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Abstract: Multiple fractures have been proposed for improving the heat extracted from an enhanced
geothermal system (EGS). For calculating the production temperature of a multi-fracture EGS,
previous analytical or semi-analytical methods have all been based on an infinite scale of fractures
and one-dimensional conduction in the rock matrix. Here, a temporal semi-analytical method is
presented in which finite-scale fractures and three-dimensional conduction in the rock matrix are
both considered. Firstly, the developed model was validated by comparing it with the analytical
solution, which only considers one-dimensional conduction in the rock matrix. Then, the temporal
semi-analytical method was used to predict the production temperature in order to investigate the
effects of fracture spacing and fracture number on the response of an EGS with a constant total
injection rate. The results demonstrate that enlarging the spacing between fractures and increasing
the number of fractures can both improve the heat extraction; however, the latter approach is much
more effective than the former. In addition, the temporal semi-analytical method is applicable for
optimizing the design of an EGS with multiple fractures located equidistantly or non-equidistantly.
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1. Introduction

Geothermal energy is a promising and clean renewable energy resource in the world. In addition to
the wide use for heating done by ground source heat pumps (GSHP) [1], it can also be utilized for power
generation from enhanced geothermal systems (EGS) [2]. Due to the low permeability of fractured
rock reservoirs, it is a common challenge to extract significant amounts of energy. To improve the heat
extraction from these reservoirs at a relatively lower cost, multiple fractures have been proposed to
provide multiple water-conducting paths between the injection and production wells [3]. The thermal
evolution in an EGS is associated with the spacing between the fractures and the number of fractures.

Owing to the nonlinear hydro-thermal coupling, a complex fracture network, irregular geometries,
and heterogeneous materials, a wide range of commercial software is generally adopted for geothermal
simulation. Those simulation tools are based on different numerical discretization schemes, i.e., finite
element code [4–7], finite difference code [8], and finite volume code [9], etc. Although numerical
methods have a great advantage in solving complicated problems, the increased storage memory to
store the result of each time interval and the computation time to discretize the entire computational
model compromise their application in practice to some extent, especially for geothermal systems with
sparsely distributed fractures.

Regardless of the effects of temperature on water flow, analytical or semi-analytical methods can
also be used to calculate the production temperature. For water flow and heat transfer in a reservoir
with a single fracture, authors have proposed different conceptual models and computational methods.
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Lauwerier [10] established a mathematical model with an infinite line-shaped fracture and presented
an analytical solution for temperature distribution considering the one-dimensional conduction of
rocks and convective of fracture water. The two-dimensional heat transfer model for a reservoir with a
finite line-shaped fracture was introduced by Cheng et al. [11] who formulated a Laplace transform
semi-analytical method. Later, the three-dimensional heat transfer model with a finite disc-shaped
fracture and its Laplace transform semi-analytical solution was proposed by Ghassemi et al. [12].
To accurately handle the singularities in the above integral, Xiang et al. [13] and Zhang et al. [14]
applied analytical integration in the neighborhood of singularities. Unlike the Laplace transform
semi-analytical method, the temporal semi-analytical method developed by Zhou et al. [15] was based
on the Green function in the temporal domain instead of the one in the Laplace transform domain,
and was simpler and more accurate because of avoiding the numerical Laplace inverse transformation
process in which the result would be biased to some degree.

For water flow and heat transfer in a reservoir with multiple fractures, Abbasi et al. [16]
considered parallel infinite line-shaped fractures at equal spacing and presented its analytical solution.
Wu et al. [17] took into account equidistant, parallel, infinite disc-shaped fractures and derived its
Laplace transform semi-analytical solution. However, both the analytical and semi-analytical solutions
are based on the one-dimensional conduction in rocks and the infinite-scale fractures. To the best of the
authors’ knowledge, no analytical or semi-analytical methods are available for cases considering
three-dimensional conduction in rocks and finite-scale fractures, and much less work has been
conducted to investigate semi-analytically the effects of fracture spacing and fracture number on
the response of a geothermal reservoir. Therefore, we attempt to develop a temporal semi-analytical
model to predict the heat extracted from an EGS with multiple fractures.

