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Abstract: Many factors affect short-term electric load, and the superposition of these factors leads
to it being non-linear and non-stationary. Separating different load components from the original
load series can help to improve the accuracy of prediction, but the direct modeling and predicting
of the decomposed time series components will give rise to multiple random errors and increase
the workload of prediction. This paper proposes a short-term electricity load forecasting model
based on an empirical mode decomposition-gated recurrent unit (EMD-GRU) with feature selection
(FS-EMD-GRU). First, the original load series is decomposed into several sub-series by EMD. Then,
we analyze the correlation between the sub-series and the original load series through the Pearson
correlation coefficient method. Some sub-series with high correlation with the original load series are
selected as features and input into the GRU network together with the original load series to establish
the prediction model. Three public data sets provided by the U.S. public utility and the load data
from a region in northwestern China were used to evaluate the effectiveness of the proposed method.
The experiment results showed that the average prediction accuracy of the proposed method on four
data sets was 96.9%, 95.31%, 95.72%, and 97.17% respectively. Compared to a single GRU, support
vector regression (SVR), random forest (RF) models and EMD-GRU, EMD-SVR, EMD-RF models,
the prediction accuracy of the proposed method in this paper was higher.

Keywords: short-term electricity load forecasting; EMD; correlation analysis; GRU

1. Introduction

The electric-power industry, a basic industry supporting state construction, plays an increasingly
important role in our daily life. Stable and uninterrupted high-quality electric energy provides a
guarantee for the stable operation of industry and society [1]. Therefore, in order to ensure the stable
operation of the power system and provide economic and reliable power for the market, it is necessary
to accurately predict the change of load when planning the power system. Furthermore, the prediction
also guides a reasonable production schedule.

Electricity load forecasting is a process of predicting future load changes by analyzing historical
load data. It explores the dynamic changes of load data by qualitative and quantitative methods, such as
statistics, computer science, and empirical analysis [2]. Based on the time horizon of prediction, the load
forecasting can be classified into four categories: long-term forecasting, medium-term forecasting,
short-term forecasting, and ultra-short-term forecasting [3]. Short-term electricity load forecasting is
one of the main tasks for the grid dispatching operation department, and its accuracy is closely related
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to the formulation of dispatching plans and the proposal of transmission schemes. However, many
factors affect the change of short-term load, which causes the load series to be highly non-linear and
non-stationary, thus high-precision prediction of short-term load is a challenging task [4].

Since the middle of the 20th century, many researchers have devoted work to the research
of short-term load forecasting, and they have proposed many effective models and solutions [5].
In previous studies, short-term load forecasting methods mainly have included traditional statistical
methods, artificial intelligence methods based on machine learning, and combination forecasting
methods [6]. Traditional methods include multivariate linear regression, time series, exponential
smoothing, etc. Machine learning methods include artificial neural networks (ANN), support
vector machines (SVM), random forest (RF), etc. [3]. Combination forecasting methods include
model combination based on prediction mechanism and weighted combination based on forecasting
results [7].On account of the high non-linear and the non-stationary features, many models and
methods have certain limitations for short-term load forecasting. For example, traditional methods
have a weak ability to process non-linear data, while machine learning methods need to filtrate timing
features manually. Combination forecasting methods can form more adaptable methods by combining
the advantages of various methods. Among them, the signal decomposition methods that decompose
the original load series into different load components can effectively improve the prediction accuracy.
However, directly modeling and forecasting the decomposed time series components separately will
give rise to multiple random errors and generate a large amount of forecasting workload.

In this paper, an empirical mode decomposition-gated recurrent unit (EMD-GRU) forecasting
model with feature selection is proposed to improve the prediction accuracy of short-term electricity
load. Its main contributions are as follows:

• Correlation analysis was performed on the sub-series obtained by EMD using the Pearson
correlation coefficient method. Since the decomposed sub-series contained different features of
the original load series, they had different effects on the fluctuation of the original load series.
The components with high correlation with the original load series were selected by Pearson
correlation coefficient method as the input features of the prediction model.

