx1 , . . . , Txk−1 in Equation (27) are desirable for their mean value,
where the error is small at this time and can be approximately ignored.

Lemma 7. If X = (X1, X2, . . . , Xn) follows the n-dimensional normal distribution N(a, B) and C is an arbitrary
m × n matrix, then Y = C·X follows the m-dimensional normal distribution N(C·a, C·B·CT), where a and B are
the mathematical expectation and covariance matrix of the random variable X, respectively.

According to Lemma 7, the probability distribution of Txk (or Ti) in Equation (27) can be obtained
from Equations (32)–(34).

2.4. Coupling Elements between Electrical and District Heating Network

The coupling elements acting between electrical and district heating network include cogeneration
CHP units, heat pumps, electric boilers, and circulating pumps. Both electrical and thermal energy
are supplied by CHP units simultaneously. Heat pumps and electric boilers convert electrical
energy into heat. Circulating pumps consume electrical energy to circulate water in the thermal
system. These coupling components help to increase the operational flexibility of interconnected
electrical-thermal IESs.

CHP units can be divided into two types, depending on whether they employ a fixed
thermoelectric ratio (such as gas turbines and reciprocating internal combustion engines) or a variable
thermoelectric ratio (such as exhaust steam turbines). A fixed thermoelectric ratio Cm and a variable
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thermoelectric ratio Cz can be obtained from the electrical energy generation PCHP and the heat
generation ϕCHP of a CHP unit as follows:

Cm = ΦCHP/PCHP (35)

Cz = ∆Φ/∆P = ΦCHP/(ηeFin − PCHP). (36)

Here, ηe is the condensation efficiency, and Fin is the fuel input rate of the CHP unit.

3. Case Study

The 23-node radial district heating network shown in Figure 3 was employed for conducting a
case study of the proposed nonlinear analytical algorithm for predicting the probabilistic mass flows
of radial district heating network. The CHP source temperature TH is constant at 80◦C. The return
water temperature To of the load node is constant at 45◦C. The ambient temperature Ta is simplified
to be a constant, which is set as 10 ◦C. The remaining parameters of the district heating network are
presented in Appendix D.

The mean mass flow rate (µm), standard deviation of the mass flow rate (σm), mean node
temperature (µT), and standard deviation of the node temperature (σT) obtained for the test system
using the proposed method with those obtained using the Monte Carlo method (simulated 50,000 times)
expressed as µm,mcs, σm,mcs, µT,mcs, and σT,mcs, respectively are compared. Assuming that the Monte
Carlo simulation values are approximately accurate, the error in our analytical algorithm according
to the absolute value differences between the two values obtained, which are represented by (|µm −
µm,mcs|/µm,mcs) × 100% = δµ,m, |σm − σm,mcs| = δσ,m, (|µT − µT,mcs|/µT,mcs) × 100% = δµ,T, and
|σT − σT,mcs| = δσ,T, are evaluated. Four tests were conducted. Test 1 involved setting each mean
thermal load (µϕ) to 0.5 MW with fluctuations (σϕ) within ±10%. If this fluctuation corresponds to
the 99.7% confidence level for a Gaussian distribution, then the standard deviation of each thermal
load is 0.5 × 0.1/3 = 0.0167 MW. Test 1 was divided into two parts, where the first part employed L =
300 m, while the second part of the test employed L = 1000 m. Test 2 involved the same µϕ = 0.5 MW
as test 1, but with L = 1500 and a range of thermal load fluctuations within ±10%, ±20%, ±30%,
and ±40%. Test 3 compared the mean and standard deviations of pipe temperature drops obtained
for the test system using the proposed method, which are expressed as µ∆T and σ∆T, respectively,
with those obtained using Monte Carlo (simulated 50,000 times), expressed as µ∆T,mcs∆ and σ∆T,mcs,
respectively. The absolute value differences between the two values obtained are represented as (|µ∆T
− µ∆T,mcs|/µ∆T,mcs) × 100% = δµ, ∆T and |σ∆T − σ∆T,mcs| = δσ, ∆T. Test 3 again involved setting µϕ =
0.5 MW, as test 1, and three conditions were considered, including σϕ = ±10% with L = 300 m, σϕ =
50% with L = 300 m, and σϕ =±50% with L = 1000 m. Test 4 was divided into four parts, where the first
part employed µϕ = 1 MW, σϕ = ±10%, and varying values of L from 100 m to 2000 m; the second part
employed L = 500 m, σϕ = ±10%, and varying µϕ from 0.2 MW to 2.0 MW; the third part employed L
= 500 m, µϕ = 1 MW, and varying σϕ from 0 to ±50%; and the fourth part employed σϕ = ±10% with
varying values of both L and µϕ.
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3.1. Test 1-Typical Mean and Variances of Network States

