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Abstract: The electric power industry is an essential part of the energy industry as it strengthens the
monitoring and control management of household electricity for the construction of an economic
power system. In this paper, a non-intrusive affinity propagation (AP) clustering algorithm is
improved according to the factor graph model and the belief propagation theory. The energy data of
non-intrusive monitoring consists of the actual energy consumption data of each electronic appliance.
The experimental results show that this improved algorithm identifies the basic and combined
class of home appliances. According to the possibility of conversion between different classes,
the combination of classes is broken down into different basic classes. This method provides the basis
for power management companies to allocate electricity scientifically and rationally.

Keywords: electrical appliance; pattern recognition; data mining; AP clustering algorithm; power
load decomposition

1. Introduction

In the past few decades, electrical energy has developed rapidly, and a substantial investment
has been made towards the construction of intelligent metering power grids [1]. Power management
enterprises pay more and more attention to the reliability and quality of electric energy. Therefore, rational
allocation of energy and reduction of energy consumption are the top priority of power management
enterprises. The energy consumption of household electricity takes up a significant part of energy
consumption. Intelligent monitoring of household electricity is an essential prerequisite for improving
energy efficiency, which is significant for building a safe and economic power system [2,3]. High-level
intelligent power network should deal with various load demands automatically, and can be controlled
according to different emergencies, as shown in Figure 1. Based on advanced computer science and
technology, combined with cloud processing and machine learning algorithms, power companies expect
to build an automated, efficient and energy-saving smart grid. There are two main ways to identify the
power levels of various electrical appliances. The first method is intrusive load monitoring, which is a
method of recording the operation status of each appliance and requires installing electricity meters on
each household appliance. In practical application, this method has complex circuit modification and
high installation cost. The second method is non-intrusive load monitoring (NILM), which denotes the
class of methods and algorithms able to perform this task by using the electrical parameters measured at
a single point [4,5]. The smart meter at the entrance of the home circuit records the data characteristics
of power, voltage and current. By decomposing the monitoring load data, we can identify the rated
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power of different electrical appliances. The power company can obtain the usual information about
the user’s electricity, to make a scientific and reasonable decision. This method can reduce the cost of
installation and reduce the level of interference in measurement [6]. Commonly used clustering methods
for identifying appliances include the following: Hart first proposed non-intrusive household appliance
load monitoring and analyzed the algorithm and characteristics, in this case, the essence of this method
is to decompose the aggregated load data of household appliance [7]. After decades of research, many
methods have been applied to pattern recognition of NILM. Some representative methods are K-means,
K-nearest neighbor, enhanced ISODATA and artificial neural network [8–11]. These methods provide
some ideas for identifying the operating mode of electrical appliances, but when there is a large number
of home appliances, the recognition results are often not ideal. Frey and Dueck first proposed a standard
AP clustering algorithm to solve the clustering problem [12]. The standard AP clustering algorithm
can be derived from the factor graph model and the belief propagation theory [12,13]. The factor
graph model, proposed by Kschischang and Frey, is a graph description method where the global
function is decomposed into the product of the local function [14]. The theory of belief propagation was
proposed by Pearl and is a kind of message transfer algorithm for inference in the graph model [15].
Since its publication, AP clustering algorithm has been applied in many fields because of its unique
clustering characteristics.
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Figure 1. Architecture and main components of a smart grid.

In this paper, we first discuss a method of preprocessing large monitored power data where the
noise and mutation was deleted. Then we introduced an improved AP clustering algorithm, where
the difficulty of electrical identification was overcome by redefining the similarity matrix S of the
AP clustering algorithm and adding two new messages. To analyse the operation rule of electrical
appliances, we define the power of a single electrical appliance as a basic class and define the sum of
the operating power of two or more electrical appliances as a combination class. We then analyzed and
discussed the experimental results and distinguished between the basic and combined classes according
to the difference method, and we demonstrated how the combined class was decomposed into the
basic class. Finally, we concluded that through the improved AP clustering algorithm, the basic and
combined classes could be identified, providing a new method for identifying household appliances.

2. Data Preprocessing

We monitored the electricity consumption of a family and obtained the data set used in this work.
The electric meter measures the overall operation of 12 electrical appliances. The meter recorded the
power consumed by the family every minute for February 2011, and a total of 40,320 data points
(=60 min × 24 h × 28 d) were recorded for the entire month. The time in a cycle (from one idle
time period to the next idle time period) was divided into four segments: startup, stable operation,
shutdown, and idle time [10], as shown in Figure 2.
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The power consumed is unstable for a short time due to the sudden start-up or shut down of
electrical appliances. Figure 3 shows the monitoring data for the entirety of 8 February 2011, and each
point in the figure represents aggregated load per minute. Peaks were observed in the data during the
morning and afternoon, whereas data was more stable during the night. Therefore, the monitoring data
of the electric meter was identified by a piecewise method, and the data was preprocessed as follows:

(1) During idle time: there is no electrical work, the monitoring power value is close to 0 (<10 W),
so it is set to 0.