• An EMD-GRU load forecasting model with feature selection was proposed. The selected sub-series
were input into the GRU network together with the original load series to establish the final
prediction model, which avoided the multiple random errors introduced by modeling the multiple
sub-series separately, and reduced the overall model complexity. At the same time, the GRU
network with unique network structure in the recurrent neural network (RNN) was used as the
prediction model, which solved the problem of gradient disappearance of the RNN in dealing
with long-span time series, had better processing effect on time series, and achieved higher
prediction accuracy.

• Compared with the three single models, including GRU, SVR and RF, and the three hybrid
models including EMD-GRU, EMD-SVR, and EMD-RF, the proposed method had the best
prediction performance.

The remaining of this paper is organized as follows: Section 2 describes some relevant works in
the field of short-term load forecasting. Section 3 introduces the theoretical background on forecasting
methods and presents the EMD-GRU method with feature selection proposed in this paper. Section 4
introduces the experimental results and analysis of four data sets from different regions. Finally,
in Section 5, the conclusion is stated.

2. Related Work

As the electric load series is non-linear, unstable and relatively random, many models and
methods have certain limitations in short-term load forecasting [8].

Since the mid-20th century, various statistical-based linear time series prediction methods have
been proposed, and these methods generally need a precise mathematical model to present the
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relationship between load and input factors. Haida [9] proposed a regression-based daily peak
load forecasting method and conversion technique. Khashei [10] predicted the hourly load changes
by establishing an autoregressive integrated moving average model (ARIMA). Holt [11] used an
exponentially weighted moving average prediction model to predict non-seasonal and seasonal series
with additive or multiplicative error structures. However, the forecasting model based on statistical
method is relatively simple and requires high stability of load series, which cannot accurately reflect
the non-linear characteristics of load data.

With the development of artificial intelligence technology, machine learning methods, such as ANN,
SVM, and RF, have been widely used in the field of short-term load forecasting [3]. Reference [12] proposed
a short-term load forecasting method based on improved variable learning rate back propagation (BP)
neural network, and the experiment results show the method has high accuracy and real-time performance.
Fu Y [13] used the SVM to predict the hourly electricity load of a building and achieved good results.
In Reference [14], RF was used to predict the load for the next 24 h, and the predicted performance of
the model was analyzed in detail. Although the machine learning method performs better in nonlinear
relationship of the load series and has achieved good results in the field of load forecasting, there are still
some defects. Load series is a complex time series, and the machine learning method has poor processing
ability for timing features and requires manual filtrating the timing features [15].

The flourishing development of deep learning provides researchers with new ways to solve this
problem. Deep learning method mainly refers to the deep neural network which contains multiple hidden
layers and has specific structure and training method. It has been widely used in many fields, such as
speech recognition [16] and image processing [17]. At present, it has also been discussed in the field of
electricity load forecasting. Mocanu [18] used the deep belief network composed of conditional restriction
Boltzmann machine (CRBM) to predict the load of a single residential building. Compared with the
shallow artificial neural network and support vector machine, the results improved a lot. Reference [19]
established a predictive model based on long short-term memory neural network (LSTM) to predict the
short-term electricity consumption of individual residential users. Aowabin Rahman [20] used RNN
to predict hourly consumption of a safety building in Utah and residential buildings in Texas, and the
results have lower relative errors compared to multilayer perceptron networks. Due to the limited
learning ability of deep belief network for time series features, Recurrent Neural Network has been
heated discussed in short-term load forecasting for its unique structure. However, RNN has been proven
to have the problems of gradient explosion and disappearance. Based on the RNN, the GRU network
solves the problem of gradient explosion and disappearance of RNN by adding the gate structure to
control the influence of the previous time [21], so that it can better process the time series.

