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Abstract: The distributed energy system is an energy supply method built around the end users,
which can achieve energy sustainability and reduce emissions compared to traditional centralized
energy systems. The micro gas turbine (MGT)-based combined cooling and power (CCP) system
has received renewed attention as an important distributed energy system technology due to its
substantial energy savings and reduced emission levels. The task of the MGT-CCP system is to
quickly adapt to changes in various renewable energy sources to maintain the balance in energy
supply and demand in a distributed energy system. Therefore, it is imperative to improve the load
tracking capability of the MGT-CCP system with advanced control technologies toward achieving
this goal. However, the difficulty of controlling the MGT-CCP system is that the MGT responds
very fast while CCP responds very slowly. To this end, the dynamic characteristics and nonlinear
distribution of the MGT and CCP processes are analyzed, and a coordinated predictive control
strategy is proposed by utilizing the generalized predictive control for the MGT system and the
Hammerstein generalized predictive control for the CCP system. The coordinated predictive control
of generalized predictive control and Hammerstein generalized predictive control was implemented
in an 80 kW MGT-CCP simulator to verify the effectiveness of the proposed method. The simulation
results show that compared with PID and MPC, the proposed control method not only can greatly
improve simultaneous cooling and power load-following capability, but also has the best control
effect when accessing with renewable energy.

Keywords: micro gas turbine combined cooling and power; Hammerstein identification; generalized
predictive control; Hammerstein generalized predictive control; coordinated predictive control

1. Introduction

With the continuous development of the economy, many countries are facing severe challenges in
preserving the environment and reducing energy consumption so that a sustainable development of
the society can be ensured. A core solution for reducing emissions and improving energy efficiency
is the use of distributed energy systems (DESs) [1,2]. The DES is usually composed of a variety of
modular and small-scale generation technologies, located near end-users, and can be regarded as an
important complement to traditional centralized power grids. They have many advantages, such as
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low transmission loss, low emissions, and flexibility for utilizing a variety of energy sources, including
fossil fuels and renewable energy sources (RES) [3].

As a key form of DES, micro gas turbine (MGT)-based combined cooling, heating and power
systems (CCHPs) have attracted much attention worldwide because of their energy-efficiency,
low-emissions and operational cost-saving characteristics [4–7]. Since the waste heat of the MGT
can be continuously utilized as a heat source for a water heater or a cooling device, the average
energy efficiency of the MGT-CCHP system can reach 80%, whereas the average thermal efficiency
for a combined cycle gas turbine (CCGT) is approximately 50% [8]. In addition, compared with the
traditional centralized power generation system, the MGT-CCHP system is smaller in size so that it
can be flexibly installed in small residential or commercial districts.

At present, the research on MGT-CCHP system mainly focuses on static system configuration [9],
operation optimization [10] and performance evaluation [11]. In [9], a CCHP microgrid composed of
photovoltaic cell, gas turbines, gas boiler, thermal storage tank, absorption chiller, electric chiller, as well
as cooling, heating, and power load is studied. In [10], a mixed-integer linear programming model was
established for the optimal design of the distributed energy resource system. In [11], the performances
of CCHP system in different operation modes are compared. Although the dynamic characteristics
of the MGT-CCHP system have been studied in recent years [12,13], the control method used for the
MGT-CCHP system is still the conventional PI/PID control. In order to improve the performance
of the PI/PID controller, intelligent methods such as fuzzy logic [14,15], neural network [16],
firefly algorithm [17] are used to tune the parameters of the PID controller. However, due to the
complex dynamic characteristics of MGT-CCHP system, such as nonlinearity, large thermal inertia,
multi-variable strong couplings, unknown disturbances and so on, the single-input-single-output
(SISO) PID control is no longer applicable to meet the performance requirement, even if the parameters
of the PID are well tuned.

Model predictive control (MPC) is an advanced method to deal with optimization control of
multivariable, large inertia and constrained systems [18]. In order to solve the control problem of
MGT-CCHP system, an observer-based model predictive control algorithm is used [19]. The simulation
results show that the control performance of the MPC is obviously improved compared with the PID
controller for MGT-CCHP system. A self-tuning MPC control method is proposed to improve the
performance of the MPC for MGT-CCHP system [20]. In [21,22], a data-driven MPC controller is
proposed to improve the operation quality of the MGT-CCHP system. In [23], a supervisory MPC
controller is proposed to improve the economic efficiency. However, these MPC controllers designed
for the MGT-CCHP system do not consider the nonlinearity of the system. When the MGT-CCHP
system runs on a wide range of load changes, the nonlinearity of the MGT-CCHP system will lead
to the performance degradation of the controller, even if the controller parameters are well tuned.
Therefore, it is necessary to design a nonlinear MPC controller to improve control performance. In
general, MGT-CCHP system is divided into two sets of systems in actual operation, MGT-based
combined cooling and power system (MGT-CCP) and MGT-based combined heating and power
system (MGT-CHP); consequently, it is more practical to study control methods for these two kinds of
combined systems individually.