(1) For part 1 of test 1, the calculated mean and standard deviations of the mass flow rates
and node temperatures for selected pipes are shown in Tables 1 and 2, respectively, along with the
differences between the values.

Table 1. Typical mean and standard deviations of mass flow rates. (Test 1: L = 300 m; µϕ = 0.5 MW;
σϕ = ±10%).

Pipe Number µm (kg/s) σm (kg/s) µm,mcs (kg/s) σm,mcs (kg/s) δµ,m (%) δσ,m (kg/s)

1 41.7594 0.3944 41.7603 0.3920 0.0022 0.0024
4 27.9077 0.3232 27.9088 0.3220 0.0039 0.0012
6 6.9896 0.1616 6.9894 0.1612 0.0029 0.0004
9 6.9404 0.1616 6.9399 0.1619 0.0072 0.0003
10 3.4714 0.1143 3.4710 0.1146 0.0115 0.0003
13 6.9674 0.1616 6.9677 0.1617 0.0043 0.0001
14 3.4858 0.1143 3.4857 0.1144 0.0029 0.0001
17 10.4813 0.1979 10.4824 0.1977 0.0105 0.0002
19 3.4981 0.1143 3.4993 0.1152 0.0343 0.0009

Table 2. Typical mean and standard deviations of node temperature. (Test 1: L = 300 m; µϕ = 0.5 MW;
σϕ = ±10%).

Node Number µT (◦C) σT (◦C) µT,mcs (◦C) σT,mcs (◦C) δµ,T (%) δσ,T (◦C)

1 79.9614 0.0004 79.9614 0.0004 0.0000 0.0000
4 79.8111 0.0019 79.8111 0.0019 0.0000 0.0000
6 79.5657 0.0058 79.5656 0.0059 0.0001 0.0001
9 79.7678 0.0039 79.7677 0.0039 0.0001 0.0000
10 79.4413 0.0138 79.4408 0.0138 0.0006 0.0000
13 79.6116 0.0058 79.6115 0.0058 0.0001 0.0000
14 79.2986 0.0148 79.2981 0.0148 0.0006 0.0000
17 79.6442 0.0040 79.6442 0.0041 0.0001 0.0001
19 79.1776 0.0148 79.1772 0.0153 0.0004 0.0005

(2) For part 2 of test 1, the calculated mean and standard deviations of the mass flow rates and
temperature for selected pipes are shown in Tables 3 and 4, respectively, along with the differences
between the values.
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Table 3. Typical mean and standard deviations of mass flow rates. (Test 1: L = 1000 m; µϕ = 0.5 MW;
σϕ = ±10%).

Pipe Number µm (kg/s) σm (kg/s) µm,mcs (kg/s) σm,mcs (kg/s) δµ,m (%) δσ,m (kg/s)

1 43.5224 0.3944 43.5218 0.3945 0.0015 0.0001
4 29.2376 0.3232 29.2357 0.3219 0.0066 0.0013
6 7.3506 0.1616 7.3499 0.1645 0.0096 0.0030
9 7.1903 0.1616 7.1909 0.1622 0.0081 0.0006
10 3.5991 0.1143 3.5992 0.1152 0.0009 0.0010
13 7.2785 0.1616 7.2777 0.1635 0.0112 0.0019
14 3.6462 0.1143 3.6458 0.1169 0.0105 0.0027
17 11.0159 0.1979 11.0150 0.2016 0.0079 0.0037
19 3.6862 0.1143 3.6859 0.1184 0.0084 0.0041

Table 4. Typical mean and standard deviations of node temperature. (Test 1: L = 1000 m; µϕ = 0.5 MW;
σϕ = ±10%).

