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Abstract: Nowadays, it is a trend to update electronic products by replacing the traditional wire
charging with emerging wireless charging. However, other features of the products must generally
be left unchanged, which limits the options in receiving coil design. As a result, asymmetric coil
designs should be adopted in wireless charging systems. In this paper, a wireless power transfer
system with asymmetric transmitting and receiving coils is modelled using circuit theory. The output
power of the asymmetric system is analyzed, and the conditions of the maximum power splitting
phenomenon are addressed in detail. Cases for different resonant frequency conditions are elaborated.
The splitting frequencies and critical coupling coefficient are obtained, which are different and more
complicated compared with the symmetric counterparts. Asymmetric coil designs can be adopted
based on the proposed method, so that adequate and efficient output power transfer can be realized.
Finally, the asymmetric coils design is utilized in an experimental prototype in order to contactlessly
charge a portable power tool lithium-ion battery pack with 18 V DC and 56 W output through 220 V
AC input, without altering its original configuration, and the correctness of proposed analysis can
thus be verified.

Keywords: transmitting and receiving coils; asymmetric design; wireless power transfer (WPT);
lithium-ion battery; power tools

1. Introduction

In recent years, wireless power transfer (WPT) technology has earned broad attention in the
world. A hefty number of related studies have appeared [1,2], making WPT technology more and
more feasible. Now wireless charging is adopted for electric vehicle charging [3–5], power supplies
for medical implanting devices [6,7], underwater devices [8], industrial drone charging [9,10], power
supplies for consumer electronics [11,12], etc. All these products and services use WPT technology to
improve and advance the experience feeling, making WPT applications increasingly diverse.

In 2007, Kurs et al. at the Massachusetts Institute of Technology (MIT) proposed a new kind of
WPT technology based on magnetic resonance [13]. They built the WPT system with two identical
coils and modeled it with help of Couple Mode Theory (CMT). Since then, many studies on WPT
system characteristics have been carried out based on CMT [14–16]. Circuit theory along with
fundamental harmonic analysis is also widely used to model WPT systems and acquire their steady
state characteristics [17–19]. With the assumption that the parameters of transmitter and receiver are
identical [19], namely that the transmitter and the receiver are symmetric, the modeling process is
simplified, making the expression equations of WPT system more concise. The solutions to those
crucial characteristics, like output power and transfer efficiency, become more straightforward, which
helps acquire a better primary understanding and recognition of WPT technology.
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However, as studies on WPT technology have gone further, it has become insufficient to focus
only on cases with symmetric transmitters and receivers. Transmitter and receiver designs should
fit the diversity of WPT applications and be optimized according to specific products and services.
This makes symmetric transmitters and receivers unusable in many cases. In the field of consumer
electronics, where wireless charging is most widely adopted, generally the added receiver should not
change the original features of the products, so that the best upgrading and advancing effect can be
achieved. Owing to the size constraints of consumer electronics such as drones and smartphones [20],
the parameters of receiving coils, which are usually attached to the charging targets, are generally
different from those of transmitting coils, so in many practical cases the transmitter and receiver of
WPT system are asymmetric. In addition, for applications like charging lithium-ion batteries, the
varying load makes the transmitter and receiver apparently asymmetric, and some matching methods
should be adopted [21]. In the case of transmitters and receivers with asymmetric parameters, the
preceding analysis results for symmetric cases will not be accurate enough, so it is necessary to carry
out some specific analysis and further understand the characteristics for asymmetric cases in WPT
systems. Some researchers have set out to study WPT systems with asymmetric transmitters and
receivers. The common structure in a multi-load WPT system is to transfer power from one large
transmitter to several small receivers. The corresponding asymmetric coil structure has been optimized
in [22], but the transmission characteristics of the asymmetric system have not been analyzed clearly.
A large transmitting coil is designed to transfer power to several small receiving coils in [23], but
the influence of the coupling coefficient on the system characteristics was not discussed. In [24], the
problem of power allocation among multiple receivers is solved, but the effect of coupling coefficient
variation is not addressed. When the coupling coefficient is relatively large, the output power of
WPT system will reach its peak value at two different operating frequencies, which is known as the
frequency splitting phenomenon. This phenomenon has been studied in detail when the parameters
of transmitter and receiver are symmetric [25]. Based on the analysis of the symmetric case, the
system characteristics and the conditions of frequency splitting under asymmetric conditions are
analyzed in [26], considering that the resonant frequencies of transmitter and receiver are the same.
Due to the influence of manufacturing errors and environmental factors, slight differences between
the resonant frequencies of the transmitter and receiver often occur in actual products. Besides, for
practical high frequency inverters, the zero-voltage operation is often needed to reduce the switching
losses. Hence, the input impedance of the high frequency inverter will become inductive [27], which
may also lead to inconsistency between the resonant frequencies of the transmitter and the receiver.
The output characteristics of the system with different resonant frequencies at the transmitter and
receiver are analyzed in [28]. However, only the influence of the coupling coefficient is considered,
and the variation of the load is not mentioned.