(2) During stable operation: due to the interference of external factors, there were random abrupt
data. These mutation data was replaced by the average value of the time monitoring data. If the
difference between three or more continuous monitoring values did not exceed 5% of their
average value, we considered that this time was in a stable operation stage. In the study, the data
in the stable stage were used for calculation.

(3) The daily data was divided into three parts according to the family’s daily habits: morning
(06:00–14:00), afternoon (14:00–22:00), and night (22:00–06:00).
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In the monitoring process, if an electrical appliance is turned on or off, the power data will be
transferred from one level to another, and each level corresponds to a power class. The monitoring
data is not stable during the startup and shutdown periods, so it is not suitable to be used as valid
data. The stable operation phase is the most important of the four segments because it is crucial for
identifying the power class of the electrical appliances.

3. Methodology

3.1. Standard AP Clustering Algorithm

The model assumes that there are n variable nodes and m function nodes, in which the n
variable nodes corresponding to the n random variable C = {c1, c2, . . . , cn}, and the m function
nodes corresponding to the m functions Φ = {ϕ1, ϕ2, ..., ϕm}. Dueck proposed the Max-Product BP rule.
According to which the message from variable node ci to function node ϕl is equal to the product of
message from other function nodes to ci node. The message from function node ϕl to variable node ci
is the edge function of the product of message from ϕl and other variable nodes to ϕl node relative to
ci. The messages µci→ϕl (ci) that the variable node ci passes to the function node ϕl could be expressed
as [16,17]:

µci→ϕl (ci) = ∑
{l′ |ϕl′∈ϕ(ne(ci)\l)

}
µϕl′→ci (ci) (1)

where ne(ci) represents the set of index numbers for all ci, ne(ci)\l means removing l from the index
number of ne(ci);

{
l′
∣∣∣ϕl′ ∈ ϕ(ne(ci)\l)

}
means that the set of remaining index numbers with ϕl is

removed from ϕ; The messages µϕl→ci (ci) that the function node ϕl pass to the variable node ci can be
expressed as:

µϕl→ci (ci) = maxϕl(cne(ϕl)
\ci) + ∑ {i′ |ci′∈cne(ϕl )

\ci}µci′→ϕl (ci) (2)

where ϕl(cne(ϕl)\ci) represents the set of ϕl that removes ϕl(ci);
{

i′
∣∣∣ci′ ∈ cne(ϕl)

\ci

}
means that the set

of remaining index numbers with ci is removed from c; µci′→ϕl (ci) represents the message passed
from the variable node ci to the function node ϕl. In this paper, the improved AP clustering algorithm
utilized the Max-product BP rule operation.

3.2. Improved AP Clustering Algorithm

3.2.1. Challenges with Standard AP Clustering Algorithm

Figure 4 shows a typical factor graph model of the AP clustering algorithm. The message transfer
model in Figure 4 is shown in Figure 5. The standard AP clustering algorithm consists of the similarity
matrix S = {sij}, the attraction message matrix R = {ρij}, and the ownership message matrix A = {αij}
(i, j = 1, 2, . . . , n). The data point is recorded as X = {x1, x2, ..., xn}, and two kinds of message ρij and aij
are alternately updated in the AP clustering algorithm. In Figures 4 and 5, E and I are function node
matrices, α, β, η, ρ and s are messages between variable nodes and function nodes. In standard AP
clustering algorithm and improved AP clustering algorithm, these functions and messages follow the
same calculation rules.

By loosening the constraints of AP clustering algorithm, Leone et al. proposed a soft constrained
AP clustering algorithm [18]. After that, Leone et al. introduced a semi-supervised idea and
proposed a semi-supervised soft constrained AP clustering algorithm [19]. Givoni and Frey considered
that two points must belong to the same class or do not belong to the same class in an instance
constraint, and then they proposed a semi-supervised AP clustering algorithm model based on
instance constraints [20].
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{C1j, C2j, . . . , Cnj} to function nodes Ej.