In recent years, various combination models have been introduced to improve the accuracy of
short-term electricity load forecasting. Among them, the combination of signal decomposition method
and machine learning method has been widely studied [22]. Rana [23] used wavelet neural network to
decompose the load series into sub-series with different frequencies, and then established a prediction
model for each sub-series, and obtained more accurate prediction results. However, it is necessary
to choose the wavelet basis function manually for the wavelet transform. EMD is another method
of signal decomposition. Instead of setting basis function in advance, it can decompose the signal
according to the characteristics of the data itself, and the basis function is directly generated from the
signal itself in the process of decomposition [24]. Each sub-series contains only part characteristic
of the original load series, which makes it much simpler than the original load series, so that more
accurate prediction results can be obtained, and the EMD method has been widely used in the field of
load forecasting. Guo [25] used the SVR and auto regression (AR) models to predict the high frequency
and residual components decomposed by EMD, respectively. Jatin [26] combined the EMD method
with LSTM model to forecast the load demand for a given season and date, and obtained better results
than the single prediction model. The hybrid models mentioned above are mainly different in the
decomposition algorithm or the prediction model, but the establish process is almost the same. Unlike
most previous studies that built prediction models for each component, in this paper, the feature
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selection method was used to select components that were highly correlated with the original series
from the decomposed sub-series as features to input the GRU prediction model.

3. Theoretical Background on Forecasting Models

3.1. Empirical Mode Decomposition

EMD is a signal processing method inventively proposed by Huang et al. [24]. This method
decomposes signals according to the time scale characteristics of the data itself without presetting
any basis function, which is quite different from Fourier decomposition and wavelet decomposition
based on prior harmonic basis function and wavelet basis function. Thus, EMD can be applied
to decomposition of any kind of signal in theory, and it has great advantages in dealing with
non-stationary and non-linear data [27].

The decomposed sub-series contain a set of intrinsic mode functions (IMF) along with a residue
which stands for the trend. The IMF satisfies two basic conditions: (a) The function must have the
same number of local extremum points and zero-crossing points, or the maximum difference must
be one; (b) at any time, the mean of the envelope of the local maximum (upper envelope) and the
envelope of the local minimum (lower envelope) must be zero [28]. The procedures of EMD algorithm
are shown as follows:

Step 1: Find all the maximum and minimum points of signal X(t). Cubic spline interpolation is
used to obtain the upper and lower envelope curves emax(t) and emin(t), and then calculate the mean
of the upper and lower envelope m(t), i.e., m(t) = (emax(t) + emin(t))/2;

Step 2: Calculate the difference h(t) between X(t) and m(t), i.e., h(t) = X(t)−m(t);
Step 3: Determine whether h(t) satisfies the two conditions of the IMF. If it is satisfied, h(t) is the

first IMF, which is recorded as im f1(t); if not, h(t) is taken as the original signal and returns to Step 1;
Step 4: Separate im f1(t) from the original signal: r(t) = X(t)− im f1(t), and if r(t) is a monotone

function, then r(t) is regarded as residual and the iteration is stopped. Instead, r(t) is returned to
Step 1 as the original signal.

Finally, the original signal X(t) can be expressed as the sum of several IMFs and a residual:

X(t) =
n

∑
i=1

im fi(t) + r(t) (1)

where n is the number of IMFs.
Each of the components decomposed by EMD contains only a portion of the features of the

original series, which makes it much simpler than the original series. Figure 1 shows an example of a
one-month load decomposition of a utility in a U.S. region. It can be seen that each component has
different features.

Figure 1. Example of one month load decomposition in a public utility sector in the U.S.
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3.2. Recurrent Neural Network and Gated Recurrent Unit Network

The Gated Recurrent Unit network is a kind of the Recurrent Neural Network [29]. Compared
with the traditional neural networks, RNN has better performance for time series as it can retain the
influence of previous inputs to the model and allow it participate in the calculation of the next output.
However, the range of context information that can be memorized in the RNN model is actually
limited. The parameter information stored in the hidden layer grows geometrically as the number of
connections in the network increases, which will cause the gradient disappearance [30]. The gradient
disappearance makes it difficult to train data for long spans, thus losing the ability to learn longer
information in the past.