This paper proposes a coordinated predictive control by using a generalized predictive control
(GPC) for MGT system and a Hammerstein generalized predictive control (HGPC) for the CCP system.
First, the dynamic characteristics and nonlinearity distribution of the MGT and CCP processes are
analyzed by step response and Vinnicombe gap (V-gap) metric, which provides a basis for the selection
of advanced control strategies. Secondly, the Hammerstein identification method of the single-input
and single-output (SISO) system proposed in [24] is extended to the multi-input single-output (MISO)
system, which is used to model the nonlinear CCP system. Third, the HGPC method was proposed
to improve the performance of the predictive control for the nonlinear CCP system. Finally, the
coordinated predictive control strategy is designed with the hybrid of GPC and HGPC for the
MGT-CCP system to meet the simultaneous cooling and power load-tracking requirements.
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The major contribution of this study is that a coordinated predictive control strategy with GPC
and HGPC is designed to overcome the nonlinear and multiple-variable control problems in the
MGT-CCP system.

The minor contributions of this study are summarized below:

(1) The nonlinearity distribution of the MGT-CCP system is first analyzed using V-gap;
(2) The MISO Hammerstein model of the CCP system is first established to capture its nonlinearity,

which is beneficial to the design of the controller;
(3) The proposed GPC-HGPC coordinated control strategy has been validated to effectively improve

the simultaneous cooling and power load tracking capability of the MGT-CCP system when
accessing with renewable energy.

The proposed coordinated predictive controller is implemented on a 80 kW MGT-CCP simulator.
The rest of the article is organized as follows: Section 2 analyzes the dynamics and nonlinearity
of MGT-CCP system; Section 3 introduces the identification of multivariate Hammerstein ARMAX
models; The Hammerstein-GPC controller and the coordinated control strategy for the MGT-CCP
are proposed in Section 4. The simulation results and conclusions are given in the Sections 5
and 6, respectively.

2. Dynamics and Nonlinearity Analysis of MGT-CCP

A MGT-CCP system, composed of an 80 kW full heat-regenerated-cycle MGT and a 75 kW lithium
bromide single effect absorption chiller, is considered in this paper. The MGT-CCP system schematic
diagram is shown in Figure 1. Fuel is supplied to the MGT to generate the required electric power,
while the waste heat emitted from MGT is recycled to drive the refrigeration system to produce chilled
water. The MGT-CCP system can generate electricity and chilled water for the power and cooling load
requirements at the same time.
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Figure 1. The MGT-CCP system schematic diagram. 
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Figure 1. The MGT-CCP system schematic diagram.

The study on control strategy is based on a MGT-CCP emulator, which is built on the MATLAB
R2016b environment and consists of dozens of major lumped-parameter modules and other functional
components. Built on three conservation laws and thermal property equations, the emulator shows
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quite close dynamic characteristics to the primary MGT-CCP system. The detailed process of modeling
is referenced in [25] and the main design data of the MGT-CCP system is given in Appendix A.

It is worth noting that the exhaust temperature of the fully heat-regenerated MGT is 277 ◦C, which
is much lower than the non-heat-regenerated MGT of about 615 ◦C. Considering the limitation of heat
exchange efficiency and avoiding the corrosion of low temperature flue gas in the pipeline, the exhaust
temperature of the final flue gas of MGT-CCP is designed to be 170 ◦C. Therefore, the thermal power
generated by the chiller is about 75 kW. A ratio close to 1.0 between thermal power and electrical
power means that power generation efficiency is more preferentially improved in such an all-heat
regeneration MGT-CCP system.

In order to help designing the controller, the MGT-CCP system can be regarded as a
double-input-and-double-output dynamic system. The manipulate variables are fuel u1(kg/s) and
refrigerant valve opening u2(%). The output variables are power output y1(kw) and chilled water
temperature y2(

◦
C).

Table 1 is the typical operating points of the MGT-CCP system, where y1 is power output, and y2

is chilled water temperature.

Table 1. Typical operating points of MGT-CCP system.

Operating Points y1(kw) y2(
◦
C)

#1 80 8
#2 76.85 8.2
#3 73.5 8.5
#4 69.69 8.8
#5 65.18 9.1

Remark 1: The chilled water temperature, rather than the cooling power, is chosen as the operating
point for the MGT-CCP system. In the MGT-CCP system, the cooling power is proportional to the
product of the temperature difference and the chilled water flow. Since the flow rate of chilled water is
assumed to be constant, from a control point of view, the chilled water temperature can represent the
cooling power. Although the water flow is disturbed during operation, the chilled temperature can
indicate the required cooling power generation. In addition, temperature has the advantage that it can
be measured directly.