Hence, in this paper a WPT system with asymmetric transmitter and receiver is established, and
the system model is analyzed based on the circuit theory in Section 2. The output power characteristics
of the asymmetric system are discussed in Section 3. The symmetric case will be presented first
for comparison. Subsequently, the output power characteristics of the asymmetric WPT system are
discussed in detail. The influence of coupling coefficient and load value on the output power for
asymmetric cases is considered comprehensively. Cases of different resonant conditions are studied
respectively for a comprehensive understanding of asymmetric WPT system. Finally, an experimental
prototype with an asymmetric transmitter and receiver is set up to wirelessly charge a portable power
tool lithium-ion battery pack without changing its original configuration, and the proposed analysis
thus validated.

2. Modeling of Asymmetric WPT System

In this paper a wireless charging system for an 18 V lithium-ion battery pack used for power
tools is taken as an example to analyze the transmission characteristics of asymmetric WPT systems.
The main circuit of the system is shown in Figure 1. The wireless charging system gets its power



Energies 2019, 12, 1212 3 of 19

from a 220 V/50 Hz AC input through a diode full-bridge rectifier circuit. Electrolytic capacitors are
connected to the output of the rectifier bridge for filtering and voltage regulation, serving as the input
of the following high-frequency inverter. A D-class inverter is adopted as the high-frequency DC-AC
inverter. It drives the transmitting coil and generates high-frequency induced voltage and current
in the receiving coil through the coupling of electromagnetic field. In the receiver, a synchronous
full-bridge rectifier is used to rectify the high-frequency induced current. It composes of a pair of
N-channel MOSFETs as well as a pair of P-channel MOSFETs. Here S3 and S4 are P-channel MOSFETs,
while S5 and S6 denote N-channel MOSFET, respectively. Finally, a MOSFET is used as a control switch
to charge the lithium-ion battery pack of power tools.
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Class-E and class-D inverters usually serve as high-frequency inverters in the transmitter of
WPT systems to drive the transmitting coil in medium- and low-power wireless charging devices
because of their high transfer efficiency and simple structure. However, the operating state of Class-E
inverter is seriously affected by the coupling coefficient and the load variation [29]. In order to simplify
the modeling of asymmetrical wireless charging system, Class-D inverter is chosen in this paper.
Besides, the transfer efficiency of WPT system can be improved by replacing diodes with MOSFETs in
synchronous rectifier.

The transmitter and the receiver adopt the Series-Series (SS) compensation structure, with
compensating capacitances in series with coils in both transmitter and receiver. The SS compensation
structure is often used in the design with a wide range of load variations [30], and the current source
characteristics on the receiver make the SS structure suitable for lithium-ion battery charging [31].
In addition, for WPT system with symmetric transmitter and receiver, the input impedance of the
system at resonant frequency will not contain reactance for pure resistant load [32], which is convenient
for comparison with the asymmetric WPT system.

Circuit theory and fundamental harmonic analysis is suitable for modeling the WPT system and
acquiring the steady state characteristics [18]. The whole system can be simplified to an equivalent
circuit model as shown in Figure 2. Here,

.
US,

.
I1 and

.
I2 represent fundamental harmonic phasors of

output square wave of class-D inverter, transmitting coil current and receiving coil current, respectively.
Li, Ci, ri (i = 1, 2) denote coil inductance, resistance and compensating capacitance of transmitter and
receiver, respectively. k and M are coupling coefficient and mutual inductance, with the relationship
M = k

√
L1L2. f represents the operating frequency, and ω = 2πf is the operating angle frequency.

RE is the equivalent resistance of the receiver, which can be represented by the output load RO as:

RE =
8

π2 RO =
8 UO

π2 IO
. (1)
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where, UO and IO denote the output voltage and output current as shown in Figure 1, respectively. Us

is the root mean square (RMS) value of the AC fundamental waveform of output of class-D inverter,
and can be expressed by the duty cycle D and the input voltage Ubus [33]:

US =

√
2

π
Ubus sin(Dπ). (2)

According to Kirchhoff’s voltage law the following equations can be obtained:{
Z1 ·

.
I1 + jωM ·

.
I2 =

.
US

jωM ·
.
I1 + Z2 ·

.
I2 = 0

. (3)

Here, Z1 = j
(

ωL1 − 1
ωC1

)
+ r1 and Z2 = j

(
ωL2 − 1

ωC2

)
+ r2 + RE represent the impedance of

transmitter and receiver, respectively.
According to (3) the expression of output power P can be achieved as follows:

P =
V2

E
RE

=

∣∣∣∣ jωMRE

Z1 · Z2 + ω2M2

∣∣∣∣2U2
S . (4)