The advantage of the AP clustering algorithm is to exchange message in iteration to approach
the optimal result. However, it also has two following shortcomings in the identification of electrical
patterns. (1) The computational complexity of the algorithm is relatively large because the message
is passed between each data point. For N points, each point needs to transmit (N − 1) messages to
other nodes, resulting in the need to compute N × (N − 1) messages in each iteration, which is almost
impossible for a large number of data to be completed in an acceptable time. (2) For power data,
because the number of members of different classes varies greatly, a large class may be divided into
several sub-classes during the clustering process, which leads to high similarity among sub-classes.
The reason for this is that many of the same values are potential category centers, each point receives
information from all other points, although one point has become a category center, it does not guarantee
that another point with the same value will not become the center of the other category. Therefore,
an improved AP clustering algorithm based on the factor graph model and the belief propagation theory
is proposed to solve those two problems. The improved AP clustering algorithm not only reduced the
amount of computation in the operation process, but it also merged highly similar categories while
reserving the excellent clustering performance of conventional AP clustering algorithms.
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3.2.2. Improvement Measures

To overcome the adverse effects of the AP algorithm, we have improved the standard AP clustering
algorithm in two aspects. On the one hand, we redefine the similarity matrix and record the number
of times and its value for the point with the same value. The aim is to avoid the same value as the
central point of multiple categories. Through the new similarity matrix S, the amount of computing
in the AP clustering algorithm is no longer determined by the total number of samples, but by the
number of samples with different values. On the other hand, we have added new function nodes and
new delivery message. The purpose of this is to integrate other categories within the neighborhood of a
point when it has become the central point of the category. Therefore, when a point has become a class
center, the message it transmits can be divided into two categories: in its neighborhood and out of the
area. In its area, it passes a negative infinity value to other points, which makes other points in the area
impossible to become the central points of the category. Outside its neighborhood, it passes a message
with a value of 0 to other points, without affecting the point outside the field to become the central point
of the category.

The issue of sizeable computational complexity occurs because there are many data points with
the same power value in the sample electric power data. In order to reduce the computation time
between the same data points, we redefined the similarity matrix S, S = {sij(cij)}, where sij represents
the similarity between the data point xi and the data point xj, and the sij is defined as the following in
the improved AP clustering algorithm, as shown in Equation (3):

sij =


−hi

∣∣xi − xj
∣∣ i 6= j and cij = 1.

0 i 6= j and cij = 0.
p i = j.

(3)

where p is the reference degree of the similarity matrix S, which is generally the minimum, average, or
maximum value of the matrix S; x is the data point, and hi is the number of xi. cij represents a variable
node whose value is 0 or 1.

To solve the second issue, a new H (c11, ..., cii, ..., cnn) function node was added to the factor
graph model of the AP clustering algorithm, and the H function node was connected with all diagonal
variable nodes of the C matrix. The function node H and the variable node C transferred the message
types ω and δ. The new AP factor diagram model was shown in Figure 6, and the new message
transfer model was shown in Figure 7.

The two-value variable node matrix C consists of cij, cij = 0 or 1. If cij = 0, the data point xi does
not select the data point xj as its category representative point. If cij = 1, the data point xi selects the
data point xj as its category representative point. The clustering criterion function F is as follows:

F(S, I, E) = ∑ i∈{1,2,...,n}∑ j∈{1,2,...,n}\isij+∑ i∈{1,2,...,n} Ii + ∑ j∈{1,2,...,n}Ej (4)

where I is the uniqueness constraints function node matrix I = {Ii (ci1, ci2, . . . , cij, . . . , cin)}; E is a node
matrix of the existence constraint function where E = {Ej (c1j, c2j, . . . , cij, . . . , cnj)} (j = 1, 2, ..., n):

Ii(ci1, ci2, . . . , cij, . . . , cin) =

{
−∞ i f ∑n

j=1 cij 6= 1.
0 otherwise.

(i = 1, 2, . . . , n) (5)

Ej(c1j, c2j, . . . , cij, . . . , cnj) =

{
−∞ i f cjj = 0 but ∃i : cij = 1.
0 otherwise.

(6)

The I function node matrix guarantees that every data point only has one category representative
point. The Ej function node matrix guarantees that if the data point xi selects the data point xj as
its category representative point, xj must also choose its own as the category representative point,
otherwise it will make the clustering criterion function fail to get the maximum value.
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nodes {Ci1, Ci2, . . . , Cin} to function nodes Ii; (d) Variable nodes {C1j, C2j, . . . , Cnj} to function nodes Ej;
(e) Variable nodes {C11, C22, . . . , Cnn} to function nodes H.