Node Number µT (◦C) σT (◦C) µT,mcs (◦C) σT,mcs (◦C) δµ,T (%) δσ,T (◦C)

1 79.8767 0.0011 79.8766 0.0011 0.0000 0.0000
4 79.3994 0.0058 79.3993 0.0058 0.0001 0.0001
6 78.6283 0.0173 78.6279 0.0178 0.0006 0.0005
9 79.2573 0.0121 79.2571 0.0121 0.0003 0.0000
10 78.2206 0.0425 78.2194 0.0422 0.0016 0.0003
13 78.7685 0.0176 78.7680 0.0176 0.0006 0.0001
14 77.7879 0.0448 77.7863 0.0449 0.0020 0.0000
17 78.8741 0.0120 78.8738 0.0124 0.0003 0.0004
19 77.4259 0.0437 77.4244 0.0458 0.0019 0.0021

It can be noted from Tables 1 and 3 that increasing the value of L from 300 m to 1000 m, while
holding the mean thermal loads and fluctuations constant, increased both the mean mass flow rates
error and the mass flow rates standard deviation error. Nonetheless, the maximum error in the mean
mass flow rate was less than 0.03%, while the maximum error in the standard deviation of the mass
flow rate was less than 0.004 kg/s. Tables 2 and 4 indicate that similar results were obtained for
the mean temperature error and the temperature standard deviation error, where both increased
with increasing L, although the maximum mean temperature error was less than 0.002%, while the
maximum temperature standard deviation error was less than 0.002 ◦C.

3.2. Test 2-Typical Mean and Variances of Network States

For test 2, the calculated mean and standard deviations of the mass flow rate and temperature for
selected pipes are shown in Tables 5 and 6, respectively, along with the differences between the values.

Table 5. Typical mean and standard deviations of mass flow rates. (Test 2: L = 1500 m; µϕ = 0.5 MW).

Thermal Load
Fluctuation Pipe NO. µm (kg/s) σm (kg/s) µm,mcs (kg/s) σm,mcs (kg/s) δµ,m (%) δσ,m (kg/s)

Within 10%

1 44.7603 0.3944 44.7619 0.3962 0.0037 0.0017
4 30.1700 0.3232 30.1701 0.3252 0.0001 0.0020
6 7.6035 0.1616 7.6041 0.1652 0.0082 0.0036
19 3.8179 0.1143 3.8181 0.1200 0.0058 0.0058

Within 20%

1 44.7603 0.7889 44.7641 0.7866 0.0084 0.0023
4 30.1700 0.6464 30.1713 0.6467 0.0042 0.0004
6 7.6035 0.3232 7.6055 0.3328 0.0260 0.0096
19 3.8179 0.2285 3.8180 0.2412 0.0036 0.0127
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Table 5. Cont.

Thermal Load
Fluctuation Pipe NO. µm (kg/s) σm (kg/s) µm,mcs (kg/s) σm,mcs (kg/s) δµ,m (%) δσ,m (kg/s)

Within 30%

1 44.7603 1.1833 44.7514 1.1921 0.0198 0.0087
4 30.1700 0.9696 30.1628 0.9737 0.0240 0.0041
6 7.6035 0.4848 7.6054 0.4961 0.0255 0.0113
19 3.8179 0.3428 3.8176 0.3618 0.0068 0.0190

Within 40%

1 44.7603 1.5778 44.7499 1.5876 0.0231 0.0098
4 30.1700 1.2928 30.1597 1.2960 0.0343 0.0032
6 7.6035 0.6464 7.6020 0.6644 0.0196 0.0181
19 3.8179 0.4571 3.8173 0.4836 0.0139 0.0266

Table 6. Typical mean and standard deviations of node temperature. (Test 2: L = 1500 m; µϕ = 0.5 MW).