For a WPT system with a symmetric transmitter and receiver, expression (4) of the output power
will be simplified when operating at the resonant frequency, so that the output power characteristic
of the system is very intuitive. In addition, for the symmetric case, when the coupling coefficient is
relatively large the output power of WPT system will display a splitting phenomenon, that is, there
will be two peak values of the power versus operating frequency [25]. The two peaks of output power
will be equal and meet the maximum power principle [26]. However, due to the limitations of the
lithium-ion battery pack size, the coil parameters of the transmitter and the receiver will be inconsistent.
Moreover, the zero-voltage operation state of class-D inverter will also lead to the inconsistency of
the resonant frequencies of the transmitter and the receiver. The power expression (4) will be more
complicated because of the asymmetry of the transmitter and receiver. Hence, in the following section
the output characteristics of asymmetric WPT system will be analyzed, and the variation law will be
compared to that of the symmetric case.
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3. Analysis of Maximum Output Power of Asymmetric WPT System

3.1. Output Power for Symmetric Cases

The output power characteristics of a symmetric WPT system are obtained first in order that a
direct comparison can be conducted. For symmetric cases, the parameters in Figure 2 are chosen as:
L1 = L2 = L = 700 µH, C1 = C2 = C = 1.72 nF, ω0 = 1/

√
LC = ω1 = 1/

√
L1C1 = ω2 = 1/

√
L2C2, f 0 =
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ω0/2π = 145 kHz, r2 = 3 Ω, r1 = r2 + RE = R, Us = 311
√

2/π V, so that the output power expression (4)
can be simplified to (5):

P =
(ωM)2[

R2 −
(

ωL− 1
ωC

)2
+ (ωM)2

]2
+ 4
[(

ωL− 1
ωC

)
R
]2

U2
S RE (5)

Referring to the operating frequency range of the Qi standard [34], the output power curves of
symmetric WPT system versus different RE values are obtained in a certain frequency range according
to the (5), as shown in Figure 3. When the coupling coefficient k is relatively large, the curve of
the output power will have two equal peaks, which means the frequency splitting phenomenon
occurs. The maxima of output power are 73.58 W for Figure 3a and 45.88 W for Figure 3b, respectively.
The corresponding frequencies are the splitting frequencies. The derivative of (5) versus ω helps obtain
the critical coupling coefficient ks [26]:

∂P
∂ω =

(
R2 +

(
ωL− 1

ωC

)2
−ω2M2

)(
R2 −

(
ωL− 1

ωC

)2
+ ω2M2 − 4

ωC

(
ωL− 1

ωC

))
· 2ωM2U2

S RE((
R2−(ωL− 1

ωC )
2
+ω2 M2

)2
+4R2(ωL− 1

ωC )
2
)2 = 0

. (6)

The left-hand side of (6) comprises two four-order polynomials, so the corresponding splitting
angle frequencies can be achieved through (7) and (8):

1− k2

ω2
0

ω4 +
(

2−Q−2
)

ω2 − 3ω2
0 = 0, (7)

1− k2

ω2
0

ω4 −
(

2−Q−2
)

ω2 + ω2
0 = 0, (8)

where Q = ω0L/R is the quality factor corresponding to R. Then, the possible real solution to (7) is:

fm =
1

2π

[(
−
(

2−Q−2
)
+

√
(2−Q−2)

2 + 12(1− k2)

)
/2
(

1− k2
)] 1

2
ω0, (9)

and to (8): 
fe = 1

2π

[
(2−Q−2)+

√
(2−Q−2)

2−4(1−k2)

2(1−k2)

] 1
2

ω0

fo = 1
2π

[
(2−Q−2)−

√
(2−Q−2)

2−4(1−k2)

2(1−k2)

] 1
2

ω0

. (10)

Hence, we can conclude that when both real solutions of (8) exist, the symmetric WPT will display
the frequency splitting phenomenon. At each splitting frequency the output power reaches the peak
value expressed as Pmax = REU2

s /4R2; otherwise, (8) has no real solution so the output power will have
only one peak. According to the discriminant of (8), the critical coupling coefficient ks can be obtained:

ks =
1
Q

√
1− 1

4Q2 . (11)

When k > ks is satisfied, (8) has two real solutions and the frequency splitting phenomenon occurs;
otherwise, there will be only one output power maximum. From (11) we can see that the relationship
between k2

s and 1/Q2 meets the two-order polynomial, as shown in Figure 4. When Q = 0.707, ks

arrives at its peak of 1. According to (9) and (10) the splitting frequencies over certain range of k and
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RE can be plotted as Figure 5. The splitting frequencies is exactly the values where the output power
reaches its peaks in Figure 3; when k is smaller than ks the frequency corresponding to the maximum
output power is close to the resonant frequency f 0. Moreover, the values of ks are the same as those
in Figure 3.

Energies 2019, 12, x FOR PEER REVIEW 6 of 19 

 

When k > ks is satisfied, (8) has two real solutions and the frequency splitting phenomenon occurs; 
otherwise, there will be only one output power maximum. From (11) we can see that the relationship 
between 2

sk  and 21/ Q  meets the two-order polynomial, as shown in Figure 4. When Q = 0.707, ks 
arrives at its peak of 1. According to (9) and (10) the splitting frequencies over certain range of k and 
RE can be plotted as Figure 5. The splitting frequencies is exactly the values where the output power 
reaches its peaks in Figure 3; when k is smaller than ks the frequency corresponding to the maximum 
output power is close to the resonant frequency f0. Moreover, the values of ks are the same as those in 
Figure 3. 