Two classes of sets Gi and Vi are defined before defining the form of the H function, such as
Equations (7) and (8), and the H function node is defined as Equation (9):

Gi =

{
j|
∣∣xi − xj

∣∣∣∣xi + xj
∣∣ ≤ 0.05, j = 1, 2, . . . , n but j 6= i

}
.(i = 1, 2, . . . , n) (7)

Vi =
{

j
∣∣αjj + ρjj > 0, j ∈ Gi

}
. (i = 1, 2, . . . , n) (8)

H(c11, . . . , cii, . . . , cnn) =

{
∞ cii = 0 and Vi 6= φ.
0 otherwise.

(9)
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where α and ρ are messages passed between nodes. As shown in Figure 7, s, α, η, and ω are the
messages that the function node passes to the variable node, and ρ, β, δ are the messages that the
variable node moves into the function node. These message transfer procedures follow the binary
operation rules, and the binary operation rules are as follows:

µ = µ(cij = 1)− µ(cij = 0) (10)

where µ (cij = 1) and µ (cij = 0) calculation processes follow the Max-product BP rules, according to the
Equation (1) variable node message passed to the function ρij and βij calculation results are as follows.

ρij = ρij(cij = 1)− ρij(cij = 0) =
[
sij(cij = 1) + ηij(cij = 1)

]
−
[
sij(cij = 0) + ηij(cij = 0)

]
= sij + ηij (11)

βij = βij(cij = 1)− βij(cij = 0) =
[
sij(cij = 1) + αij(cij = 1)

]
−
[
sij(cij = 0) + αij(cij = 0)

]
= sij + αij (12)

According to Equation (2), the message passed from the function node to variable node is
calculated as follows:

ηij = ηij(cij = 1)− ηij(cij = 0) = ∑
t:t 6=j

βit(cij = 0)−max
k:k 6=j

βik(1) + ∑
t:t/∈{k,j}

βit(0)

 = −max
k 6=j

βik (13)

In the same way, the message αij and ωi of the function node to be passed to the variable node is
as follows:

αij =

{
∑k:k 6=j max[ρkj, 0] i = j.

min
{

0, ρjj + ∑k/∈{i,j}max[ρkj, 0]
}

i 6= j.
(14)

ωi =

{
−∞ i f cii = 0 and Vi 6= φ.
0 otherwise.

(15)

As shown in Equation (15), the value of message ω is independent of the value of message δ,
and message δ does not participate in the iterative process. Using this method, when a data point is a
representative point, there is not be a category representative point near it, so that the high similarity
category is suppressed. Solving Equations (11)–(15) together can get Equation (16). To prevent the
vibration and speed of convergence in the process of message transmission, damping factor λ (generally
set to 0.9) was added [21]:

ωi =

{
−∞, i f cii = 0 and Vi 6= ∅;
0, otherwise.

ρij =


sij −max

k:k 6=j
[sik + αik], i 6= j;

sii + ωi −max
k:k 6=j

[sik + αik], i = j.

αij =


min{0, ρjj + ∑

k:k/∈{i,j}
max[ρkj, 0]}, i 6= j;

∑
k:k 6=i

max[ρki, 0], i = j

ρu
ij ← λρu

ij + (1− λ)ρu−1
ij

αu
ij ← λαu

ij + (1− λ)αu−1
ij

(16)

where ρu and αu are the u iteration, α and ρ are interrelated and need to be iterated until convergence.
The category representation point set is Z = {xi | ρii + αii > 0}. With the newly added ω message, the high
similarity category can be effectively suppressed. Meanwhile, the excellent clustering performance of
the AP clustering algorithm is retained.
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3.3. Electrical Appliances Pattern Recognition Process

Household appliances are usually operated at several power levels of the same size. In the
long-term monitoring, these power values will appear frequently, thus clustering into different
categories. Cluster analysis is a kind of unsupervised learning and is a method of exploring data
structure [22]. Each data value in the improved AP algorithm is a potential class representative point,
so low-power data can be identified even if the data set contains high-power data. This is the basis
for the improved AP clustering algorithm to identify small power classes. According to the living
habits of the ordinary family, the user sleeps at night, the number of household appliances is relatively
tiny, and the meter measurement data is stable. Electrical appliances are used more frequently after
getting up in the morning and after returning home in the afternoon, so there will be a power peak in
the morning and the afternoon. To avoid the power peak time is too short to identify the high-power
class, so the daily monitoring data is divided into three periods for analysis. The detailed steps of the
algorithm were as follows:

(1) The dataset was inputted with N points {xi, i = 1, 2, ..., N}, then divided into three periods of time.
(2) During idle time, the monitored power data was close to 0. It was set to 0. In a stable time,

the abrupt value is replaced by the mean value in this period.
(3) The initial parameters were set as follows: the value of the reference degree p of the similarity

matrix S was the opposite number of the maximum value of the dataset, the damping factor
λ equaled 0.9, and the number of iterations was set to 200. The initial value of the attraction
message matrix R and the ownership message matrix A was set to 0.