2. Materials and Methods

In this study, a multi-fracture EGS model was built based on the geometry suggested by Ref. [17].
In Figure 1, multiple horizontal disc-shaped fractures located in the center of a reservoir connect the
injection and production wells. Due to the low permeability of the rock matrix, the leak-off is assumed
to be negligible; thus, the heat propagates by conduction in the rock matrix and by convection within
fractures. When time t > 0, cold water with a constant temperature Tin and a constant injection rate
Qin is injected into the system with the rock’s initial temperature of T0. The hot water with a constant
production rate Qex is pumped out at the same time. Some geometric parameters of the model are defined
as follow: the radii of the wells are rw; the separation between two wells is L; the number of fractures is F.
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Figure 1. Geometry of the model with multi-parallel disc-shaped fractures and dipole wells. 

We also mention some assumptions for the physical model. 
• The fracture water is incompressible, and the rock matrix is impermeable and homogenous. 

Figure 1. Geometry of the model with multi-parallel disc-shaped fractures and dipole wells.

We also mention some assumptions for the physical model.

• The fracture water is incompressible, and the rock matrix is impermeable and homogenous.
• The thermal properties of the rock matrix and fracture water are independent of temperature

variation.
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• The aperture of the fractures remains uniform and invariant without considering the deformation
induced by hydro-mechanical coupling or thermo-mechanical interaction. Due to the fact that the
fracture aperture is relatively small compared to the fracture surface, each fracture is simplified as
a plane that coincides with its axisymmetric surface.

• The heat transfer coefficient between the rock matrix and fracture water is infinite, which means
that the temperature of the fracture water is equal to that of the rock matrix at the fracture surfaces.

• There is steady-state water flow in the fractures because the heat exchange in a geothermal
reservoir is a long-term process.

2.1. Water Flow in Fractures

The water flow in the f th fracture is assumed to obey Darcy’s law [15]:

∇p f
(

x f
)
= −π2µ f

w f 3 q f
(

x f
)

, x f ∈ A f (1)

where the superscript f denotes the fracture plane f, ∇ is the gradient operator, xf is the point (xf, yf, zf),
qf is the water discharge, pf is the hydraulic pressure in the fracture, µf is the water viscosity, wf is the
fracture aperture, and Af is the fracture plane area.

The water continuity equation within the f th fracture is expressed as:

∇·q f
(

x f
)
= Q f

exδ
(

x f − x f
ex

)
−Q f

inδ
(

x f − x f
in

)
(2)

where ∇· is the divergence operator, δ(·) is the Dirac delta function, Q f
in is the flow rate at the injection

well located at x f
in = (x f

in, y f
in, y f

in), and Q f
ex is the flow rate at the production well located at x f

ex = (x f
ex,

y f
ex, z f

ex).
Substituting Equation (1) to Equation (2) yields

∇2 p f
(

x f
)
=

π2µ f

w f 3

[
Q f

exδ
(

x f − x f
ex

)
−Q f

inδ
(

x f − x f
in

)]
. (3)

where ∇2 is the Laplace operator.
For the water flow in the f th fracture, the following boundary condition is used:

∂p f (x f )
∂n f (x f )

= 0, x f ∈ ∂A f

Q f
in = Q f

ex = Qin
F = Qex

F

. (4)

where ∂Af is the boundary of the fracture, and nf the outward normal of ∂Af.
Based on the hypothesis that the fracture geometry including the radius and aperture is uniform,

we can obtain the exact solution of the water discharge in the f th fracture by using the superposition
procedure [18]:

q f
x

(
x f
)
=

2

∑
i=1

Q f
i

2π

 x− x f
i(

x− x f
i

)2
+
(

y− y f
i

)2 +
r2

w

(
xr2

w − x f
i R f 2

)
(

xr2
w − x f

i R f 2
)2

+
(

yr2
w − y f

i R f 2
)2

, (5)

q f
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(
x f
)
=

2

∑
i=1

Q f
i

2π

 y− y f
i(

x− x f
i

)2
+
(

y− y f
i

)2 +
r2

w

(
yr2
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i R f 2

)
(

xr2
w − x f

i R f 2
)2

+
(

yr2
w − y f

i R f 2
)2

. (6)

where Q f
i is the flow rate at the ith well located at (x f

i , y f
i , z f

i ). The sign is negative for injection and
positive for production. Rf is the radius of the fracture.
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2.2. Heat Transfer in Fractures

According to Cheng et al. [11], the heat transfer within fractures contains four components, i.e.,
heat storage, dispersion, convection, and conduction between the fracture water and the rock matrix.
Due to the relatively large convection velocity, the heat storage and dispersion can be ignored. Thus,
the heat transport in the f th fracture can be expressed as:

ρwcwq f
(

x f
)
·∇T f

(
x f , t

)
+ q f

h

(
x f , t

)
= 0 (7)

where ρw is the water density, cw is the water-specific heat, and q f
h is the heat transfer rate between the

fracture water and the rock matrix.
Assuming that temperature is continuous across fracture surfaces, the heat transfer rate in

Equation (7) can be expressed as [19]:

q f
h

(
x f , t

)
= −2λr

∂T(x, t)
∂z

∣∣∣∣
z=z f

(8)

where λr is the thermal conductivity of the rock matrix.

2.3. Heat Transfer in the Rock Matrix

In a low-permeability rock matrix, the heat transfer dominated by conduction can be expressed
as:

λr∇2T(x, t) = ρrcr
∂T(x, t)

∂t
, x ∈ Ω (9)

where ρr is the rock matrix density and cr is the rock matrix specific heat.

2.4. Initial and Boundary Condition

The initial and boundary conditions for the system are:

T(x, 0) = T0, x ⊆ Ω
T(x, t) = Tin, x = x f

in
T(x, t) = T0, x→ ±∞

. (10)

2.5. Numerical Formation

2.5.1. Integral Equation Method

The temperature increment at location x and time t induced by an instantaneous unit point source
at location x′ and time t′ < t is [20]:

θ
(
x− x′, t− t′

)
=

√
ρrcr

[4πλr(t− t′)]3
exp

(
−ρrcrr2

4λr(t− t′)

)
. (11)

where r =
√
(x− x′)2 + (y− y′)2 + (z− z′)2.

Equation (11) is the temporal Green function of Equation (9). The heat transfer rate in Equation (8)
is regarded as a heat sink when the fracture water is colder than the rock matrix. Taking into account
heat sinks at all fracture planes, the resultant temperature in the reservoir at time t is:

T(x, t) =
F

∑
f=1

∫ t

0

∫
A f

q f
h

(
x f , t′

)
θ
(

x− x f , t− t′
)

dA f dt′ + T0. (12)

Applying Equation (12) at the f th fracture plane yields
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T f
(

x f , t
)
=

F

∑
i=1

∫ t

0

∫
Ai

qi
h

(
xi, t′

)
θ
(

x f − xi, t− t′
)

dAidt′ + T0. (13)

Using the convolution algorithm [21] for Equation (13) yields

T f
(

x f , t
)
=

F

∑
i=1

N

∑
n=1

q f
h

(
x f , tn

)∫
Ai

θch
N−n+1

(
x f − xi

)
dAi + T0 (14)

where the time from 0 to t is divided into N equal intervals of ∆t, θch
n is the integration of θ from time

tN−n to time tN−n+1, and is expressed as:

θch
n
(
x− x′

)
=
∫ tN−n+1

tN−n

θ
(
x− x′, t− t′

)
dt′ =

1
4πλrr

[
erfc

(
r√

4αrtn

)
− erfc

(
r√

4αrtn−1

)]
. (15)

where αr = λr/ρrcr is the heat diffusivity of the rock matrix and erfc (·) is the complementary error
function, which approximates to zero when the expression in the brackets approaches infinity.

Equation (14) with the initial and boundary conditions in Equation (10) can be used to obtain the
temperature and heat transfer rate at each fracture plane.

2.5.2. Numerical Calculation

Fracture planes are discretized into a number of four–noded quadrilateral elements. For the f th
fracture plane, there are Mf elements and Kf nodes as shown in Figure 2.
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The following interpolations for any element m are used:

T f
m = NT f

m, q f
hm = Nq f

hm (16)

where the subscript m denotes the element m, T f
m is the vector of nodal temperature, q f

hm is the vector
of the nodal heat transfer rate, and N is the vector of interpolation functions.