Thermal Load
Fluctuation Node NO. µT (◦C) σT (◦C) µT,mcs (◦C) σT,mcs (◦C) δµ,T (%) δσ,T (◦C)

Within ±10%

1 79.8202 0.0016 79.8202 0.0016 0.0000 0.0000
4 79.1274 0.0082 79.1273 0.0082 0.0001 0.0000
6 78.0158 0.0242 78.0154 0.0249 0.0005 0.0007
19 76.2980 0.0606 76.2963 0.0634 0.0023 0.0028

Within ±20%

1 79.8202 0.0032 79.8201 0.0032 0.0001 0.0000
4 79.1274 0.0165 79.1271 0.0163 0.0003 0.0002
6 78.0158 0.0484 78.0141 0.0501 0.0021 0.0017
19 76.2980 0.1212 76.2911 0.1284 0.0092 0.0072

Within ±30%

1 79.8202 0.0048 79.8200 0.0048 0.0002 0.0000
4 79.1274 0.0247 79.1264 0.0247 0.0012 0.0000
6 78.0158 0.0725 78.0113 0.0754 0.0057 0.0029
19 76.2980 0.1818 76.2807 0.1956 0.0227 0.0138

Within ±40%

1 79.8202 0.0063 79.8199 0.0064 0.0003 0.0001
4 79.1274 0.0330 79.1258 0.0330 0.0020 0.0000
6 78.0158 0.0967 78.0072 0.1018 0.0110 0.0051
19 76.2980 0.2424 76.2669 0.2676 0.0408 0.0252

In addition, Figure 4a–d present the cumulative density functions (CDFs) of mass flow rate
through pipe 1 and node 19 temperature under thermal load fluctuations within 10%, 20%, 30%, and
40%, respectively.

It can be noted from Tables 5 and 6 that increasing the thermal load fluctuation with constant L
and µϕ increased the standard deviations of the mass flow rates and the temperature. Nevertheless,
for thermal load fluctuations of 10%, 20%, 30%, and 40%, the maximum errors in the mass flow rates
standard deviation were 0.0058 kg/s, 0.0127 kg/s, 0.0190 kg/s, and 0.0266 kg/s, respectively, while
the maximum errors in the node temperature standard deviation were 0.0028 ◦C, 0.0072 ◦C, 0.0138 ◦C,
and 0.0252 ◦C, respectively. In addition, it can be noted that the mean values of the mass flow rates
and the node temperature obtained by the Monte Carlo method decreased with increasing thermal
load fluctuation.
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3.3. Test 3-Probability Density Function of Pipeline Temperature Drops

For test 3, the calculated mean and standard deviations of the pipe temperature drops obtained
for selected pipes are shown in Table 7 along with the differences between the values.

Table 7. Typical mean and standard deviations of pipe temperature drops. (Test 3: µϕ = 0.5 MW).

Pipe Length
(L; m)

Thermal Load
Fluctuation (ϕ)

Pipe
NO.

µ∆T
(◦C)

σ∆T
(◦C)

µ∆T,mcs
(◦C)

σ∆T,mcs
(◦C)

δµ, ∆T
(%)

δσ, ∆T
(◦C)

300 Within ±10%

1 0.0386 0.0004 0.0386 0.0004 0.0215 0.0000
2 0.0421 0.0004 0.0420 0.0004 0.0214 0.0000
3 0.0496 0.0005 0.0496 0.0005 0.0230 0.0000
4 0.0587 0.0007 0.0587 0.0007 0.0261 0.0000
5 0.0768 0.0010 0.0767 0.0010 0.0356 0.0000

300 Within ±50%

1 0.0386 0.0018 0.0387 0.0018 0.1988 0.0000
2 0.0421 0.0021 0.0421 0.0021 0.2192 0.0000
3 0.0496 0.0027 0.0497 0.0027 0.2782 0.0000
4 0.0587 0.0034 0.0589 0.0034 0.3179 0.0000
5 0.0768 0.0051 0.0771 0.0052 0.4138 0.0001

1000 Within ±50%

1 0.1235 0.0056 0.1236 0.0056 0.0939 0.0000
2 0.1341 0.0064 0.1342 0.0063 0.0954 0.0000
3 0.1576 0.0082 0.1578 0.0082 0.1242 0.0000
4 0.1861 0.0103 0.1864 0.0103 0.1465 0.0000
5 0.2426 0.0155 0.2430 0.0157 0.1901 0.0002

It can be seen from Table 7 that increasing the thermal load fluctuation with constant L and µϕ

increased the mean pipe temperature drop obtained by Monte Carlo simulations slightly. Meanwhile,
increasing the thermal load fluctuation by a factor of 5 with a constant L increased the standard
deviation of the pipe temperature drop obtained by Monte Carlo simulations by a factor of 5 generally,
and increasing L by a factor of 3 and 1/3 with a constant σϕ increased both the mean and standard
deviations of pipe temperature drops by a factor a little less than 3 and 1/3.