Based on the simulator, the following analysis will use two methods to expose several control
issues for the MGT-CCP system. First, an open-loop step response test is performed to show the
change in dynamic behavior. Second, the gap metric method is used to determine the degree of
nonlinearity of the system by measuring the dynamic difference between models linearized at different
operating points; thus, providing a quantitative description of the nonlinearity distribution of the
MGT-CCP process.

2.1. Dynamic Analysis

Suppose the system is running at operating point #3 in Table 1. At 500 s and 3000 s, a +10% step
signal of the corresponding steady-state value is added to the fuel and the refrigerant valve opening,
respectively. The response of the plant is shown in Figure 2.
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Figure 2. Step response of MGT-CCP system: Fuel and valve openings increased by 10% at 500 s and
3000 s, respectively.

Figure 2 shows that the power output responds very quickly to the fuel step command because
it has very fast dynamic response characteristics. In addition, Figure 2 shows that as the fuel step
increases, the chilled water temperature slowly decreases to a constant value. The reason for the slow
response of the chilled water is caused by exhaust gas transport and heat transfer in the chiller. It is
easy to understand that the more fuel entering the MGT and the more exhaust gas entering the chiller,
the greater the power of the chiller. Therefore, when the fuel is increased, the chilled water temperature
is lowered. At 3000 s, the refrigerant valve opening increases, resulting in a decrease in exhaust gas
entering the chiller, thus causing a decrease in chilled water temperature. As seen from Figure 1, the
chiller is located behind the MGT, so the power output does not change when the refrigerant valve
opening changes.

The large inertia of the chilled water temperature is due to the exhaust gas transmission and
thermal transferring process in the chiller. First the lithium bromide solution is heated in the generator
by the exhaust gas which is a desorption process of solution. The vapour out of the solution condenses
into the refrigerant water by releasing its heat to the cooling water in the condenser. The refrigerant
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water flows through the throttle valve and then evaporates in the evaporator and absorbs heat from the
chilled water and cools it down. All these processes in the flowchart of the chiller, shown in Figure 1,
contributes to a large inertial from the fuel change to the variation of chilled water temperature.
Another input the refrigerant valve is a bypass valve for the exhaust gas to the chiller, thus it influences
the chilled water temperature in the same direction slowly.

To conclude, the power output is affected only by fuel, so for the safety and flexibility of MGT-CCP,
a separate controller is designed for the control loop of power output. The chilled water temperature is
affected by both fuel and refrigerant valve opening. There is a strong coupling between the variables.
Therefore, when designing the control loop of the chilled water temperature y2, it is necessary to
coordinate the control with the control loop of the power output y1. In addition, the chilled water
temperature response has a large inertia, so it is necessary to study advanced control methods to
replace the traditional PID control.

2.2. Nonlinear Analysis via Gap-Metric

Vinnicombe gap (V-gap) metric has been successfully applied to multi-model modeling and
control of power plant boilers-turbine [26] and spacecraft attitude control [27], providing an appropriate
partition of the operating region and the selection of local models, making it possible to use a minimum
number of linear models to approximate the nonlinear behavior of the system.

The value of V-gap is a measure of the difference between two linear models. Suppose P1 and
P2 are the transfer functions of linear models at any two operating points of the MGT-CCP system.
The V-gap between P1 and P2 can be computed by:

vg(P1, P2) = max

{
inf

Q∈H∞
‖
[

M1

N1

]
−
[

M2

N2

]
Q‖

∞

, inf
Q∈H∞

‖
[

M2

N2

]
−
[

M1

N1

]
Q‖

∞

}
(1)

where (N1, M1) and (N2, M2) are the elements of the normalized right coprime factorization of P1

and P2 as: P1 = N1M−1
1 and P2 = N2M−1

2 , and Q is a matrix parameter which has finite H-infinity
norm. The detailed process of gap calculation is referenced in [28], which has been programmed as
a gap(P1, P2) function in the MATLAB toolbox. The value of V-gap is between 0 and 1. The greater
the value of V-gap, the greater the difference between the two linear models, that is, the stronger the
nonlinearity of the region.

This section proposes the use of V-gap to quantitatively analyze the nonlinearity distribution
of the MGT-CCP process over the operating range (power output: 65.18 kW–80 kW; chilled water
temperature: 8 ◦C–9.1 ◦C).

A local linear model is first developed for a specific operating point for gap metric calculations.
At each operating point, a random identification signal with a steady-state value of ±2% for 3000 s is
applied to the fuel and the refrigerant valve opening path, respectively, to generate a corresponding
output signals. A linear model for each operating point in Table 1 is built using the System Identification
Toolbox in MATLAB based on the resulting input-output data. The gap metric between adjacent linear
models is then calculated to indicate the level of non-linearity along the corresponding region as shown
in Figure 3.
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Figure 3a is a nonlinearity distribution of the MGT-CCP process under varying fuel. The results
show that the gaps between adjacent operating points are small and uniform, implying that one linear
model is sufficient for operating points #1 through #5. Therefore, in Section 4, a linear controller is
designed for the control loop of the power output.