 
 

(a) (b) 

Figure 3. Output power curves of symmetric WPT system versus different RE values. (a) RE = 60 Ω; (b) 
RE = 100 Ω. 

 
Figure 4. Relationship between 2

sk  and 21 / Q . 

  
(a) (b) 

Figure 3. Output power curves of symmetric WPT system versus different RE values. (a) RE = 60 Ω;
(b) RE = 100 Ω.

Energies 2019, 12, x FOR PEER REVIEW 6 of 19 

 

When k > ks is satisfied, (8) has two real solutions and the frequency splitting phenomenon occurs; 
otherwise, there will be only one output power maximum. From (11) we can see that the relationship 
between 2

sk  and 21/ Q  meets the two-order polynomial, as shown in Figure 4. When Q = 0.707, ks 
arrives at its peak of 1. According to (9) and (10) the splitting frequencies over certain range of k and 
RE can be plotted as Figure 5. The splitting frequencies is exactly the values where the output power 
reaches its peaks in Figure 3; when k is smaller than ks the frequency corresponding to the maximum 
output power is close to the resonant frequency f0. Moreover, the values of ks are the same as those in 
Figure 3. 

 
 

(a) (b) 

Figure 3. Output power curves of symmetric WPT system versus different RE values. (a) RE = 60 Ω; (b) 
RE = 100 Ω. 

 
Figure 4. Relationship between 2

sk  and 21 / Q . 

  
(a) (b) 

Figure 4. Relationship between k2
s and 1/Q2.

Energies 2019, 12, x FOR PEER REVIEW 6 of 19 

 

When k > ks is satisfied, (8) has two real solutions and the frequency splitting phenomenon occurs; 
otherwise, there will be only one output power maximum. From (11) we can see that the relationship 
between 2

sk  and 21/ Q  meets the two-order polynomial, as shown in Figure 4. When Q = 0.707, ks 
arrives at its peak of 1. According to (9) and (10) the splitting frequencies over certain range of k and 
RE can be plotted as Figure 5. The splitting frequencies is exactly the values where the output power 
reaches its peaks in Figure 3; when k is smaller than ks the frequency corresponding to the maximum 
output power is close to the resonant frequency f0. Moreover, the values of ks are the same as those in 
Figure 3. 

 
 

(a) (b) 

Figure 3. Output power curves of symmetric WPT system versus different RE values. (a) RE = 60 Ω; (b) 
RE = 100 Ω. 

 
Figure 4. Relationship between 2

sk  and 21 / Q . 

  
(a) (b) 

Figure 5. Splitting frequencies over a certain range of k and RE. (a) RE = 60 Ω; (b) RE = 100 Ω.

Pmax over a certain range of k and RE is presented in Figure 6, which is consistent with the
maximum value in Figure 3. It can be seen that Pmax is not affected by k when frequency splitting
phenomenon occurs; otherwise, Pmax becomes larger with increasing k when k is smaller than ks.
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Besides, the larger the value of RE is, the smaller Pmax will be for the considered values of RE, which is
also consistent with Figure 3.
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Besides, we consider the input impedance of symmetric WPT system, which can be expressed
as follows:

Zin = R + j
(

ωL− 1
ωC

)
+

(ωM)2

R + j
(

ωL− 1
ωC

) . (12)

Substituting ω in (12) with the solutions to (10) leads to the result that the imaginary part of the
input impedance Im(Zin) equals to zero. Since the condition Im(Zin) = 0 corresponds to the bifurcation
phenomenon which is about the system stabilization [26,32], for symmetric WPT system the maximum
output power can be obtained through bifurcation analysis. It is notable that the other solution of
Im(Zin) = 0, f = f 0, is not identical to the result of (10).

3.2. Output Power for Asymmetric Cases

3.2.1. The Case where ω1 = ω2

Here we consider the case in which ω1 = ω2 is satisfied in the asymmetric WPT system. This means
the coil inductance of transmitter and receiver differ from that of receiver. And (3) can be expressed as
follows:

P =
(ωM)2[

r1R2 −ω2L1L2

(
1− ω2

0
ω2

)2
+ (ωM)2

]2

+

[(
1− ω2

0
ω2

)
(ωL1R2 + ωL2r1)

]2
U2

S RE, (13)

where R2 = r2 + RE. Similar to the symmetric case, the derivative of (13) versus ω is needed for
further analysis of maximum output power and the critical coupling coefficient for frequency splitting
phenomenon, but the result will be more complicated. When the condition L1/L2 = r1/R2 is kept, the
derivative is consistent with (6) except that Q = ω0L1/r1 is altered [26]. However, the maximum output
power is changed to Pmax = REU2

s /(4r1R2) when the frequency splitting phenomenon occurs in this
case. Figure 7 presents the curves of output power when L1/L2 = r1/R2. Here we have: L1 = 700 µH,
L2 = 5.13 µH, C1 = 1.72 nF, C2 = 235 nF, ω0 = ω1 = 1/