In recent years, with the deepening of the research on RNN, a variety of RNN variant structures
have been proposed, where the LSTM model based on the gate structure has a great improvement on
traditional RNN [31]. It solves the problem of gradient disappearance of RNN and has been widely
used in the field of forecasting time series. Later, many well-known variant structures were derived on
the basis of LSTM with gate structure. The GRU is one of the most popular variants of LSTM, with
fewer training parameters than LSTM, while maintaining the predictive effect of LSTM. The GRU is
similar in structure to the LSTM, and the difference is that the GRU reduces the internal hidden state
and the associated gate structure compared to the LSTM [21]. The former has three gates, while there
are only two gate structures in the GRU, that is, the update gate and the reset gate. The update gate
controls the extent to which the state information of the previous moment is retained in the current
state, while the reset gate determines whether the current state is to be combined with the previous
information [32]. Figure 2 shows the basic structure of a GRU [33].

Figure 2. The basic structure of GRU.

The formulas of GRU are represented in Equations (2)–(5):

zt = σ(W(z)xt + U(z)ht−1), (2)

rt = σ(W(r)xt + U(r)ht−1), (3)

h̃t = tanh(rt ∗Uht−1 + Wxt), (4)

ht = (1− zt) ∗ h̃t + zt ∗ ht−1, (5)

where xt is the input of the hidden layer at time t , ht is the output of the current layer at time t and
ht−1 is the output at time t− 1, zt and rt are update gate and reset gate, h̃t represents the set of input
xt and the output ht−1 at the previous moment. σ and tanh represent activation functions, which are
Sigmoid function and hyperbolic tangent function, respectively. U(z) and W(z) are training parameter
matrices in the update gate, U(r) and W(r) are training parameter matrices in the reset gate, and U and
W are training parameter matrices in the process of obtaining h̃t. “∗” represents matrix multiplication.

3.3. Proposed EMD-GRU Model with Feature Selection

The EMD algorithm can decompose signal of different frequencies step-by-step according to
the characteristics of the data itself and several orthogonal signals with periodicity and trend will be
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obtained. The general used prediction method based on EMD is to respectively establish prediction
models for the decomposed sub-series, and then superimpose the output of each prediction model
to get the final prediction result [22,25,26]. Although the prediction accuracy is improved, multiple
random errors will be introduced to build prediction models for each sub-series separately, and
some high frequency noise components exist in the decomposed sub-series, which will give rise to
a large prediction error when modeling these sub-series, and affect the overall prediction accuracy.
At the same time, the overall complexity of the model will be increased due to the establishment of
multiple prediction models. In this paper, an EMD-GRU model with feature selection was proposed
for short-term load forecasting. Correlation analysis was performed on the decomposed sub-series
and the components with large correlation with the original series are selected as the input features of
the model. On the one hand, the proposed method can avoid the occurrence of multiple random errors
and improve the prediction accuracy; on the other hand, since there is only one prediction model,
the number of prediction models is greatly reduced compared with the prediction models established
for each sub-series, which reduces the overall complexity of the model. The procedure of the proposed
method is shown as follows:

Step 1: The original load series was decomposed into several IMFs and one residual RES by EMD;
Step 2: All the IMFs and residual were used as initial feature sets, which constitute potential input

variables for the predictive model;
Step 3: The Pearson correlation coefficient method was used to analyze the correlation of the

initial features, and the time series components with large correlation with the original load series
were selected as the input features of the prediction model;

Step 4: The features selected in the previous step were combined with the original load series
to form a combined dataset. Then, the combined dataset is divided into the training set and testing
set, and the specific division is given in Section 4.5. The training set is input into GRU model to
train the prediction model, and then the testing set is input into the prediction model to evaluate the
prediction results.

Figure 3 shows the overall structure of the model.

Figure 3. Structure of the proposed empirical mode decomposition-gated recurrent unit (EMD-GRU)
model with feature selection.