Figure 3b shows the nonlinearity distribution of the MGT-CCP process under varying refrigerant
valve opening. The gaps between the operating points #2 and #3 and #4 and #5 show extreme
nonlinearity, and the gap between the operating points #3 and #4 also shows nonlinearity. The gap
between the operating points #1 and #2 shows the least nonlinearity. The physical processes of the
chiller include desorption and absorption of the lithium bromide solution, phase change of the liquid,
and various heat-transferring processes. Its physical structure is complex, which leads to its inevitable
nonlinear dynamics. Therefore, in Section 4, a nonlinear controller is designed for the control loop of
the cold-water temperature.

3. Identification of Multivariable Hammerstein Model

Predictive control offers its own distinctive features for dealing with coupled variables in process
control, such as large inertia, input constraints, etc. It can also handle the predictive control of nonlinear
plant well with a nonlinear predictive model. Therefore, predictive control is an appropriate solution
for the combined cooling and power load-following control of MGT-CCP.

In the design framework of the predictive controller, designing a prediction model takes the lead.
The Hammerstein model consists of a static memoryless nonlinear element and a dynamic linear
model [29,30]. It has the advantages of small computing load, strong nonlinearity-approximating
ability, and favorable controller design. Since the nonlinearity of the cooling system is very strong,
the Hammerstein model is taken to be the prediction model for generalized predictive controller
(GPC) whose algorithm matches well with the prediction model. An effective Hammerstein
model identification method for SISO system has been proposed in [24], which we extend to
multi-input-single-output (MISO) systems for modeling the MGT-CCP.

Assuming that a system with nu-input and single-output can be described by the following
Hammerstein model:

A(z−1)yt = B(z−1)ut (2)
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where A(z−1) and B(z−1) are polynomials in the shift operator z−1 with:

A(z−1) = 1 + a1z−1 + a2z−2 + . . . + anz−n,
B(z−1) = b1z−1 + b2z−2 + . . . + bnz−n, bi ∈ R1×nu , i = 1, 2, . . . , n,

ut =


f1(ut(1))
f2(u2(2))

...
fnu(ut(nu))

 =


ut(1)
ut(2)

...
ut(nu)

 =


c11ut(1) + c21ut(1)

2 + . . . + cq1ut(1)
q

c12ut(2) + c22ut(2)
2 + . . . + cq2ut(2)

q

...
c1nu ut(nu) + c2nu ut(nu)

2 + . . . + cqnu ut(nu)
q

.

The following assumptions are made:
Assumption 1. Suppose the order of polynomial A

(
z−1) and B

(
z−1) are equal to n. It is assumed

that n and q are both known, or can be determined by trial and error.
Assumption 2. The first coefficient of the function f j, (j = 1, 2, · · · , nu) equals 1; i.e., c1j =

1, (j = 1, 2, · · · , nu) [24].
Assumption 3. The order of the function f j, (j = 1, 2, · · · , nu) is q. Suppose q is even, then there is

at least one real root of (20). In this way, one is guaranteed that a value of ut can be found [30].
Then (2) can be rewritten as follows:

yt = −
n

∑
i=1

aiyt−i +
n

∑
i=1

biut−i = −
n

∑
i=1

aiyt−i +
n

∑
i=1

nu

∑
j=1

q

∑
k=1

bijckjut−i(j)k (3)

where bij represents the element of the j-th column of bi.
Define the following vectors:

θT =
[

m0 m1 m2 · · · mn

]
∈ R1×n(1+nuq),

mT
0 =

[
a1 a2 · · · an

]
,

mT
i =

[
c11bi1 c12bi2 · · · c1nu binu · · · cq1bi1 cq2bi2 · · · cqnu binu

]
∈ R1×nuq,

ψT
t =

[
ψt(0) ψt(1) ψt(2) · · · ψt(n)

]
,

ψT
t (0) =

[
−yt−1 −yt−2 · · · −yt−n

]
,

ψT
t (i) =

[
ut−i(1) ut−i(2) · · · ut−i(nu) · · · ut−i(1)

q ut−i(2)
q · · · ut−i(nu)

q
]
,

(4)

Then (3) can be rewritten into the following form:

yt = ψt
Tθ (5)

and the recursive least squares method is used to identify parameters θ:

Km = Pm−1ψm[1 + ψm
TPm−1ψm]

−1,
θ̂m = θ̂m−1 + Km[ym − ψm

Tθ̂m−1],
Pm = Pm−1 − Kmψm

TPm−1

(6)

where m represents the current moment, θ̂m−1 represents the parameter estimation at the
previous moment.