√
L1C1 = ω2 = 1/

√
L2C2, f 0 = ω0/2π = 145 kHz,

r2 = 0.05 Ω, Us = 311
√

2/π V, and the same Q as Figure 3. As shown in Figure 7 the values of the
coupling coefficient ks remain the same as those in Figure 3 due to the same Q, while the output power
becomes different owing to asymmetry of transmitter and receiver, specifically the value of r1 and R2.
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Here, the maxima of output power are 68.89W for Figure 7a and 44.12 W for Figure 7b, respectively,
compared to 73.58 W and 45.88 W for Figure 3.
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Considering the general case where L1/L2 6= r1/R2, derivative of (13) leads to an eight-order
equation about ω:

u4 + αu2 + βu + γ = 0, (14)

where:

u = ω2

α = − 1
(1−k2)

2

(
(ω1ω2+Q1Q2ω2

1+Q1Q2ω2
2)

2

(Q2
1Q2

2)
+ 2
(
1− k2)(ω2

1ω2
2
)
− 2(Q2ω2+Q1ω1)(Q2ω1+Q1ω2)ω1ω2

Q2
1Q2

2

)
β = − 2ω2

1ω2
2

Q2
1Q2

2(1−k2)
2

[
Q2

2ω2
2
(
1− 2Q2

1
)
+ Q2

1ω2
1
(
1− 2Q2

2
)]

γ = − 3ω4
1ω4

2

(1−k2)
2

Q1 = ω1L1
r1

, Q2 = ω2L2
R2

. (15)

Note that Q1 = ω1L1/r1 and Q2 = ω2L2/R2 stand for quality factors of transmitter and receiver,
respectively. The coefficients α, β and γ consist of given system parameters. In [28] numerical solutions
to (15) are yielded. Subsequently, we can follow the approach proposed by Lodovico Ferrari [35,36] to
solve (15) and obtain exact solutions. Since there is no three-order component about u contained in
(14), (16) with two quadratic polynomials can be used to express (14):(

u2 + b1u + c1

)(
u2 − b1u + c2

)
= 0. (16)

Here, the coefficients b1, c1 and c2 are determined as follows [36]:

b1 =
√

α + 2y
c1 = α + y + β

2
√

α+2y

c2 = α + y− β

2
√

α+2y

y = − 5
6 α− A

3v + v

v =
3

√
−B
2 +

√
B2

4 + A3

27

A = − α2

12 − γ, B = − α3

108 + αγ
3 −

β2

8

. (17)
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Hence, the possible real solutions to (16) can be presented as follows:
f1 = 1

2π

√
−b1+
√

b2
1−4c2

2

f2 = 1
2π

√
b1+
√

b2
1−4c1

2

f3 = 1
2π

√
b1−
√

b2
1−4c1

2

. (18)

From (18) we can conclude that when all the three solutions in (18) exist, the asymmetric WPT
system meets frequency splitting phenomenon; otherwise, if (16) has only one real solution, the output
power will have only one peak. What’s more, from the solving process of Lodovico Ferrari [36] we can
derive that when (19) is met, the intermediate variable y in (17) will have three real solutions leading
to three disparate real solutions to (16):

B2

4
+

A3

27
< 0. (19)

Inequality (19) helps unveil the value of the critical coupling coefficient ks for frequency splitting
phenomenon. According to (13) the output power curves of asymmetric WPT system versus different
RE values are obtained in a certain frequency range, as shown in Figure 8. Here, the parameters are
selected as: L1 = 700 µH, L2 = 5.13 µH, C1 = 1.72 nF, C2 = 235 nF, ω0 = ω1 = 1/

√
L1C1 = ω2 =

1/
√

L2C2, f 0 = ω0/2π = 145 kHz, r2 = 0.05 Ω, r1 = 3 Ω, Us = 311
√

2/π V. ks used in Figure 8 is obtained
by (19). Similarly, frequency splitting phenomenon occurs when k is larger than ks. However, despite
of the same resonant frequencies of transmitter and receiver, two peak values of output power are
different as a result of the asymmetric value of r1 and R2. Note that this is different from the result
from CMT where two identical peak values are guaranteed as long as the resonant frequencies are
the same [16]. According to Figure 8 the values of maximum output power for different k are listed in
Table 1 along with the corresponding frequencies denoted as f max. Note that the value of f max is close
to the resonant frequency f 0 when k is smaller than ks.

Table 1. Maximum output power and the corresponding frequencies for asymmetric case
when ω1 = ω2.

RE = 1 Ω RE = 5 Ω

k 0.10 0.174 (ks) 0.30 0.50 0.60 0.70 0.86 (ks) 0.95

Pmax (W) 534.17 215.57 148.31 133.13 92.66 72.54 56.04 50.45

f max (kHz) 144.96 140.15 130.03 119.92 138.53 133.25 124.48 119.77
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small. This results from that fmax is close to the resonant frequency f0 as mentioned above, so the 
current source characteristic of SS structure is available [31]. As k becomes larger, fmax grows different 
from f0. As shown in Figure 10, smaller values of RE lead to higher Pmax when k is large enough. 
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Figure 8. Output power curves of asymmetric WPT system versus different RE values. (a) RE = 1 Ω;
(b) RE = 5 Ω.

