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Abstract: The zinc/bromine (Zn/Br2) flow battery is an attractive rechargeable system for grid-scale
energy storage because of its inherent chemical simplicity, high degree of electrochemical reversibility
at the electrodes, good energy density, and abundant low-cost materials. It is important to develop
a mathematical model to calculate the current distributions in a Zn/Br2 flow cell in order to predict
such quantities as current, voltage, and energy efficiencies under various charge and discharge
conditions. This information can be used to design both of bench and production scale cells
and to select the operating conditions for optimum performance. This paper reports a modeling
methodology to predict the performance of a Zn/Br2 flow battery. The charge and discharge
behaviors of a single cell is calculated based on a simple modeling approach by considering Ohm’s
law and charge conservation on the electrodes based on the simplified polarization characteristics
of the electrodes. An 8-cell stack performance is predicted based on an equivalent circuit model
composed of the single cells and the resistances of the inlet and outlet streams of the positive
and negative electrolytes. The model is validated by comparing the modeling results with the
experimental measurements.
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1. Introduction

Grid-scale energy storage is used to store electrical energy on a large scale in an electrical power
grid to mitigate the effects of uncertainty and variability associated with intermittent renewable energy
sources such as solar and wind powers along with sudden or unexpected changes of grid loads [1].
Among a broad range of grid-scale energy storage technologies, a flow battery is considered to be
a well-suited option due to the technical merits as in the following. A flow battery has a long cycle
life and is both energy efficient and environmentally friendly. The energy rating of the flow battery
is a separate design variable from the power rating, because the energy capacity of the flow battery
is a function of the electrolyte volume and the power is a function of the number of cell stacks [2].
The zinc/bromine (Zn/Br2) flow battery is an attractive flow battery system for grid-scale energy
storage because of its inherent chemical simplicity, high degree of electrochemical reversibility at the
electrodes, good energy density, and abundant low-cost materials [3–5]. As a result of many promising
features of the Zn/Br2 flow battery, it is currently at the commercial demonstration stage in USA [6,7],
Australia [8], and Scotland [9]. Although very promising, a wide deployment of the Zn/Br2 flow battery
has been hampered by its low power density and zinc dendrite formation and the works to overcome
these deficiencies are in progress [10–12]. In addition to the efforts to improve the performance of

Energies 2019, 12, 1159; doi:10.3390/en12061159 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-5993-2473
http://www.mdpi.com/1996-1073/12/6/1159?type=check_update&version=1
http://dx.doi.org/10.3390/en12061159
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1159 2 of 13

the Zn/Br2 flow battery experimentally [10–12], it is important to develop a mathematical model to
calculate the current distributions in a Zn/Br2 flow battery in order to predict such quantities as current,
voltage, and energy efficiencies under various charge and discharge conditions. This information can
be used to design both of bench and production scale cells and to select the operating conditions for
optimum performance.

There have been many previous works on the modeling of the flow batteries and the reviews
of flow battery models are given in references [13,14]. The types of flow battery model include an
electrochemical model, an equivalent circuit model, and many others depending on the purpose of
modeling [13,14]. The electrochemical model can be used to predict the battery performance under
various conditions of charge and discharge conditions. The model considers the variations of the
electrical potentials of the solid matrix of electrodes and the electrolyte, the concentrations of ionic
species, and the electrochemical kinetics. A detailed treatment can be found in the book by Newman
and Thomas-Alyea [15]. The equivalent circuit model is a powerful modeling tool. By using electrical
equivalents, or circuit elements, the electrical response of the flow batteries are reproduced. From the
parameters of the equivalent circuit model, valuable information about the characteristics of the
modeled battery can be deduced [16–18]. As compared to the most commonly encountered vanadium
redox flow battery, there have been a limited number of previous works on the modeling of the Zn/Br2