Substituting Equation (16) into Equation (14) yields

T f
(

x f , t
)
≈

F

∑
i=1

N

∑
n=1

Mi

∑
m=0

∫
Ai

m

Nθch
N−n+1

(
x f − xi

)
dAi

mqi
hm(tn) + T0. (17)

Applying Equation (17) to all element nodes at the f th fracture plane yields

T f (t) =
F

∑
i=1

[
B f ,iqi

h(t) + C f ,i
]
+ D f (18)

where, specifically,
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B f ,i =
Mi

∑
m=1



∫
Ai

m
Nθch

1

(
x f

1 − xi
)

dAi
m∫

Ai
m

Nθch
1

(
x f

2 − xi
)

dAi
m

...∫
Ai

m
Nθch

1

(
x f

K f − xi
)

dAi
m

, (19)

C f ,i =
N−1

∑
n=1

Mi

∑
m=1



∫
Ai

m
Nθch

N−n+1

(
x f

1 − xi
)

dAi
m∫

Ai
m

Nθch
N−n+1

(
x f

2 − xi
)

dAi
m

...∫
Ai

m
Nθch

N−n+1

(
x f

K f − xi
)

dAi
m

qi
h(tn), (20)

D f =
[

T0

(
x f

1

)
, T0

(
x f

2

)
, · · · , T0

(
x f

K f

)]T
. (21)

where the superscript T denotes the transpose of a vector.
Usually, the conventional Galerkin finite element method for the convection-dominated problems

is corrupted by spurious node-to-node oscillations. In order to reduce the numerical oscillations,
the Streamline upwind/Petrov–Galerkin method [22] is used for Equation (7), which can be written
as follows:

E f T f (t) + F f q f
h(t) = 0, (22)

where

E f = ρwcw

M f

∑
m=1

∫
A f

m

2

∑
i=1

(
NT + k

f
xim

∂NT

∂x f
i

)
Nq f

xi

∂N

∂x f
i

dA f
m, xi = x, y, (23)

k
f
xim =

qc f
xim

2

2

∑
k=1

qc f
xkm∆x f

km

qc f 2
xm + qc f 2

ym

(
coth

(
qc f

xkm∆x f
km

2w f kw

)
− 2w f kw

qc f
xkm∆x f

km

)
, xk = x, y, (24)

F f =
M f

∑
m=1

∫
A f

m

NTNdA f
m. (25)

in which ∆x f
km is the element length in xk direction, qc f

xkm is the water discharge at the center of the
element, and kw is the water diffusivity.

Substituting Equation (18) to Equation (22) yields:

(
E f B f , f + F f

)
q f

h(t) +
F

∑
i=1,i 6= f

E f B f ,iqi
h(t) = −E f

(
F

∑
i=1

C f ,i + D f

)
. (26)

The heat transfer rate q f
h(t) can be obtained by solving Equation (26). Thereafter, Equation (12)

can be discretized as presented in this section to calculate the temperature of the fracture water and
rock matrix.

3. Results and Discussion

3.1. Verification of the Temporal Semi-Analytical Method

3.1.1. Injection into an Infinite Rectangular Fracture

To verify the model proposed, we considered the problem of one-dimensional water injection
into an infinite rectangular-shaped fracture as shown in Figure 3a. The length, width, and aperture of
the fracture were 800 m, 80 m, and 0.003 m, respectively. The unit-width discharge was 1.5 × 10−5

m2 s−1. The parameters in Table 1 were used here. The temperature of line l located centrally in the
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fracture plane was calculated. Based on one-dimensional conduction in the rock matrix, the analytical
solution for the normalized fracture water temperature is as follows [10]:

T − T0

Tin − T0
= erfc

[(
λrx

ρwcwq
+

w
4

)√
ρrcr

λrt

]
. (27)

where x is the perpendicular distance from the interest point to the injection well, q is the unit-width
discharge, and w is the fracture aperture. The other variables are as described above.

Figure 3b shows the comparison of the results for injection times of 1, 4, and 10 years. We observe
that the difference between the two solutions is small. However, with the elapse of time, the difference
becomes noticeable due to the different assumptions about conduction in the rock matrix.
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Figure 3. (a) Water flows through an infinite rectangular fracture in which the left and right sides
are the positions of the injection and production wells, respectively [10]; (b) Normalized temperature
increment distribution along line l.

Table 1. Parameters used.