The time series components obtained by EMD constitute the initial feature set, and then the initial
feature set is filtered by the feature selection method. As a filter feature selection method, Pearson
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correlation coefficient has strong generality and low complexity, and it has strong advantages in
dealing with large-scale data sets and can eliminate a large number of irrelevant features in a short
time. Therefore, it is often used for feature selection of the whole data set [34]. The formulation of
Pearson correlation coefficient is represented in Equation (6):

γ =

n
∑

i=1
(xi −

−
x)(yi −

−
y)√

n
∑

i=1
(xi −

−
x)

2 n
∑

i=1
(yi −

−
y)

2
, (6)

where γ is the correlation coefficient and represents the correlation between data. xi and yi represent
the sample points, x and y represent the sample mean, and n is the number of samples. The Pearson
correlation coefficient method uses correlation indicators to score individual features and filtrates the
features with scores greater than the threshold. Specifically, the correlation between each component
then the original load series is calculated, and the component with correlation less than the threshold is
removed, and the component with correlation larger than the threshold is selected as the input feature
of the prediction model. The input of the model is as follows:

X = {im f1, im f2, ...., im fn−1, res}, (7)

Data_input = {Xe, Xf}, (8)

where X represents the initial feature set, im fi and res represent the decomposed IMF components
and residual, respectively, n represents the total number of decomposed time series components, Xe

represents the historical load data, and Xf represents the feature set composed of the components
selected through feature selection. Data_input represents the combined dataset that combines the
historical load and feature set and is fed into the GRU network for training and prediction. The detailed
process of proposed method is briefly explained in Algorithm 1.

Algorithm 1 FS-EMD-GRU Algorithm

1: Definitions : M: is the predicted output data length; γi: is the correlation coefficient between the
ith component and the original series; ρ: is the threshold of correlation coefficient;

2: Xe is decomposed by EMD algorithm and the initial feature set is obtained;
X = {im f1, im f2, ...., im fn−1, res}

3: Calculating the correlation coefficient γ of each component and the original load series by using
the Pearson correlation coefficient method;

4: Feature selection for the initial feature set:
5: if γi > ρ then
6: Put im fi as a feature subset in Xf;
7: else
8: Remove the im fi;
9: end if

10: Get the input feature set Xf;
11: Combine the original series and the feature subset as the input set of the prediction model:

Data_input = {Xe, Xf}
12: Divide Data_input into training set and testing set, and send it into GRU model training and

testing in batches;
13: Get the final predicted output Ye:

Ye = [e1, e2, ...., eM]T

14: END
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4. Result and Discussion

In this paper, the effectiveness of the proposed method is compared with the other six methods:
GRU, SVR, RF, EMD-GRU, EMD-SVR, and EMD-RF.

4.1. Load Datasets

The proposed model was evaluated using daily load data from U.S. Public Utilities [35] and a
region in northwestern China. The U.S. Public Utilities Data Set uses three-year daily load data from
three different regions and is recorded every hour. Our model used data recorded from January 2004
to December 2006. And the data set of a region in Northwest China is based on 19-month daily load
data, which is recorded every half hour, from January 2016 to July 2017. Figure 4 shows the partial
load time series corresponding to four regions, and it can be seen that the load series presents obvious
non-stationary and certain periodicity. The descriptive statistics of the four datasets are shown in
Table 1, including total sample size, mean, maximum and minimum, and standard deviation.

Table 1. Descriptive statistics of four electricity load datasets.

M_1 M_2 M_3 C_1

Data Set
Name

U.S. Public
Utilities Sector 1

U.S. Public
Utilities Sector 2

U.S. Public
Utilities Sector 3

Region in
Northwest China

Total sample
size 26,304 26,304 26,304 27,744

Mean (kWh) 32,175.36 208,383.49 86,607.58 506,546.19

Maximum (kWh) 62,178 451,096 156,366 761,989.67

Minimum (kWh) 16,177 90,621 46,291 207,713.70

Standard deviation (kWh) 7634.97 61,826.11 17,730.05 92,289.41

Figure 4. Partial load time series corresponding to four datasets.