flow battery. Evans and White [19] reviewed the works up to 1987. Lee and Selman [20] calculated the
current distributions at parallel-plate electrodes in a Zn/Br2 flow cell using the orthogonal collocation
technique. They found that the presence of a separator and the effect of electrode resistance contribute
to a marked smoothing of the current distribution. Lee and Selman [21] analyzed the electrode
corrosion by a soluble species diffusing from the counter-electrode in a compartmented flow cell.
They applied the analysis to a Zn/Br2 flow cell and found that the corrosion of the zinc electrode
by dissolved bromine during electrolysis is mass-transfer controlled. Van Zee et al. [22] presented
a simple model of Exxon’s Zn/Br2 battery to predict the energy efficiency of the battery for various
electrolyte resistivities and cell geometries. Mader and White [23] developed a mathematical model
of a parallel-plate electrochemical cell with a separator and a homogeneous bulk reaction to predict
the effect of effective separator thickness, residence time, channel width, and potential driving force
on the performance of a Zn/Br2 battery during charging process. Evans and White [24] presented
a mathematical model of a Zn/Br2 flow cell including a porous layer on the bromine electrode
and a porous separator to predict their effect on the cell performance during charge and discharge.
Simpson and White [25] developed an algebraic model for a parallel plate, Zn/Br2 flow cell using
the Butler-Volmer equation for the electrochemical reactions and the homogeneous reaction kinetics
between bromine and bromide to predict various cell performance quantities. Kalu and White [26]
presented a mathematical model for a Zn/Br2 cell that considers the effects of an increase or a decrease
in the cathode channel width due to zinc removal on discharge and zinc deposition on charge,
respectively, as well as the effect of an organic bromine complexing agent on the cell performance.
Manla et al. [27] analyzed and modeled a zinc bromide energy storage for vehicular applications and
showed that the open-circuit voltage and internal resistance of the battery are the functions of the
battery’s state of charge (SOC) and they adopted a Kalman filtering technique to adjust the estimated
SOC according to battery current. Knehr et al. [28] quantified the sources of voltage loss in the minimal
architecture zinc bromine battery based on the experimental data obtained by using the galvanostatic
intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) on a cell
with a three electrode setup. Among the modeling works on the Zn/Br2 flow battery mentioned
above [20–28], references [20,21,23–26] belong to the electrochemical models, references [28] uses an
equivalent circuit model to quantify the voltage losses, and references [22,27] are based on simple
algebraic equation models.

In this work, a modeling is carried out to calculate the current distributions in a Zn/Br2 flow
battery stack composed of 8 cells. This work adopts a simple approach to model the charge and
discharge performance of a single cell by considering Ohm’s law and charge conservation on the
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electrodes based on the simplified polarization characteristics of the electrodes. An 8-cell stack
performance is predicted based on an equivalent circuit model composed of the single cells and the
resistances of the inlet and outlet streams of the positive and negative electrolytes. The model is
validated by comparing the modeling results with the experimental measurements.

2. Mathematical Model

The modeling procedure used in this work for a single cell in the Zn/Br2 flow battery is similar
to that of Kim et al. [29–32] employed to model a lithium-ion battery. From the continuity of the
current on the positive and negative electrodes during discharge, the Poisson equations to compute
the potential distributions on the positive and negative electrodes are derived as follows:

∇2Vp = −rp J in Ωp (1)

∇2Vn = +rn J in Ωn (2)

where Vp and Vn are the potentials (V) on the positive and negative electrodes, respectively, rp and rn

are the resistances (Ω) of the positive and negative electrodes, respectively, and J is the current density
(current per unit area (A m−2)) flowing from the negative electrode to the positive electrode. Ωp and
Ωn denote the computational domains of the positive and negative electrodes, respectively.

The relevant boundary conditions for Vp are

∂Vp

∂n
= 0 on Γp1 (3)

− 1
rp

∂Vp

∂n
=

I0

L
on Γp2 (4)

where ∂/∂n denotes the gradient in the direction of the outward normal to the boundary. The first
boundary condition (Equation (3)) implies that there is no current flow through the boundary (Γp1) of
the electrode other than the Table. The second boundary condition (Equation (4)) means that the linear
current density through the tab (Γp2) of the length L (cm) is constant to the value of I0/L. I0 is the total
current (A) through the tab in the mode of constant-current discharge. The boundary conditions for
Vn are

∂Vn

∂n
= 0 on Γn1 (5)

Vn = 0 on Γn2 (6)

The first boundary condition (Equation (5)) implies the same as in the case of Vp. The second
boundary condition (Equation (6)) means that the potential at the tab of the negative electrode is fixed
to the value of zero as the reference potential. The solutions to the governing Equations (1) and (2)
subject to the associated boundary conditions (Equations (3) and (6)) were obtained by using the finite
element method as explained in references [29–32].