The results of (18) over a certain range of k and RE are presented in Figure 9. The values of the
critical coupling coefficient are consistent with those in Figure 8. Moreover, the solutions to (18) are
different values at k = ks for asymmetric WPT system here, while the solutions merge into the same
value in symmetric cases as shown in Figure 5. As mentioned above, the two relative maxima of
output power are not identical. Here the maximum output power will occur at the lowest frequency
solution of (18), regardless of the value of k. When k is smaller than ks, the frequency corresponding to
the maximum output power is close to the resonant frequency f 0, like the symmetric case.
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Figure 9. Splitting frequencies over a certain range of k and RE for ω1 = ω2 asymmetric cases.
(a) RE = 1 Ω; (b) RE = 5 Ω.

Substituting (18) into (13) yields the values of Pmax for different RE and k. The values of Pmax over
a certain range of k and RE are presented in Figure 10. The results are the same as the peak values
in Figure 8 and Table 1. Different from Figure 6, the values of Pmax increase with those of RE when k
is small. This results from that f max is close to the resonant frequency f 0 as mentioned above, so the
current source characteristic of SS structure is available [31]. As k becomes larger, f max grows different
from f 0. As shown in Figure 10, smaller values of RE lead to higher Pmax when k is large enough.
Moreover, for asymmetric WPT system here, Pmax becomes smaller as k increases all the time even k is
larger than ks. This is because Pmax is related to k in the whole range of k in the case of an asymmetric
WPT system.



Energies 2019, 12, 1212 11 of 19
Energies 2019, 12, x FOR PEER REVIEW 11 of 19 

 

 
Figure 10. Pmax over a certain range of k and RE for ω1 = ω2 asymmetric cases. 

3.2.2. The case where ω1 ≠ ω2 

Here, a specific asymmetric case in which ω1 ≠ ω2 will be discussed, namely that the resonant 
frequencies of transmitter and receiver are different. This case often happens where power converters 
are working at zero-voltage or zero-current state operation [27]. The expression of the output power 
(3) can be presented as: 

( )

( ) ( ) ( )

ω

ω ω ω ω ω
ω ω ω ω

         
+ − − − + + − + + −         

            

=
2

2 2
2

1 2 E 1

2
S E

2 1 E 2 1
1 1

2
2 2

1 1 1 1

M

r R L L M L R r L r
C

P U

r
C C

R

C

. 
(20)

Solving the derivative of (20) will result in the same form as (14)–(19), so the frequency splitting 
phenomenon and the critical coupling coefficient can be analyzed. According to (20) the output 
power curves of asymmetric WPT system versus different RE values can be obtained for the case ω1 > 
ω2 and ω1 < ω2 respectively, as shown in Figure 11. The parameters are selected as: r1 = 3 Ω, r2 = 0.05 Ω, 

= 311 2 /sU π  V, L2 = 5.13 μH, C2 = 235 nF, =1 1 11/ω L C , =2 2 21 /ω L C , f2 = ω2/2π = 145 kHz, L1 = 
700 μH, C1 = 1.41 nF, f1 = ω1/2π = 160 kHz for ω1 > ω2; and L1 = 700 μH, C1 = 2.2 nF, f1 = ω1/2π = 128 kHz 
for ω1 < ω2. In Figure 11 there are two different relative maxima for output power when splitting 
phenomenon occurs; when k is smaller than ks, only one peak of output power exists. According to 
Figure 11 the values of maximum output power for different k are gathered in Table 2 along with the 
corresponding frequencies fmax.  
 

  
(a) (b) 

Figure 10. Pmax over a certain range of k and RE for ω1 = ω2 asymmetric cases.

3.2.2. The case whereω1 6= ω2

Here, a specific asymmetric case in which ω1 6= ω2 will be discussed, namely that the resonant
frequencies of transmitter and receiver are different. This case often happens where power converters
are working at zero-voltage or zero-current state operation [27]. The expression of the output power
(3) can be presented as:

P = (ωM)2[
r1(r2+RE)−

(
ωL1− 1

ωC1

)(
ωL2− 1

ωC2

)
+(ωM)2

]2
+
[(

ωL1− 1
ωC1

)
(RE+r2)+

(
ωL2− 1

ωC2

)
r1

]2 U2
S RE. (20)

Solving the derivative of (20) will result in the same form as (14)–(19), so the frequency splitting
phenomenon and the critical coupling coefficient can be analyzed. According to (20) the output
power curves of asymmetric WPT system versus different RE values can be obtained for the case
ω1 > ω2 and ω1 < ω2 respectively, as shown in Figure 11. The parameters are selected as: r1 = 3 Ω,
r2 = 0.05 Ω, Us = 311

√
2/π V, L2 = 5.13 µH, C2 = 235 nF, ω1 = 1/

√
L1C1, ω2 = 1/

√
L2C2,

f 2 = ω2/2π = 145 kHz, L1 = 700 µH, C1 = 1.41 nF, f 1 = ω1/2π = 160 kHz for ω1 > ω2; and L1 = 700 µH,
C1 = 2.2 nF, f 1 = ω1/2π = 128 kHz for ω1 < ω2. In Figure 11 there are two different relative maxima for
output power when splitting phenomenon occurs; when k is smaller than ks, only one peak of output
power exists. According to Figure 11 the values of maximum output power for different k are gathered
in Table 2 along with the corresponding frequencies f max.
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Table 2. Maximum output power and the corresponding frequencies for asymmetric case
when ω1 6= ω2.