(4) The values of the attraction message matrix R and the ownership message matrix A were
calculated according to Equation (16).

(5) The convergence of matrices A and R was determined. If they did not converge, we advanced to
step (6); otherwise we advanced to step (7).

(6) It was judged whether to reach the number of iterations. If so, we returned to step (3) and reset
the initial parameters; if not, we went back to step (4).

(7) The value of the diagonal of matrix A + R was determined to be higher than or less than 0. If it
was greater, the point was a class-representative data point; if it was less, the point was a common
data point.

(8) The category of the measure was determined according to the similarity (Euclidean distance)
between the common point and the class-representative point.

The flowchart of the improved AP clustering algorithm is shown in Figure 8. The integration of
automatic pattern recognition of electrical appliances is conducive to the rational allocation of power
resources. The process of automatic pattern recognition for electric appliances on big monitored data
is shown in Figure 9.
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4. Analysis and Discussion

4.1. Comparison of Different Algorithms

To test the improved AP clustering algorithm, 1440 data points from 8 February 2011, were
selected for testing and analysis. Six clustering methods such as k-means algorithm, density-based
algorithm, hierarchical clustering (agglomerative nesting and divisive analysis), standard AP clustering
algorithm, and improved AP clustering algorithm were used to cluster analysis. The k-means algorithm
is a classical and extensive clustering method, which can be used to explore data structure [23].
The density-based algorithm is a method of high-density connected regions that is insensitive to noise
and can find classes of arbitrary shapes [24]. Hierarchical clustering algorithm can be divided into two
types: Agglomerative Nesting (AGNES) and Divisive Analysis (DIANA). In this paper, AGNES and
DIANA were chosen as the contrast algorithm [25]. To make these methods have contrast, the improved
AP clustering algorithm was used to determine the number of categories, and then the same k value
was used for the k-means algorithm and hierarchical clustering. In the density-based algorithm,
the neighborhood radius eps = 50 and the minimum neighborhood elements in the neighborhood were
minPts = 8. In the standard AP clustering algorithm, the p-value took the average of the similarity
degree matrix S, the damping factor λ equaled 0.9, and the number of iterations was set to 200. In
the improved AP clustering algorithm, the value of p took the opposite number of the maximum
value of the data point, the damping factor λ equaled 0.9, and the number of iterations was set to 200.
The settings of these initial parameters ensured the final iteration convergence. The clustering results
of the six algorithms are shown in Table 1. The results of k-means algorithm, Density-based algorithm,
AGNES and DIANA algorithms in the Table 1 are the mean values. The results of standard AP and
improved AP algorithms are determined by Z = {xi | ρii + αii > 0}. The comparison of the recognition
ability of the six algorithms is shown in Table 2. If the relative error (=(|calculated value-rated
power|)/(rated power)) is less than 5%, the recognition result is considered correct. The clustering
results are shown in Figures 10–15.

Table 1. The results of different clustering algorithms.

k-Means
Algorithm (W)

Density-Based
Algorithm (W) AGNES (W) DIANA(W) Standard AP

Algorithm (W)
Improved AP

Algorithm (W)

82 82 181 82 395 89
222 221 400 221 939 223
503 603 637 506 939 391
687 907 907 736 1219 551
907 1215 1258 1215 1353 688
1335 1757 1510 1353 1353 878
1760 1897 1754 1510 1507 1504
1942 2393 1927 1816 1912 1757
2233 - 2233 2233 2244 1951
2393 - 2393 2392 2391 2224

It is evident from Table 1 that the standard AP clustering algorithm will divide the small numerical
power data into the 395 W class. The same category representation points repeat, such as the two
categories of 939 W and 1353 W. During the test, it was found that as the data volume increases, this
phenomenon becomes more significant. Sometimes there were many new categories of representative
points near the category-representative points, which affected the final judgment. Table 2 shows that
the improved AP clustering algorithm can recognize the whole classes of electric appliances on the
day. k-means clustering algorithm, the hierarchical clustering algorithm, and standard AP clustering
algorithm hardly recognized low-power appliances. The density-based clustering algorithm was weak
in identifying the high-power appliances.
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Table 2. Comparison of six algorithms’ recognition ability.