The current density, J, of Equations (1) and (2) is a function of the potentials of the positive
and negative electrodes. The functional relationship between the current density and the electrode
potentials depends on the polarization characteristics of the electrodes. In this study, the following
polarization expression used by Tiedemann and Newman [33] and Newman and Tiedemann [34]
is employed:

J = Y(Vp −Vn −U) (7)

where Y and U are the fitting parameters. The physical meaning of U is similar to the equilibrium
potential of the battery cell and Y may be regarded as a reaction rate constant of an electrochemical
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reaction as discussed in reference. [32]. As suggested by Gu [35], U and Y are expressed as polynomial
functions of SOC as follows:

U =
9

∑
i=0

ai(SOC)i (8)

Y =
7

∑
i=0

bi(SOC)i (9)

where a0–a9 and b0–b7 are the fitting parameters rendering the best fit of the calculated results from
the modeling to the experimental data. The details of the procedures to obtain a0–a9 and b0–b7
are given in the following section of ‘3. Results and Discussion.’ By not computing the potential
distribution of electrolyte phase and the transport phenomena of ionic species, the model in this work
cuts down considerable computation time in comparison with the rigorous electrochemical models of
references [20,21,23–26] mentioned above, while preserving the validity of the model.

A schematic of a Zn/Br2 flow battery stack composed of 8 cells is shown in Figure 1. The flow
battery stack consists of 8 bipolar single cells that are hydraulically connected in parallel and electrically
connected in series. Each single cell is separated into positive and negative electrolyte compartments
by membrane. Only the inlet and outlet streams of positive and negative electrolytes are connected
to the positive and negative electrolyte compartments of the single cells, respectively. The positive
and negative electrolytes are supplied from the tanks to the single cells through the manifolds and
their channels. The internal currents pass through the electrodes of the bipolar single cells mainly
due to the electrochemical reactions during charging and discharging, while the shunt currents are
flowing through the secondary electrical connections among the cells furnished by the electrolyte-filled
channels and manifolds [36]. An equivalent circuit model corresponding to the schematic of Figure 1 is
shown in Figure 2 to predict the internal and shunt current distributions in an 8-cell stack of the Zn/Br2

flow battery. The equivalent circuit model is composed of the resistances of the inlet and outlet streams
of the positive and negative electrolytes connecting the single cell models using Equations (1) and (5)
described in the above. The usual assumptions [36,37] are made for the resistances of the electrolyte
streams. The electrolyte paths are represented by resistor elements. All resistance paths between the
cells and a manifold are identical, and each manifold segment between a pair of channels is represented
by an identical resistor. In Figure 2, R+

m and R−m are the resistances (Ω) of the positive and negative
electrolytes in the manifolds, respectively, and R+

c and R−c are the resistances (Ω) of the positive and
negative electrolytes in the channels, respectively. Note that the circuit is symmetric with respect to the
inlet and outlet streams for both the positive and negative electrolytes. By applying Kirchhoff’s first
and second laws to the network of Figure 2, the internal and shunt current distributions in a Zn/Br2

flow battery stack composed of eight cells can be calculated at various charge and discharge conditions.
The details of calculation procedures are reported in references [36,37].
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Figure 2. An equivalent circuit model corresponding to the schematic of Figure 1.