After obtaining the estimated value θ̂ of the parameter θ, the parameter ai(i = 1, 2, · · · , n) can
be obtained directly from θ̂, but the parameter bi(i = 1, 2, · · · , n) also needs to be separated from
the parameter cij. Without loss of generality, let’s assume that c1j = 1, (j = 1, 2, · · · , nu), then
bi(i = 1, 2, · · · , n) can be obtained directly from the first to nu lines of mi.
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After obtaining the parameter bi(i = 1, 2, · · · , n), the remaining parameter ckj(j = 1, 2, · · · , nu, k =

2, 3, · · · , q) of the nonlinear function is obtained by:

ckj =
1
n

n

∑
i=1

mi((k− 1)nu + j, :)
bij

(7)

where mi((k− 1)nu + j, :) represents the [(k− 1)nu + j]-th row element of mi.
In summary, the linear and nonlinear coefficients of the Hammerstein model (2) of the MISO

system can be obtained through Equations (6) and (7), and the obtained Hammerstein model of the
cooling system of the MGT-CCP will be shown and verified in Section 5.

4. Coordinated Predictive Controller Design

In this section, first we introduce the GPC algorithm, then propose the Hammerstein-GPC
algorithm, and finally design the coordinated predictive control system for the MGT-CCP system.

4.1. Generalized Predictive Control

Consider the following controlled auto-regressive integrated moving average (CARIMA) model:

A(z−1)yt = B(z−1)ut−1 + et/∆ (8)

where t represents the discrete time, z−1 represents the post-shift operator, ∆ = 1− z−1 represents the
difference operator, et represents noise, and A(z−1) and B(z−1) are polynomials in the shift operator
z−1 with A(z−1) = 1 + a1z−1 + a2z−2 + . . . + anz−n, B(z−1) = b0 + b1z−1 + b2z−2 + . . . bnb z−nb .

Ignoring the noise term et, the Equation (8) can be written as follows:

yt + a1yt−1 + · · ·+ anyt−n = b0ut−1 + · · ·+ bnb ut−nb−1 (9)

which then can be expressed as

yt+j = −a1yt+j−1 − · · · − anyt+j−n + b0ut+j−1 + · · ·+ bnb ut+j−nb−1 (10)

Consider the following Diophantine equation:

1 = Ej(z)A∆ + z−1Fj(z) (11)

where Ej(z) and Fj(z) are polynomials in the shift operator z−1 with Ej(z−1) = ej,0 + ej,1z−1 + · · ·+
ej,j−1z−(j−1), Fj(z−1) = f j,0 + f j,1z−1 + · · ·+ f j,nz−n.

Combining the Equations (8) and (11), through some mathematical transformations, we can get
the system output prediction value ŷt+j at time t + j:

ŷt+j = EjB∆ut+j−1 + Fjyt (12)

In GPC algorithm, the optimization performance indicator at time t takes the following form:

minJ(t) = q
P

∑
j=1

(ωt+j−ŷt+j)
2 + r

M

∑
j=1

∆u2
t+j−1 (13)

where P represents prediction horizon, M represents control horizon, q represents the error weight
coefficient, r represents the control weight coefficient, and ωt+j represents the expected reference value
of the system output.
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Define polynomial Gj:

Gj = EjB = gj,0 + gj,1z−1 + · · ·+ gj,nb+j−1z−(nb+j−1) (14)

Then (12) can be rewritten as follows:

ŷt+j = Gj∆ut+j−1 + Fjyt = gj,0∆ut+j−1 + gj,1∆ut+j−2 + · · ·+ gj,j−1∆ut + lj(t) (15)

where lj(t) = (Gj − gj,0 − gj,1z−1 − · · · − gj,j−1z−(j−1))∆ut+j−1 + Fjyt.
According to (15) we can easily get the following formula:

Y = G∆U + L (16)

where:

Y =

 ŷt+1
...

ŷt+P

, ∆U =

 ∆ut
...

∆ut+M−1

, L =

 l1(t)
...

lP(t)

, G =



g1,0 · · · g1,0 0 0
...

. . . 0
gM,M−1 · · · g1,0

...
...

gP,P−1 · · · gP,P−M


.

Because of the influence of model error and disturbance, the output prediction value of the system
needs to be corrected by the actual output error on the basis of the output of the prediction model:

Y = G∆U + L + het = G∆U + L + h
(

yt − ŷt|t−1

)
(17)

where et is the prediction error, yt is the actual output of the object, and ŷt|t−1 is the predicted output
of the object. According to (13) and (17), the following can be obtained:

minJ(t) = (W − G∆U − L− het)
TQ(W − G∆U − L− het) + ∆UT R∆U (18)

where W =
[

ωt+1 · · · ωt+P

]T
, Q = q · IP×P represents the error weighting matrix, R = r · IM×M

represents the control weight matrix, and I represents the unit matrix.
The output variable of the GPC algorithm is obtained according to (18):

ut = ut−1 + ∆ut = ut−1 +
[

1 0 · · · 0
]
(GTQG + R)

−1
GT(W − L− het) (19)

4.2. Hammerstein Model-Based Generalized Predictive Control

Consider the SISO Hammerstein system as follows:

ut = f (ut) = c1ut + c2ut
2 + . . . + cqut

q (20)

yt =
na

∑
i=1

aiyt−i +
nb

∑
j=1

bjut−j (21)

where (20) is a static nonlinear element without memory, (21) is a dynamic linear model, na and nb are
the order of the linear model, ai and bj are the parameters of the linear model, u and y are input and
output of the system, respectively, and ut is the intermediate variable.