Electric
Appliances

(Rated Power)

K-Means
Algorithm

Density
Based

Algorithm
AGNES DIANA Standard AP

Algorithm
Improved AP

Algorithm

Plasma TV
(220 W)

√
(0.9%)

√
(0.5%) × (17.7%)

√
(0.5%) /

√
(1.4%)

Frig (400 W) / /
√

(0.0%) /
√

(1.3%)
√

(2.25%)

Furnace (550 W) × (8.5%) × (9.6%) × (15.8%) × (8.0%) /
√

(0.2%)

Oven (900 W)
√

(0.8%)
√

(0.8%)
√

(0.8%) × (18.2%)
√

(4.3%)
√

(2.4%)

Bath (1500 W) × (11.0%) × (19.0%)
√

(0.7%)
√

(0.7%)
√

(0.5%)
√

(0.3%)

Dryer-p1
(1800 W)

√
(2.2%)

√
(2.4%)

√
(2.6%)

√
(0.9%) /

√
(2.3%)

Microwave
(2000 W)

√
(2.9%) × (5.2%)

√
(3.7%) /

√
(4.4%)

√
(2.5%)

Dryer-p2
(2200 W)

√
(1.5%) × (8.8%)

√
(1.5%)

√
(1.5%)

√
(2.0%)

√
(1.1%)

* Notes: (*%) is the value of relative error. “
√

” means that the relative error is less than 5%, “×” means that the
relative error is more than 5%, and “/” means that the algorithm does not recognize the electrical power.Energies 2019, 12, x FOR PEER REVIEW 13 of 20 
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As seen in Figures 10–15, to compare the clustering effects of the six clustering algorithms, we
use the same stripe to represent the same class to express the clustering results. The result of the
k-means calculation was influenced by the initial random values, causing the final results to be
inconsistent and unable to make a correct and reasonable decision. The improved AP clustering
algorithm identified small power data and did not display similar category-representative points
near the class-representative points, and each test result was stable. As shown in Table 2, the five
algorithms k-means, the density-based algorithm, AGNES, DIANA and the standard AP clustering
algorithm have the problem that some electrical appliances cannot recognize or recognize errors. Only
the improved AP clustering algorithm can recognize all electrical appliances. We choose the cohesion
index to evaluate the clustering performance of different algorithms objectively, as seen in Figure 16.
We calculate the average distance Pi from each data point to all points of its class, and then average all
Pi values of each algorithm to get the final average-P of each algorithm. It can be seen from the graph
that the average-P (4.8) of the improved AP clustering algorithm is the minimum value. The results
show that the improved AP clustering algorithm can make each point gather near the representation
point of the category and the clustering performance is the best.
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4.2. Experimental Result

To identify the basic class and combined class of all the power of household electrical appliances,
40320 monthly data points X = {x1, x2, ..., x40320} monitored by household total electricity meter
were processed among three time periods. Before recognizing the electrical pattern, we preprocessed
the data according to the method in Section 2 and selected the data in stable operation stage for
clustering analysis. The improved AP clustering algorithm was used to cluster analysis according
to Equation (16). The initial parameters in the three time periods of this experiment were set as
follows: p = −max {x1, x2, ..., xn}, damping factor λ = 0.9, and iteration of 200. The setting of the initial
parameter ensured the convergence of the algorithm in the iteration.

Table 3 shows the recognition results of the three time periods and their comprehensive results.
The results include basic class and combined class. In the next section, we distinguish the basic
class and combined class, and divide the combined class into several basic class according to the
maximum probability.

Table 3. Identification results of electric power classes.

Class Morning (W) Afternoon (W) Night (W) Average (W)

C1 75 76 77 76
C2 94 - - 94
C3 122 129 129 127
C4 141 150 - 146
C5 186 - - 186
C6 213 201 206 207
C7 - 223 230 226
C8 251 252 262 255
C9 306 288 293 296
C10 - 326 - 326
C11 360 380 356 365
C12 433 427 428 429
C13 479 479 - 479
C14 538 554 532 541
C15 615 622 614 617
C16 719 688 716 708
C17 - 762 795 778
C18 842 - - 842
C19 - 900 901 900
C20 978 1008 - 993
C21 1092 1160 1092 1115
C22 1223 - 1233 1228
C23 - 1343 - 1343
C24 1482 1515 1435 1477
C25 - 1693 - 1693
C26 1858 1990 - 1924
C27 - - 2108 2108
C28 2259 - - 2259
C29 - 2349 - 2349
C30 - 2712 - 2712

4.3. Power Load Decomposition

The purpose of power load decomposition is to decompose the aggregated power load into
multiple single electrical loads [26]. Arberet et al. extracted the single equipment signal from the
aggregated load curve of a family, synthesized the operation of the single equipment into the total
signal, and compared the synthetic signal with the real signal [27]. As demonstrated in the previous
section, the improved AP clustering algorithm was able to identify the basic and combined classes of
the electrical appliances. However, it is not possible to differentiate between the basic and combined



Energies 2019, 12, 992 16 of 20

classes as they are presented in Table 3. Based on real-life experience and monitoring data from total
household electricity consumption, it can be seen that power shifts from one stable operation stage
to another, and the conversion time is relatively short. Usually, the conversion process is completed
in 1~5 min. In most cases, only one electrical switch state has changed in such a period. During the
calculation of the monitoring data in two adjacent stable operation stages, the values reflected in the
two stable stages in the running state of a household appliance is different. The difference between the
values is the basic class, as shown in Equation (17).