3. Experimental Section

The major parts of the 420 W/833 Wh Zn/Br2 flow battery stack of Figure 1 include bipolar
electrodes, separators, and terminal electrodes. The bipolar design allows the two electrochemical
reactions of reduction and oxidation to occur on opposite faces of the same electrode. The separator
was a commercially available membrane (SF600, Asahi, Japan). The bipolar electrodes were made of
carbon composite with an active area of 33 × 30 cm2. The terminal electrodes were rigid end-blocks
encapsulating the current collectors attached to the carbon composite. Aqueous solutions containing
electroactive species of 2.25 M ZnBr2, supporting electrolyte of 0.55 M ZnCl2 and bromine complex
agent of 0.8 M MEP (Methyl Ethyl Pyrrolidinium) were used for the negative and positive electrolytes.
The electrolytes were recirculated between the Zn/Br2 flow battery stack and the electrolyte tanks
using pumps (NH-20PI-Z-D, Pan World Co., Ltd., Japan). The total electrolyte volume was 8 L and
the electrolyte flow rates for the positive and negative sides were controlled at 2.967 L/min and
2.438 L/min, respectively. During the cycling of the Zn/Br2 flow battery stack, the battery stack was
charged with the current of 20 A and it was discharged with the three different currents of 20, 25,
and 30 A. The voltage limit during discharge was 6 V. On every three cycles, complete stripping of any
zinc remaining on the anode was followed.

4. Results and Discussion

The experimental discharge curves of a Zn/Br2 flow battery stack composed of 8 cells having
a capacity of 833Wh for different discharge currents and powers are shown in Figure 3a,b respectively.
The experimental data of Figure 3 can be converted to the voltage of a single cell as a function of applied
current density during discharge as shown in Figure 4. The cell voltage data are fitted fairly well with
a linear function of applied current density, which justifies the use of the functional relationship of
Equation (3) between the cell voltage and applied current density. From the slopes and intercepts
with vertical axis of the linear fittings at different SOC values, the functional relationships of Y and U
with SOC are obtained. The coefficients of a0–a9 and b0–b7 used in Equations (4) and (5) are the fitting
parameters rendering the best fit of Y and U as polynomial functions of SOC. The fitting parameters of
a0–a9 and b0–b7 used in this work are listed in Table 1.
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Table 1. Fitting parameters used to calculate the potential distributions on the electrodes.

Parameter Value

a0 (V) 0.75
a1 (V) 15.45
a2 (V) −107.49
a3 (V) 417.26
a4 (V) −1003.76
a5 (V) 1566.64
a6 (V) −1597.93
a7 (V) 1032.84
a8 (V) −385.50
a9 (V) 63.53

b0 (Sm−2) 47.46
b1 (Sm−2) −343.44
b2 (Sm−2) 11091.86
b3 (Sm−2) −56547.87
b4 (Sm−2) 131795.34
b5 (Sm−2) −158962.42
b6 (Sm−2) 96327.06
b7 (Sm−2) −23197.91