4.2. EMD Decomposition Results of Load Series

The original load series was decomposed into multiple IMF components and a residual by EMD.
Each component had different trends and features that represent different features of the fluctuation
of the original load series. The decomposition results of the four data sets are shown in Figures 5–8
(the horizontal axis represents the time point and the vertical axis represents the decomposition
value), and all components are shown in the graph in the order in which they are extracted, from
high to low frequencies. It can be seen from these figures that the first few IMF components were
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random components with no obvious change rule, indicating that some sudden events and changes in
meteorological factors had a greater impact on them. The middle IMF components fluctuated regularly
which were similar to the original load series. They changed smoothly in a day-to-day cycle and were
not significantly affected by meteorological factors, etc., indicating that these components were mainly
determined by the daily fixed electricity consumption habits and carried out a typical fluctuation of
the day-based cycle. The last few IMF components were low-frequency periodic components which
had large period spans and smooth fluctuations, reflecting the slow-changing process of the influence
of meteorological and other factors on load changes. The last component is the residual, reflecting the
overall trend of the load.

Figure 5. M_1 load series decomposition results.

Figure 6. M_2 load series decomposition results.

4.3. Results of Feature Selection

The time series components obtained by the decomposition of the original load series constituted
the initial feature set, and then the input features of the model were selected from the initial feature
set by the Pearson correlation coefficient method. The range of correlation coefficient values was
between [−1, +1], and variables close to 0 were considered to be unrelated, and those close to 1 or
−1 were called strong correlation. The Pearson correlation coefficient method was used to calculate
the correlation coefficients of the time series components and the original load series. The correlation
coefficient tables of the load components and the original load series are shown in Tables A1–A4
(Appendix A). The numbers in bold mean that the corresponding component has the high correlation
with the original load series. From these tables, we can clearly see the correlation between each
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component and the original load series. Generally, the correlation coefficient less than 0.3 is considered
to be weak correlation [36]. In this study, time series components with correlation greater than 0.3
with the original load series were selected as input features of the prediction model, and the results of
feature selection are shown in Table 2.

Figure 7. M_3 load series decomposition results.

Figure 8. C_1 load series decomposition results.

Table 2. Feature selection result.

Dataset Feature

M_1 imf2, imf3, imf10
M_2 imf2, imf3, imf10
M_3 imf2, imf3, imf10
C_1 imf5, imf6, res

4.4. Forecasting Performance Evaluation

In this paper, the mean absolute percentage error (MAPE) and root mean square error
(RMSE) were selected as the evaluation criteria to evaluate the prediction accuracy of each model.
The aforementioned two indexes are commonly used to evaluate forecast accuracy in the field of load
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forecasting [37]. MAPE represents the average value of the relative error between the predicted value
and the actual value. It can avoid the problem that of errors being offset by each other [38]. Therefore,
MAPE can accurately reflect the magnitude of the prediction error. RMSE is the square root of the
ratio of the square of the deviation between the predicted value and the actual value to the number of
observations. It is very sensitive to the large or small errors in a set of measurements and, therefore,
can reflect the accuracy of the prediction well [8]. Generally, the smaller these indicators are, the better
the prediction performance is. They are defined as follows:

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

× 100% (9)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (10)

where n is the number of predicted time points, yi and ŷi are the actual load value and the predicted
load value at the i-th time point of the forecast day, respectively.

4.5. Forecast Results and Comparative Analysis

For each load data set, seven forecasting models were established: GRU, SVR, RF, EMD-GRU,
EMD-SVR, EMD-RF, and FS-EMD-GRU. The first three models are single forecasting models, which
are built using the original load series. The second three are hybrid models based on EMD, which
build forecasting models for each decomposed sub-series. The last one is the EMD-GRU model with
feature selection proposed in this paper. To evaluate the validity of the forecasting models, each data
set was divided into two parts: training set and testing set. The three data sets of the U.S. Public
Utilities used the data from the previous two years as training sets and choose data of January, April,
July, and October as testing sets representing different seasons from the third year. The data set of
Northwest China used the first 18 months as the training set and the last month as the testing set. After
that, all the training and testing data were scaled to [0, 1] for standardization.