BT = |CT − CT−1| (17)

where CT represents the average power of the T stable operation stage. CT−1 represents the average
power of the (T − 1) stable operation stage. BT represents the value of the power data monitored from
the (T − 1) stage to the T stage. The energy usage of a single household during February 2011 was
monitored, from which BT was determined using Equation (17). All BT power values were identified
by the improved AP clustering algorithm following the steps detailed in Section 4.2. The identification
results are presented in Table 4.

Table 4. Identification results of basic class position.

Class Morning (W) Afternoon (W) Night (W) Average (W)

B0 - - 1 1
B1 18 14 13 15
B2 46 - 46

B3 → C1 75 71 67 71
B4 → C4 145 141 135 140
B5 → C10 322 327 324 324
B6 → C13 462 459 467 463
B7 → C15 594 601 594 596
B8 → C18 - - 810 810
B9 → C20 1003 1012 - 1008
B10 → C21 - - 1118 1118

B11 - 1567 - 1567
B12 → C25 - 1668 - 1668
B13 → C28 - 2234 - 2234

As shown in Table 4, B0 is 1 W, which was generated by the stable running stage and thus should
not be used as a basic class. Moreover, Table 3 shows that all classes were identified aside from B1, B2,
and B11. This method can distinguish the basic and combined classes in Table 2. It can be seen from
the numerical comparison that C1, C4, C10, C13, C15, C18, C20, C21, C25, and C28 are the basic classes,
and the basic classes should also include B1, B2 and B11 in Table 4. Furthermore, the rest of the other
classes are combined classes.

Once the basic and combined classes were distinguished, the combined classes needed to be
disaggregated into the basic classes. Usually, when a stable running class is switched to another
stable running class, only one electrical device’s working condition is changed so that all combination
classes can be disaggregated this way. The later stable running class may be the basis for the previous
stable combined class. The decomposition process of a combined class can be expressed by the
following equation:

Ci = Cm + Cn (18)

where Ci is a combined class that needs to be disaggregated. Cm is the most frequent combination or
basic class after the Ci class. Since Ci is made up of Cm, the value of Ci should be greater than that of
Cm. The corresponding class Cm is counted before each combination of the class Ci is disaggregated.
If there are no combined class, the value of Cm is 0. Cn is the basic class. For any combination class
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that needs to be disaggregated, Ci and Cm are known. By selecting the appropriate Cn base class,
any combination of classes can be disaggregated, as shown in Table 5.

As shown in Table 5, the maximum error in the disaggregation of a combined class is 82 W, which
occurs during the disaggregation of the C23. The value is close to the value of the basic class C1, which
is likely to be the result of the simultaneous conversion of the two basic classes C4 and C1. To illustrate
basic and combined classed for electrical loads, an example is given here to explain it. We chose a time
fragment from the data monitored by the electric energy meter. This time fragment included three
running classes, such as C1, C6, and C14, as shown in Figure 17. The different column in the Figure 17
represent different electrical class.

The points in the red circle are unstable monitoring data from one class to another, which should
be eliminated in the study. The difference of C6 to C1 is 137 W, which is approximately equal to
the value of the base class C4 (146 W). It shows that the combined class C6 is composed of the basic
classes C1 and C4. From C14 to C1, the data value of the energy meter was reduced by 460 W, which is
approximately equal to the value of the basic class C13 (479 W). It shows that C14 is made up of the
basic classes C1 and C13. In this way, we can identify that C1, C4, and C13 are basic classes, and C6 and
C14 are combined classes. All basic classes and combined classes can be identified by this method.

Each combined class is composed of multiple electrical appliances working at the same time. Based
on this method, we can find out the combination mode of each combination class. The disaggregation
results of all the combined classes are shown in Table 5.

Table 5. Power load disaggregation results.