Parameters Values Parameters Values

Water density ρw (Kg m−3) 1000 Water diffusivity kw (m2 s−1) 0.01
Rock density ρr (Kg m−3) 2650 Rock conductivity λr (W m−1 ◦C−1) 2.59

Water-specific heat cw (J kg−1 ◦C−1) 4180 Initial rock temperature T0 (◦C−1) 90
Rock-specific heat cr (J kg−1 ◦C−1) 1000 Injected water temperature Tin (◦C−1) 20

3.1.2. Injection into an Infinite Radial Fracture

To validate the model presented, the heat transfer of radial flow through an infinite fracture was
modeled. In Figure 4a, cold water was injected into the center of the fracture. Based on one-dimensional
conduction in the rock matrix, the analytical solution for the normalized fracture water temperature is
given as [23]:

T − T0

Tin − T0
= erfc

[(
πλrx2

ρwcwQin
+

w
4

)√
ρrcr

λrt

]
. (28)

where x is the radial distance from the interest point to the injection well and Qin is the injection rate;
the other variables are as described above.

The case that is shown in Figure 4a with an injection rate of 0.015 m3 s−1, wellbore radius of 0.1 m,
and fracture aperture of 0.003 m was analyzed. In order to reduce the impact of truncated boundaries,
the radius of the fracture was set at 600 m. Other parameters are listed in Table 1. Figure 4b illustrates
the comparison of results for injection times of 1, 4, and 10 years. A good match is observed between
the solutions from the present model and the analytical one.
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3.2. Multi-Fracture EGS

In this section, the temporal semi-analytical method was applied to investigate the effects of
fracture spacing and fracture number on the response of an EGS. Without loss of generality, the fractures
were equidistant. We assumed that the injection rate was 0.05 m3 s−1, wellbore radius 0.1 m, wellbore
spacing 60 m, fracture radius 50 m, and fracture aperture 0.001 m. Each fracture plane was discretized
spatially by 1992 quadratic elements. Other parameters are shown in Table 1.

3.2.1. Effects of the Fracture Spacing

Assuming that there were two parallel fractures in Figure 1, we aimed at probing the influence of
fracture spacing on fracture water temperature. The spacing between the two fractures ranged from
20 m to 50 m. For three cases with fracture spacings of 20 m, 35 m, and 50 m, the fracture temperature
distribution after 5 years of extraction and the production temperature variation within 10 years are
shown in Figure 5. With increasing the fracture spacing, the production temperature rose because the
thermal interplay between the two fractures decreased correspondingly, while its relative increment
declined. When the fracture spacing was increased from 30 m to 50 m, the relative increasing rate of
the production temperature was lower than 3%. We can indicate that a spacing larger than 50 m is too
large for thermal interaction, which is compatible with the results obtained by Vik et al. [3].
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Figure 5. Effect of various fracture spacings on fracture temperature: (a) Fracture temperature
distribution after 5 years of extraction; (b) Temperature breakthrough curves.

3.2.2. Effects of the Fracture Number

Assuming that the distance between the top fracture and the bottom one was 50 m in Figure 1,
more horizontal fractures were added in the rock between them. Three cases were studied where the
number of fractures was set to 2, 3, and 4, and correspondingly the uniform spacings were 50 m, 25 m,
and 50/3 m. Figure 6 illustrates the average temperature of the water pumped from all fractures in each
project, respectively. As the number of fractures increased, the production temperature rose because
the contacting area between the fracture water and rock matrix expanded correspondingly, while
its relative increment decreased. When the fracture number was increased from 3 to 4, the relative
increasing rate of the production temperature was lower than 2%. We can observe that the optimal
fracture number is 4, which approaches the smallest value of 6 proposed by Wu et al. [17]. In addition,
the comparison between Figures 5b and 6 reveals that increasing the fracture number improves the
heat extracted more efficiently than does enlarging the fracture spacing.
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4. Conclusions

In this study, a temporal semi-analytical model was developed to predict the heat exploited from
an EGS with multiple parallel fractures. This model considers the three-dimensional conduction in
the rock matrix and the finite scale of fractures. The solution was applied to investigate the effects of
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fracture spacing and fracture number on the production temperature of an EGS. The results show the
following:

• The temporal semi-analytical method provides an accurate solution and, thus, can serve as a
benchmark for numerical methods.

• The fracture spacing and fracture number are two key factors controlling the heat extraction from
an EGS. Increasing the fracture spacing maintains the production temperature by decreasing
the thermal interaction between fractures. A multi-fracture also extends the life of a geothermal
reservoir by increasing the contacting area between the fracture water and rock matrix. In terms
of improving heat exploitation, increasing the fracture number is more efficient than increasing
fracture spacing.

• The proposed method is efficient in calculations and is applicable to the design and optimization
of an EGS.
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