RE = 1 Ω RE = 5 Ω

ω1 > ω2

k 0.10 0.23 (ks) 0.30 0.50 0.50 0.70 0.82 (ks) 0.90

Pmax (W) 762.52 262.56 209.17 153.60 104.33 54.60 42.70 38.65

f max (kHz) 162.12 172.71 180.62 213.98 162.01 152.48 140.29 134.31

ω1 < ω2

k 0.15 0.21 (ks) 0.30 0.50 0.40 0.70 0.87 (ks) 0.95

Pmax (W) 753.58 521.42 369.86 261.75 264.61 108.45 83.58 75.91

f max (kHz) 125.49 123.22 119.38 111.42 125.59 116.95 110.84 107.85

The results of (18) for ω1 6= ω2 under a certain range of k and RE are shown in Figure 12. The values
of ks are the same as those in Figure 11 and Table 2. It is notable that the values of ω1 and ω2 as
well as RE affect the maximum values of output power. When ω1 > ω2 is satisfied and the value of
RE is relatively low, the output power reaches the maximum value at the largest frequency solution
regardless of the value of k as shown in Figure 12a; otherwise, the maximum output power corresponds
to the lowest frequency solution as shown in Figure 12b–d.
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where p1 = −0.1614; p2 = 0.8246; p3 = 0.004923. It indicates that the relationship between 2
sk  and 2

21/ Q  

can be described by two-order polynomial like (11) and Figure 4. In Figure 13, when =2 1 / 2Q  ks 

approximately equals to 1; however, when <2 1 / 2Q  there is no real solution for ks according to 
(19), which is quite different from the symmetric case. 

Consider the input impedance of asymmetric WPT system at frequencies of (18). Substitute (18) 
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Figure 12. Splitting frequencies under a certain range of k and RE for ω1 6= ω2. (a) ω1 > ω2 and
RE = 1 Ω; (b) ω1 > ω2 and RE = 5 Ω; (c) ω1 < ω2 and RE = 1 Ω; (d) ω1 < ω2 and RE = 5 Ω.

Furthermore, when k < ks is met the frequency corresponding to the maximum output power
becomes gradually close to the resonant frequency of the transmitter f 1 as shown in Figure 12; this is
also consistent with the values of f max in Table 2. Besides, the variations of Pmax over a certain range of
k and RE are similar to those in Figure 10 and will not be described in detail here.

The critical coupling coefficient ks for asymmetric WPT system can be obtained through (19) as
mentioned before, but the results are not as intuitive as (11) in symmetric cases. Expansion of (19) can
be expressed as an eight-order polynomial about k, which is more complicated than (11) but simpler
than the result in [26]. With parameters chosen as: r1 = 3 Ω, L2 = 5.13 µH, C2 = 235 nF, L1 = 700
µH, C1 = 2.2 nF, the relationship between k2

s and 1/Q2
2 is described over a certain range of Q2 for the

case ω1 < ω2, as shown in Figure 13. With the help of MATLAB Curve Fitting Tool, the approximate
relationship between k2

s and 1/Q2
2 can be derived as follows:

k2
s = p1

(
1

Q2
2

)2

+ p2

(
1

Q2
2

)
+ p3, (21)

where p1 = −0.1614; p2 = 0.8246; p3 = 0.004923. It indicates that the relationship between k2
s and 1/Q2

2
can be described by two-order polynomial like (11) and Figure 4. In Figure 13, when Q2 = 1/

√
2 ks

approximately equals to 1; however, when Q2 < 1/
√

2 there is no real solution for ks according to (19),
which is quite different from the symmetric case.

Consider the input impedance of asymmetric WPT system at frequencies of (18). Substitute (18)
into the expression of Zin (22), then the imaginary part of Zin Im(Zin) can be obtained in Figure 14 using
parameters for the case ω1 < ω2. In Figure 14, Im(Zin) is close to zero at the frequency corresponding
to the maximum output power when k is relatively low; however, as the value of k becomes larger,
Im(Zin) are not close to zero at all splitting frequencies, which means that the solutions to Im(Zin) = 0
is not suitable to assess the peak output power in the asymmetric case:

Zin = r1 +
ω2M2R2

R2
2 +

(
ωL2 − 1

ωC2

)2 + j

ωL1 −
1

ωC1
−

ω2M2
(
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)
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2 +
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 (22)
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4. Experimental Validation