The system model given by (20) and (21) shows that the control input u affects the system output
y through the intermediate variable ut. Although the relationship between u and y is nonlinear, the
relationship between ut and y is linear. Therefore, the GPC algorithm is designed with the linear
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model (21) first, i.e., the desired intermediate variable ut is calculated through the receding-horizon
optimization of the GPC algorithm. Then the control action ut is solved from nonlinear algebraic
Equation (20). The structure of the Hammerstein-GPC controller is shown in Figure 4. This control
strategy makes full use of the special structure of the Hammerstein model and is actually a nonlinear
separation strategy, which makes the whole solution simple.
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Considering the physical characteristics of the MGT-CCP system, the MGT-CCP system was
split into a power supply system and a cooling system. In view of the degree of nonlinearity of
the two subsystems, the linear GPC is designed for the power generation system and the nonlinear
Hammerstein-GPC is designed for the cooling system. The nonlinearity of the cooling system is
effectively suppressed by nonlinear compensation, and the coupling between subsystems is effectively
weakened by feedforward compensation. Besides, due to the inevitable modeling error, feedback
correction is adopted in the proposed control strategy.

The main calculation process of the GPC-HGPC coordinated control algorithm is summarized
as follows:
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(1) At time t, the calculation of the linear GPC controller is performed, and the optimal input

increment sequence ∆U(1) =
[

∆ut(1) ∆ut+1(1) · · · ∆ut+M−1(1)
]T

of the fuel amount is
calculated, and the optimal control variable ut(1) = ut−1(1) + ∆ut(1) of the MGT system is
further obtained;

(2) The intermediate control variable sequence ∆U(1) =
[

∆ut(1) ∆ut+1(1) · · · ∆ut+M−1(1)
]T

is calculated by using the fuel quantity optimal input increment sequence ∆U(1) =[
∆ut(1) ∆ut+1(1) · · · ∆ut+M−1(1)

]T
and the nonlinear polynomial f1(·);

(3) Adding the sequence ∆U(1) =
[

∆ut(1) ∆ut+1(1) · · · ∆ut+M−1(1)
]T

as feedforward
information to Equation (15) gives an output prediction of chilled water temperature:

ŷt+j(2) = g(2)j,0 ∆ut+j−1(2) + g(2)j,1 ∆ut+j−2(2) + · · ·+ g(2)j,j−1∆ut(2) + lj(t)

+g(1)j,0 ∆ut+j−1(1) + g(1)j,1 ∆ut+j−2(1) + · · ·+ g(1)j,j−1∆ut(1)

= g(2)j,0 ∆ut+j−1(2) + g(2)j,1 ∆ut+j−2(2) + · · ·+ g(2)j,j−1∆ut(2) +
_
l j(t)

(22)

where
_
l j(t) = g(1)j,0 ∆ut+j−1(1) + g(1)j,1 ∆ut+j−2(1) + · · ·+ g(1)j,j−1∆ut(1) + lj(t). Note that

_
l j(t) is

known at time t;
(4) Based on (22), using the linear GPC algorithm to calculate the intermediate control variable

increment sequence ∆U(2) =
[

∆ut(2) ∆ut+1(2) · · · ∆ut+M−1(2)
]T

, and then obtain
ut(2) = ut−1(2) + ∆ut(2);

(5) Using the intermediate control variable ut(2) and the inverse of the nonlinear polynomial f2(·)
to obtain the refrigerant valve opening ut(2);

(6) Next sampling time, return to step (1), repeat steps (1) to (5).

Remark 2: For the sake of simplicity, the proposed method uses the control model obtained
by offline identification. If the actual MGT-CCP system has large time-varying characteristics, the
performance of the proposed control algorithm will be attenuated. But this problem can be overcome
by adding online identification of the control model.

Remark 3: This algorithm can only eliminate the influence of external disturbance of the step type.
For time-varying disturbances, adding on-line identification of the disturbance model to the proposed
algorithm can improve control performance [31].

5. Simulation Results

This section verifies the effectiveness of the multivariate Hammerstein model identification
strategy and the coordinated predictive controller designed for the MGT-CCP system. First, the
accuracy of the multivariate Hammerstein model was verified, and then the proposed coordinated
predictive controller was tested and compared to the PI controller.