3.4. Test 4-Control Variable Method

(1) From Table 2, It can be noted that the value of σT,mcs is greatest for node 19. Therefore, the
value σT,mcs for node 19 with constants µϕ and σϕ while varying L is determined, and the results
are shown in Figure 5. It can be seen from the figure that the value of σT,mcs for node 19 increases
approximately linearly with increasing L.
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(2) The value σT,mcs for node 19 with constants L and σϕ while varying µϕ, is also determined
and the results are shown in Figure 6. It can be seen from the figure that the value of σT,mcs for node
19 decreases nonlinearly as µϕ increases, and approaches zero asymptotically.
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Figure 6. Relationship between the node temperature standard deviation of node 19 and mean thermal
load (Test 4: L = 500 m; σϕ = ±10%).

(3) The value σT,mcs for node 19 with constants L and µϕ while varying σϕ, is also determined
and the results are shown in Figure 7. It can be seen from the figure that the value of σT,mcs for node
19 increases approximately linearly with increasing σϕ. Nonetheless, the value of σT,mcs for node
19 remains small even at large σϕ.
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Figure 7. Relationship between the node temperature standard deviation of node 19 and thermal load
fluctuation (Test 4: L = 500 m; µϕ = 1.0 MW).

(4) The value σm,mcs for pipe 1 with constant σϕ while varying both L and µϕ, is also determined
and the results are shown in Figure 8. It can be seen from the figure that the value of L has little
influence on the value of σm,mcs for pipe 1, and σm,mcs is essentially unchanged while varying L at
any constant value of µϕ. In contrast, the value of µϕ has a significant effect on σm,mcs for pipe 1,
and σm,mcs increases approximately linearly with increasing µϕ.
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Figure 8. Relationship between the standard deviation of mass flow rate for pipe 1 with respect to pipe
length and mean thermal load (Test 4: σϕ = ±10%).

(5) The value σT,mcs for node 19 with constant σϕ while varying both L and µϕ, is also determined
and the results are shown in Figure 9. As can be seen from the figure, the value of σT,mcs for node
19 is dependent on both L and µϕ and increases with increasing L and decreasing µϕ. Here, L has a
small effect on σT,mcs at high µϕ, but the effect of L is quite significant at low µϕ, and σT,mcs increases
markedly with increasing L.
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3.5. Model Error Analysis

The values of σm, σm,mcs, and δσ,m for pipe 1 and the values of σT, σT,mcs, and δσ,T for node
19 were compared at a constant value of σϕ = ±10% while varying both L and µϕ.

(1) When given values of µϕ with L varied from 100 m to 2000 m in increments of 100 m, 20 sets
standard deviation by Monte Carlo and the proposed method respectively can be get, whose average
are σm and σm,mcs and the results are shown in Table 8. It can be seen from the table that L has little
influence on the standard deviation of pipe 1 mass flow rate under constants µϕ and σϕ and that the
values of σm and σm,mcs for pipe 1 increase approximately linearly which are shown in Figure 10.

(2) Figure 11 presents the values δσ,T for node 19 with constant σϕ while varying both L and
µϕ. It can be seen from the figure that the error of the proposed model increases with increasing L
and decreasing µϕ, but the value of δσ,T for node 19 is typically less than 0.0003◦C, so the error of the
proposed model is generally within an acceptable range.
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Table 8. Standard deviations of mass flow rate through pipe 1 under different average thermal loads
µϕ (σϕ = ±10%).