To test the validity of the modeling approach for a Zn/Br2 flow battery adopted in this work,
the charge and discharge behaviors of a Zn/Br2 flow battery stack composed of 8 cells calculated from
the modeling are compared with the experimental measurements in Figure 5. The experimental data
are in good agreement with the modeling results.
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The variations of the internal currents passing through the electrodes of the single cells as
a function of time during charging and discharging with the constant current of 20 A are given in
Figure 6. As shown in Figure 6a, the magnitude of the internal current is minimum at the center portion
of the stack and maximum at the two ends of the stack during charging. The magnitude of the internal
current decreases rapidly at the beginning of charging, but its decrease rate becomes gradual as SOC
increases and it becomes almost unchanging near the end of charging. The variation of the internal
current with time during discharging shown in Figure 6b has a contrary tendency to that of charging
in Figure 6a. The magnitude of the internal current is maximum at the center portion of the stack
and minimum at the two ends of the stack during discharging. The magnitude of the internal current
decreases slowly at the beginning of discharging, but its decrease rate becomes rapid near the end of
discharging. The distributions of the magnitude of the internal current at 50% SOC during charging
and discharging with the constant current of 20 A as a function of cell position is shown in Figure 7.
The magnitude of the internal current is maximum at the center portion of the stack and minimum at
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the two ends of the stack during discharging, but it is minimum at the center and maximum at the two
ends during charging as mentioned in the discussions of Figure 6. The results shown in Figures 6 and 7
can be explained by the directions of the internal current flows during charging and discharging along
with those of the shunt current flows given in Figures 8 and 9. The shunt currents in the channels
flow in the direction from the cell to the manifold at the first half stack (cells 1–4) and they flow in the
opposite direction at the second half stack (cells 5–8) for both of the positive and negative electrolytes
as shown in Figure 8. The shunt currents in the manifolds in the first half stack increase with the cell
number due to the accumulation of the shunt currents in channels, but those in the second half stack
decrease with the cell number due to the reduction of the shunt currents in channels as shown in
Figure 9. During charging with constant-current, the charge current is supplied to the battery stack
from the outside power supply and it flows along the direction from the positive terminal electrode to
the negative terminal electrode. Because the charge current is the source of the current flow through
the battery stack and the summation of the internal current and the shunt current around each cell
should be the same as the charge current, the internal current is minimum at the center and maximum
at the two ends during charging. During discharging with constant-current, the battery stack supplies
the discharge current to the outside load and it flows along the direction from the negative terminal
electrode to the positive terminal electrode. Because the internal current is the source of the current
flow through the battery stack and the summation of the internal current and the shunt current around
each cell should be the same as the discharge current, the internal current is maximum at the center
and minimum at the two ends during discharging.
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Even though distributing the electrolytes to the cell stack through inlet manifolds and collecting
them through outlet manifolds may be a convenient design, the electrolyte-filled channels and
manifolds furnish secondary series electrical connections among the cells. These ionic shunt currents
cause power loss, current inefficiency, and corrosion [36,37]. The variations of the shunt currents in
channels as a function of time during charging and discharging with the constant current of 20 A
for the positive and negative electrolytes are shown in Figure 8a,b respectively. The shunt currents
in channels are largest at the two ends of the stack and decrease toward the center during charging
and discharging. The shunt currents in channels are opposite in direction for the two halves of the
stack. Figure 9a,b show the variations of the shunt currents in manifold as a function of time during
charging and discharging with the constant current of 20 A for the positive and negative electrolytes,
respectively. The magnitude of the shunt current in manifold is maximum near the center portion of
the stack and minimum at the two ends of the stack during charging and discharging. The magnitude
of the shunt currents increases during charging and decreases during discharging in Figures 8 and 9,
because the electrical conductivities of both of the positive and negative electrolytes increase as the
state of charge (SOC) increases.
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The current, voltage, and energy efficiencies are calculated based on the internal and shunt current
distributions in a Zn/Br2 flow battery stack composed of 8 cells as described in White et al. [37].
The current, voltage, and energy efficiencies calculated from modeling are compared with the
experimental data under various discharge conditions in Figure 10. As shown in Figure 10,
the experimental measurements are in good agreement with the modeling results. Although the
modeling approach is validated for one type of Zn/Br2 flow battery stack for a limited variation range
of charge and discharge conditions, the modeling methodology developed in this work can be easily
extended to predict the performances of the Zn/Br2 flow battery stacks with any arbitrary number
of cells. The modeling results may be used to design large-scale cells and to select the operating
conditions for optimum performance.
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5. Conclusions

A mathematical model is developed to predict the performance of a Zn/Br2 flow battery.
This work adopts a simple modeling approach which was successfully applied to analyze the
performance of a lithium-ion battery for various applications [29–32]. The charge and discharge
behaviors of a single cell is modeled by considering Ohm’s law and charge conservation on the
electrodes based on the simplified polarization characteristics of the electrodes. The charge and
discharge behaviors as well as the current, voltage, and energy efficiencies of a Zn/Br2 flow battery
stack composed of 8 cells are predicted based on an equivalent circuit model composed of the single
cell models and the resistances of the inlet and outlet streams of the positive and negative electrolytes.
The model is validated by comparing the modeling results with the experimental measurements.
Although the modeling approach is validated for one type of Zn/Br2 flow battery stack for a limited
variation range of charge and discharge conditions, the modeling methodology presented in this study
may have a good potential to contribute to improve the design of a large-scale cells and to select the
operating conditions for the optimum performance of a Zn/Br2 flow battery.
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