5.1. Verification of Identification Model

5.1.1. Power Generation System

The power generation system is affected only by the fuel, so it can be considered as a SISO system.
According to the nonlinear analysis in Section 2, the nonlinearity of the power generation system is
weak, so the conventional recursive least squares method is used to identify the model of the power
generation system. The input sequence shown in Figure 6a is applied to the MGT-CCP system to
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obtain the output data shown in Figure 6b. The model of the power generation system was identified
using the first 3000 s of data. The identified input and output models are as follows:

yt − 1.5691yt−1 + 0.5895yt−2 = 176940ut−1 − 42160ut−2 (23)
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The accuracy of the identification model is verified using the last 3000 s of the data of Figure 6.
The verification results are shown in Figure 7. It can be seen that the identified linear model has high
accuracy, which also indicates that the nonlinearity of the power supply system is very weak, which is
consistent with the nonlinear analysis results in the second section.
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Figure 7. Estimated output and true output (power generation system).

5.1.2. Cooling System

The cooling system is affected by both the fuel and the refrigerant valve opening, so the cooling
system can be viewed as a two-input single-output system. According to the nonlinear analysis in
Section 2, the nonlinearity of the cooling system is very strong, so the Hammerstein model identification
method proposed in Section 3 is used to identify the model of the cooling system. The input sequence
shown in Figure 8a is applied to the MGT-CCP system to obtain the output data shown in Figure 8b.
The model of the power supply system was identified using the first 3000 s of data. The identified
Hammerstein model is as follows:

yt − 2.003yt−1 + 0.9596yt−2 + 0.1375yt−3 − 0.09403yt−4 = [0.2851− 1.846× 10−5]ut−1

+[0.0185 − 3.288× 10−5]ut−2 + [−0.05676 5.084× 10−5]ut−3 + [−0.3084 7.234× 10−6]ut−4.
(24)
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where u =

[
f1(u1)

f2(u2)

]
=

[
u1 − 0.0019u1

2

u2 − 0.0108u2
2

]
.
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Figure 8. Identification data (cooling system). (a) input command data; (b) output data.

The accuracy of the identification model is verified using the last 3000 s of the data of Figure 8.
The verification results are shown in Figure 9. It can be seen that the identified Hammerstein model
has high accuracy and can reflect the changing trend of the system.
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5.2. Testing of the Proposed Control Strategy

This section tests the proposed GPC-HGPC coordinated controller for the MGT-CCP system.
The parameters of the proposed controller are set as follows: for linear GPC controllers, prediction
horizon N1 = 20, control horizon M1 = 10, error weight coefficient q1 = 1, control weight coefficient
r1 = 0.8; for the Hammerstein-GPC controller, prediction horizon N2 = 600, control horizon M2 = 20,
error weight coefficient q2 = 1, control weight coefficient r2 = 0.1.

The PID controller and MPC control are compared with the proposed controller. The parameters
of the PID controller are as follows: for the power supply system, the proportional gain kp = 8× 10−8,
the integral gain ki = 8.17× 10−9, the differential gain kd = 0; for the cooling system, the proportional
gain kp = 197.57, the integral gain ki = 1.45, the differential gain kd = 1183.39. Note that the PID
controller is optimally tuned using the Tuner function of the PID module provided by Simulink.

The parameters of the MPC controller are as follows: prediction horizon N = 39, control horizon
M1 = 5, sampling time ts = 20s, control weight coefficient Qu = diag(0.1377, 0.1377), control rate
weight coefficient Q∆u = diag(0.0726, 0.0726), output weight coefficient Qy = diag(0.0689, 38.5596).

The control structure of the comparison methods is shown in Figure 10.Energies 2019, 12, x FOR PEER REVIEW 15 of 23 
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In order to quantitatively compare the load tracking performance of different controllers, the
integrated absolute error (IAE) is used in the following simulations. IAE is given by:

IAE =
∫ ∞

0
|re f (t)− y(t)|dt (25)

5.2.1. Case 1: Simultaneous Cooling and Power Load-Following Performance

Case 1 was designed to test the simultaneous cooling and power load-following performance of
controllers. First, compare the proposed method with conventional MPC. Assume that the MGT-CCP
system is operating at point #3. At 200 s, the MGT-CCP system changes from the operating point #3
(73.5 kW, 8.5

◦
C) to the operating point #4 (69.69kW, 8.8

◦
C). The simulation results are shown in

Figure 11 and Table 2.

Table 2. Performance indices for Figure 11.

Method IAEPower IAETemperature

MPC 907 607
Proposed method 841 121
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Figure 11. Case 1: Load tracking performance of the MGT-CCP system (Solid in blue: proposed
method; dashed in black: Conventional MPC; dot in green: reference). (a,b) Output variables; (c,d)
Manipulated variables.

Table 3. Performance indices for Figure 12.

Method IAEPower IAETemperature

PID 1636 364
Proposed method 846 292

Both the proposed method and the conventional MPC can track the set points. But the proposed
method is faster for load tracking. The power tracking performance under the IAE indicator increased
by 7%, and the cold load tracking performance increased by 80%. The reason is that the proposed
method uses coupling compensation and nonlinear compensation strategies.