Combination
Class Ci

Combination or
Basic Class Cm

Basic
Class Cn

Error (W)
e = |Ci − Cm − Cn| Decomposition Results

C2 C1 B1 e2 = |94 − 76 − 15| = 3 C2 = C1 + B1 + e2

C3 C1 B2 e3 = |127 − 76 − 46| = 5 C3 = C1 + B2 + e3

C5 C4 B2 e5 = |186 − 146 − 46| = 6 C5 = C4 + B2 − e5

C6 C1 C4 e6 = |207 − 76 − 146| = 15 C6 = C1 + C4 − e6

C7 C6 B1 e7 = |226 − 207 − 15| = 4 C7 = C1 + C4 + B1 + e7

C8 C3 C4 e8 = |255 − 127 − 146| = 18 C8 = C1 + B2 + C4 − e8

C9 C8 B2 e9 = |296 − 255 − 46| = 5 C9 = C1 + B2 + C4 + B2 − e9

C11 C9 C1 e11 = |365 − 296 − 76| = 7 C11 = C1 + B2 + C4 + B2 + C1 − e11

C12 C11 C1 e12 = |429 − 365 − 76| = 12 C12 = C1 + B2 + C4 + B2 + C1 + C1 − e12

C14 C13 C1 e14 = |541 − 479 − 76| = 14 C14 = C13 + C1 − e14

C16 C6 C13 e16 = |708 − 207 − 479| = 22 C16 = C1 + C4 + C13 + e16

C17 C16 C1 e17 = |778 − 708 − 76| = 6 C17 = C1 + C4 + C13 + C1 − e17

C19 C17 C4 e19 = |900 − 778 − 146| = 24 C19 = C1 + C4 + C13 + C1 + C4 − e19

C22 C6 C20 e22 = |1228 − 207 − 993| = 28 C22 = C1 + C4 + C20 + e22

C23 C21 C4 e23 = |1343 − 1115 − 146| = 82 C23 = C21 + C4 + e23

C24 C23 C4 e24 = |1477 − 1343 − 146| = 12 C24 = C21 + C4 + C4 − e24

C26 C19 C20 e26 = |1924 − 900 − 993| = 31 C26 = C1 + C4 + C13 + C1 + C4 + C20 − e26

C27 C11 C25 e27 = |2108 − 365 − 1693| = 50 C27 = C1 + B2 + C4 + B2 + C1 + C25 + e27

C29 C26 C13 e29 = |2349 − 1924 − 479| = 54 C29 = C1 + C4 + C13 + C1 + C4 + C20 + C13 − e29

C30 C29 C10 e30 = |2712 − 2349 − 326| = 37 C30 = C1 + C4 + C13 + C1 + C4 + C20 + C13 + C10 + e30
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4.4. Discussion

Pattern recognition of electrical appliances is focused on identifying different power levels.
It is necessary to ensure that low-power class with more occurrences are not duplicated and that
high-power class with fewer occurrences are identified. By redefining the similarity matrix S and
adding a new function node H of AP clustering algorithm, the frequency and the value of power
can be considered together. By using the improved AP method, 30 basic and combined classes were
identified. In Section 4.3, three additional basic classes (15 W, 46 W, 1567 W) can be identified based
on the maximum probability method. If the working state of two electrical appliances is completely
synchronized, the power of the two electrical appliances will be determined as a basic, instead of
combined class. In this study, 20 combined classes were disaggregated into basic classes, of which 19
were successfully disaggregated with small error values. Only one disaggregation of a combined class
had an error value of 82 W. Thus, and the value could not be determined as a result of instrument
error or the simultaneous change of multiple electrical appliances. In the future, the addition of
datasets can help determine the source of error. The improved AP clustering algorithm provides a
new method for pattern recognition of NILM. According to this method, the power company can
use the data of monitoring equipment to establish a monitoring and forecasting model for household
electricity consumption.

5. Conclusions

By developing an improved AP clustering algorithm, this paper studied the problem of pattern
recognition for electrical appliances and electrical load decomposition. The improved AP clustering
algorithm redefined the similarity matrix, adding new function nodes and two kinds of new messages.
It not only reduced the computational complexity of the algorithm but also overcame the deficiencies
of the standard AP clustering algorithm. The improved AP clustering algorithm accurately identified
the basic and combined classes of electric appliances. According to the cohesion index, the average-P
of the improved AP clustering algorithm is only 4.8, which is the smallest among the six algorithms.
The value shows that the clustering performance of the improved AP clustering algorithm is better than
the other five algorithms. The improved AP clustering algorithm aggregates the most compact classes.
This study not only identifies multiple power classes of electrical appliances, but also disaggregates
the combined classes into several basic classes according to the maximum probability. In our research,
the data set was provided by a family. In future research, we will validate this method on a wider
range of data sets and set different parameters for different families to get better results.
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