ϕ (MW) σm (kg/s) σm,mcs (kg/s) δσ,m (%) ϕ (MW) σm (kg/s) σm,mcs (kg/s) δσ,m (%)

0.5 0.3944 0.3949 0.1266 2.8 2.2089 2.2359 1.2076
0.6 0.4733 0.4701 0.6807 2.9 2.2878 2.2839 0.1708
0.7 0.5522 0.5564 0.7549 3.0 2.3667 2.3954 1.1981
0.8 0.6311 0.6321 0.1582 3.1 2.4456 2.4448 0.0327
0.9 0.7100 0.7132 0.4487 3.2 2.5245 2.5287 0.1661
1.0 0.7889 0.7839 0.6378 3.3 2.6033 2.6222 0.7208
1.1 0.8678 0.8676 0.0231 3.4 2.6822 2.6708 0.4268
1.2 0.9467 0.9436 0.3285 3.5 2.7611 2.7476 0.4913
1.3 1.0256 1.0319 0.6105 3.6 2.8400 2.8294 0.3746
1.4 1.1044 1.1098 0.4866 3.7 2.9189 2.9274 0.2904
1.5 1.1833 1.1752 0.6892 3.8 2.9978 3.0175 0.6529
1.6 1.2622 1.2500 0.9760 3.9 3.0767 3.0969 0.6523
1.7 1.3411 1.3391 0.1494 4.0 3.1556 3.1442 0.3626
1.8 1.4200 1.4140 0.4243 4.1 3.2345 3.2402 0.1759
1.9 1.4989 1.4980 0.0601 4.2 3.3133 3.3300 0.5015
2.0 1.5778 1.5812 0.2150 4.3 3.3922 3.4056 0.3935
2.1 1.6567 1.6523 0.2663 4.4 3.4711 3.4549 0.4689
2.2 1.7356 1.7333 0.1327 4.5 3.5500 3.5608 0.3033
2.3 1.8145 1.8155 0.0551 4.6 3.6289 3.6131 0.4373
2.4 1.8933 1.8931 0.0106 4.7 3.7078 3.7058 0.0540
2.5 1.9722 1.9749 0.1367 4.8 3.7867 3.7793 0.1958
2.6 2.0511 2.0418 0.4555 4.9 3.8656 3.8458 0.5148
2.7 2.1300 2.1310 0.0469 5.0 3.9445 3.9694 0.6273
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4. Conclusions

This paper developed a nonlinear analytical algorithm for predicting the probabilistic mass flow
of a radial district heating network based on the principle of heat transfer and basic pipe network
theory. The validity and rationality of the proposed algorithm was verified by application to a 23-node
radial district heating network with various pipe lengths under thermal load fluctuations of various
magnitudes. The characteristics of the algorithm and the conclusions obtained are given as follows:

(1) The proposed algorithm utilizes a nonlinear mass flow model with several reasonable
approximations. Consequently, the obtained operating conditions are sufficiently accurate.

(2) The algorithm provides probabilistic operational information for district heating network with
stochastic heat loads. The algorithm not only provides the variances of the mass flow rate through a
pipe network and the node temperatures but also obtains the variances of the pipe temperature drops.

(3) The computation is efficient because the probabilistic district heating network mass flow model
is relatively simple, and our approach does not require repeated nonlinear mass flow calculations.

(4) The case study results indicate that the pipe length has little effect on the standard deviations
of mass flow rates, while the mean thermal load significantly influences the standard deviations of
mass flow rates.

The algorithm proposed in this paper is expected to be very useful for the calculation of district
heating network probability and for conducting risk analysis.
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Appendix A

The temperature drop equation for a pipe in a district heating network is given as follows:

Tend = (Tstart − Ta)e−hL/(Cpm) + Ta. (A1)

Applying a first-order Taylor expansion and truncating at the second term yields:

Tend ≈ (Tstart − Ta)(1−
hL

Cpm
) + Ta. (A2)

This equation can be simplified as follows:

Cpm(Tstart − Tend) ≈ hL(Tstart − Ta). (A3)

Selecting the front temperature of the pipe as the CHP source temperature TH yields the following
pipe heat loss equation:

∆ϕ ≈ hL(TH − Ta). (A4)

Appendix B

Based on Figure A1, it is assumed that the node at the top of pipe i is ki, the node at the top of pipe
j is kj, the water supply temperatures of nodes k, ki, and kj are Tk, Tki, and Tkj, respectively, and Tk =
Tki = Tkj. The return water temperatures corresponding to nodes ki and kj are Toi and Toj, respectively,
and Toi ≈ Toj.
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Setting the sum of all thermal loads flowing through pipe i to ∑ ϕi in Figure A1, setting the
variance of the thermal loads to ∑ σ2