Then we test the tracking performance of the controllers for a wide range of load changes. At 1500
s, the MGT-CCP system changes from the operating point #4 (69.69 kw, 8.8

◦
C) to the operating point

#5 (65.18 kw, 9.1
◦
C), and then keeps running at the operating point #4, at 3000 s, the MGT-CCP system

changes from operating point #5 to operating point #1 (80 kw, 8
◦
C), and finally keeps running at

operating point #1. The simulation results are shown in Figure 12 and Table 3. The simulation results
show that the proposed method has smaller overshoot and faster tracking speed. The power tracking
performance under the IAE indicator increased by 48%, and the cold load tracking performance
increased by 20%.
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Figure 12. Case 1: Load tracking performance of the MGT-CCP system (Solid in blue: proposed method;
dot-dashed in red: PID; dot in green: reference). (a,b) Output variables; (c,d) Manipulated variables.

5.2.2. Case 2: Performance of Unknown Input Disturbances Rejection

Case 2 is used to test the controller’s ability to suppress unknown input disturbances. Since the
MGT-CCP system operates in a high temperature environment, the wear caused by the frequent
operation of the valve will affect its stability. Therefore, the impact of input disturbances on the
MGT-CCP system cannot be ignored.

Assume that the MGT-CCP system is running at working point #3. The input side of the system is
subject to unknown input disturbances as shown in Figure 13, and the simulation results are shown in
Figure 14. The simulation results show that the controllers can eliminate the influence of unknown
input disturbances, but the proposed method suppresses the disturbance faster and the deviation from
the operating point is smaller.
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Figure 14. Case 2: performance of unknown input disturbance rejection (Solid in blue: proposed
method; dot-dashed in red: PID; dot in green: reference). (a,b) Output variables; (c,d)
Manipulated variables.

5.2.3. Case 3: Tracking Performance on Time-Varying Power Load Demands

Renewable energy sources such as wind power and photovoltaic power have time-varying
characteristics. When they are connected to a micro-grid with a MGT-CCP system, it is necessary to
adjust the power output of gas turbine to maintain the stability of the micro-grid. Therefore, Case 3
tests the controller’s ability to track time-varying power load demands. Figure 15 is a block diagram of
the MGT-CCP system connected to renewable energy.
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Figure 15. The block diagram of the MGT-CCP system connected to renewable energy.

Assuming the MGT-CCP system is operating at operating point #3, the power required by the
user is a fixed value and the power from the renewable sources is shown in Figure 16. In order to
verify the effectiveness of the proposed method in depth, in Figure 16, the power changes rapidly in
the first 3000 s, and the power changes slowly in the next 3000 s. The results are given in Figure 17 and
Table 4. The simulation results show that the proposed method can track the electric load command
better, the tracking speed is faster and the dynamic deviation is smaller. In addition, because of the
implementation of coordination, the cold-water temperature deviates from the set value by a smaller
amount. The power tracking performance under the IAE indicator increased by 62%, and the cold
load tracking performance increased by 9%.
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6. Conclusions

In order to achieve a sustainable future with more renewable energy integrated into distributed
energy systems, MGT-CCP systems must frequently change loads to achieve grid balance. This requires
more flexibility in the operation of the MGT-CCP. To provide guidance for controller design, this paper
first studies the dynamic behavior and nonlinearity distribution of the MGT-CCP process. The results
show that the MGT speed is affected only by the fuel, and the nonlinearity of the power generation
subsystem is extremely weak. However, the cold-water temperature is affected by both the fuel and
the refrigerant valve opening, and the cooling subsystem is extremely nonlinear. Therefore, based
on these results, a coordinated predictive control strategy is proposed to simultaneously improve
cooling-and-power load-following capability. The simulation results show that compared with PID
and MPC, the proposed control method not only can improve cooling and power load-following
capability at the same time, but also has the best control effect when accessing with renewable energy.
In the future, we will strive to consider economics into the controller design of the MGT-CCP system,
which is also an important issue for implementation of predictive controls.
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Appendix A

Table A1. Nominal design values of the MGT.

Parameter Value (Unit)

Electrical power 80 (kW)
Fuel 0.0067 (kg/s)

Turbine exhaust temperature 277 (◦C)
Turbine exhaust flow 0.81 (kg/s)
Turbine rotor speed

Power generating efficiency
68,000 (r/min)

24.04 (%)

Table A2. Nominal calculation values of the evaporator by thermodynamics method.

Parameter Value (Unit)

Pressure 0.87 (kPa)
Temperature 5 (◦C)

Inlet temperature of the chilled water 12 (◦C)
Outlet temperature of the chilled water 7 (◦C)

Chilled water flow 3.6 (kg/s)
Thermal power 75 (kW)
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