4.1. Prototype Description

The main circuit of our experimental prototype is shown in Figure 1. An 18 V lithium-ion battery
pack for portable power tools was chosen as the load of the receiver. The receiving coil is designed
considering the limitation of the load’s original configuration, while the transmitting coil should be
properly designed so that the magnetic field is strong enough. Hence, an asymmetric transmitter and
receiver are adopted in the prototype. The specific structures of the transmitting and receiving coils are
presented in Figure 15. The transmitting coil has four layers, each of which comprises 14-turn 16-strand
0.12 mm-diameter Litz wire. Its outer radius is 4.8 cm and inner is 3.4 cm. The receiving coil has single
layer, which includes 5-turn 90-strand 0.12-diameter Litz wire. Its outer radius is 3.9 cm and inner is
3 cm. Besides, ferrite core is added for both transmitter and receiver for shielding. The inductances
of coils as well as the parasitic resistances are gathered in Table 3. When the two coils are placed
on parallel plane with a vertical displacement of 12 mm and axially aligned, the measured coupling
coefficient is 0.41.
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Table 3. Main parameters for the experimental prototype.

Symbol Note Value/Unit

L1 transmitting coil inductance 698/µH
C1 transmitting capacitance 2.2/nF
r1 transmitting coil resistance 3.1/Ω
L2 receiving coil inductance 5.2/µH
C2 receiving capacitance 235/nF
r2 receiving coil resistance 50/mΩ
f operating frequency 145/kHz
d distance between coils 12/mm
k coupling coefficient 0.41

The Class-D inverter in the transmitter comprises a pair of N-MOSFETs (STD8NM50N).
The synchronous full-bridge rectifier in the receiver includes a pair of N-MOSFETs (Si7414DN) and a
pair of P-MOSFETs (Si7415DN). The main parameters of the prototype are shown in Table 3, which are
similar to the case ω1 < ω2 mentioned in the preceding section.

4.2. Experimental Results

The implementation of prototype is shown in Figure 16. Here, A is the lithium-ion battery pack
for portable power tools. B is the receiver circuit board. C denotes the transmitter circuit board. D
denotes the transmitting coil. E is the receiving coil. F is a transparent board to separate the transmitter
and receiver.
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In order to simplify the analysis, the operating frequency is fixed to 145 kHz, which is the same as
the resonant frequency of the receiver. According to (22), the input impedance of the asymmetric WPT
system is inductive. For a fixed-frequency WPT system the frequency splitting phenomenon causes
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a drastic variation of output power. To deal with the frequency splitting phenomenon additional
implementation should be adopted, such as adaptive impedance matching and frequency tracking,
thus system complexity increases [37,38]. In this paper the parameters of prototype are considered
carefully to avoid frequency splitting. A static asymmetric WPT experiment is conducted to verify the
analytical results and offers proper power to the load. Consider that output current is 3 A which is
suitable for the charging, so the value of equivalent output load is RO = 6 Ω when the output voltage
is 18 V. According to Equations (1), (15), (17) and (19), the value of critical coupling coefficient ks can be
obtained as 0.84. The selected value of coupling coefficient 0.41 is smaller than ks, so the frequency
splitting phenomenon will not occur.

Figure 17 presents the currents of transmitting coil and receiving coil and the output voltage of
class-D inverter. In Figure 17 the current of transmitting coil lags the output voltage of class-D inverter
properly so that zero-voltage operation is achieved [27]. The phase between the fundamental wave of
the two currents is 90 degrees when WPT system operates at the receiver’s resonant frequency [19,27],
but the actual waveforms are affected by the harmonics from the class-D inverter and the synchronous
full-bridge rectifier, and distortions exist.
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Figure 18 exhibits the charging voltage and charging current of the load. The RMS of voltage
is slightly lower than 18 V, and the RMS of current is 3.15 A, so the output power is about 56 W.
For a coupling coefficient of 0.41, the calculation result according to the preceding analysis should
be 61.4 W, which is not completely the same as the experiment result. Nonetheless, considering the
influence of harmonics distortions and the power cost caused by switches in the inverter, the result is
relatively precise, and the design can provide proper output power for the 18 V lithium-ion battery
pack. Note that with the same output load resistance the coupling coefficient corresponding to the
highest output power should be 0.51. For safe charging of lithium-ion battery pack, a lower coupling
coefficient is chosen, and adequate output power is offered. The experimental results still support the
proposed analysis.
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5. Discussion and Conclusions 
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5. Discussion and Conclusions

This paper focuses on WPT systems with asymmetric transmitters and receivers. The output
power characteristics are analyzed in detail. The frequency splitting phenomenon for asymmetric
WPT systems is discussed theoretically and crucial characteristics are concluded. Cases for different
resonant conditions are elaborated for a comprehensive understanding of the asymmetric WPT system.
The influence of the coupling coefficient and the value of the load on the output power is different
compared with preceding symmetric WPT systems. Hence, the analysis in this paper helps better
understand the output power characteristics of practical WPT devices which possess diverse sizes
and configurations. The experimental results verify that the proposed analysis is feasible to guide
the design of asymmetric WPT system, and the scheme can be adapted to various WPT applications,
especially to common lithium-ion battery charging products.
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