ϕi
, setting the sum of all thermal loads flowing through pipe j to

∑ ϕj, and setting the variance of the thermal loads to ∑ σ2
ϕj

yield the following equations:

∑ ϕi ≈ Cpmi(Tki − Toi) (A5)

∑ ϕj ≈ Cpmj(Tkj − Toj). (A6)

According to Equations (A5) and (A6), the node temperature changes less when the thermal
load fluctuates. Therefore, the following equations can be obtained based on the nature of a normal
distribution:

∑ σ2
ϕi
≈ αiσ

2
mi

(A7)

∑ σ2
ϕj
≈ αjσ

2
mj

(A8)

αi ≈ αj = α. (A9)

Accordingly, the following equation can be obtained:

∑ σ2
ϕi
+ ∑ σ2

ϕj
≈ α(σ2

mi
+ σ2

mj
). (A10)

Applying the relationship σ2
mk

= σ2
mi

+ σ2
mj

to Equation (A10) yields the following:

∑ σ2
ϕi
+ ∑ σ2

ϕj
≈ ασ2

mk
. (A11)

The following equation can be obtained by combining Equations (A7) and (A11):

σ2
mi
≈

∑ σ2
ϕi

∑ σ2
ϕi
+ ∑ σ2

ϕj

σ2
mk

. (A12)

Finally, combining Equations (A7) and (A11) yields the following expression:

σ2
mj
≈

∑ σ2
ϕj

∑ σ2
ϕi
+ ∑ σ2

ϕj

σ2
mk

. (A13)

Appendix C

The following equation can be obtained from the properties of the correlation coefficient:

ρXY =
cov(X, Y)

σXσY
=

E(XY)− E(X)E(Y)
σXσY

. (A14)

Assuming that ρki is the correlation coefficient between mass flow rate mk and mi, the following
equation can be obtained:
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ρki =
E(mkmi)− E(mk)E(mi)

σmk σmi

. (A15)

Because mk = mi + mj and E(X + Y) = E(X) + E(Y), Equation (A15) can be rewritten as follows:

ρki =
E((mi+mj)mi)−E(mi+mj)E(mi)

σmk σmi

=
E(m2

i )+E(mimj)−E(mi)
2−E(mi)E(mj)

σmk σmi
.

(A16)

Because mi and mj are approximately independent, the following equation can be obtained:

E(mimj) − E(mi)E(mj) ≈ 0. (A17)

Furthermore, from the nature of a normal distribution, the following equation can be obtained:

E(mi
2) − E(mi)2 = D(mi). (A18)

Finally, combining Equations (A16)–(A18) yields the following:

ρki ≈
D(mi)

σmk σmi

=
σmi

2

σmk σmi

=
σmi√

σ2
mi

+ σ2
mj

. (A19)

The following equation can be similarly proven:

ρkj ≈
σmj√

σ2
mi

+ σ2
mj

. (A20)

Appendix D

The line parameters of the 23-node district heating network are listed in Table A1, where the
thermal load nodes are nodes 7, 8, 10, 11, 12, 14, 15, 16, 19, 20, 21, and 22.

Table A1. Line parameters of the 23-node district heating (H is the thermal source).

Pipe No. Pipe
Head

Pipe
Tail

DIA
(mm)

λ
(W/mK) Pipe No. Pipe

Head
Pipe
Tail

DIA
(mm)

λ
(W/mK)

1 H 1 125 0.321 12 3 12 50 0.227
2 1 2 100 0.321 13 4 13 80 0.278
3 2 3 100 0.310 14 13 14 50 0.219
4 3 4 100 0.327 15 13 15 32 0.189
5 4 5 100 0.321 16 5 16 32 0.189
6 5 6 100 0.236 17 5 17 32 0.189
7 6 7 100 0.310 18 17 18 32 0.278
8 1 8 80 0.210 19 18 19 32 0.189
9 2 9 80 0.210 20 17 20 32 0.189
10 9 10 80 0.227 21 18 21 32 0.236
11 9 11 40 0.210 22 6 22 32 0.189
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