For the SVR and EMD-SVR models, the kernel function and free parameters needed to be selected
when establishing the SVR model. In this paper, the Gauss Radial Basis Function was selected as
the kernel function of SVR, and the penalty parameter c and the kernel parameter g were selected
by the grid search method, where the range of c is [10−4, 104], and the range of g is [2−4, 24]. For RF
and EMD-RF models, the maximum number of decision trees n_estimators was optimized by grid
search when establishing the RF model, and its range is set to [10, 100]. For GRU, EMD-GRU, and
FS-EMD-GRU models, the following parameters needed to be considered when establishing GRU
models: batch_size, input_dim, time_step, n_hidden, output_dim, learning_rate, etc. The size of input_dim
and output_dim depends on the dimension of input and output data, and the size of time_step and
batch_size depends on the time range of prediction, while other parameters, such as the number of
hidden layer nodes n_hidden and the learning rate learning_rate, were determined by the grid search
method, and the ranges were [40, 100], [10−3, 10−1], respectively.

Table 3 shows the results of the prediction of 24 time points for one day in January, April, July,
and October for three datasets in the U.S. The numbers in bold mean that the corresponding method
has the best performance for this dataset under this performance evaluation index. It can be seen
that the proposed method had the smallest average MAPE and RMSE compared to the other six
methods. For example, in experiments on M_1 data set, compared to the GRU model, the MAPE of the
FS-EMD-GRU model were reduced by 0.26%, 9.23%, 0.70%, and 8.14%, respectively; the RMSE of the
FS-EMD-GRU model were reduced by 80.64, 3068.49, 165.65, and 2802.72, respectively; compared to
the EMD-GRU model, the MAPE of the FS-EMD-GRU model were reduced by 6.08%, 5.48%, 3.80%,
and 7.52%, respectively; the RMSE of the FS-EMD-GRU model were reduced by 2477.99, 1437.69,
1774.23, and 2724.98, respectively. The average MAPE of the proposed method in the M_1, M_2,
and M_3 data sets were 3.10%, 4.69%, and 4.28%, respectively. Compared with the minimum average
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MAPE obtained by other six methods in each data set, the proposed method reduced by 2.2%, 0.8%,
and 2.24%, respectively. In addition, the average RMSE of the proposed method in the M_1, M_2,
and M_3 data sets were 1309.58, 13,322.47, and 4827.02, respectively. Compared with the minimum
average RMSE obtained by other six methods in each data set, the proposed method reduced by 585.21,
4095.49, and 1519.85, respectively. At the same time, it could be learned that for a single prediction
model, the GRU model was superior to SVR and RF in most cases, which shows that the GRU network
had better performance in processing time series; the performance of the EMD-based hybrid prediction
models in MAPE and RMSE were better than the single models in most cases, which showed the
effectiveness of the EMD method. Figures 9–11 show the comparison curves of predicted and actual
values obtained by each model on the three datasets M_1, M_2 and M_3, respectively. These figures
demonstrate the proposed method could better capture the trend of load change, whether in daily
peak or valley.

Table 3. Comparisons of predicted results for U.S. datasets.

Dataset Month Metrics GRU SVR RF EMD-GRU EMD-SVR EMD-RF FS-EMD-GRU

M_1

January RMSE 2011.01 2762.89 4847.45 4408.36 1852.40 4231.99 1930.37
MAPE 4.47% 6.62% 9.53% 10.29% 4.26% 7.46% 4.21%

April RMSE 2706.57 2886.07 4069.60 2275.77 1467.60 2585.81 838.08
MAPE 8.77% 9.56% 11.88% 8.02% 5.15% 7.18% 2.54%

July RMSE 1649.83 1852.40 4593.17 3258.41 1907.89 3535.34 1484.17
MAPE 3.78% 4.25% 9.97% 6.88% 4.33% 7.50% 3.08%

October RMSE 3788.41 1011.08 4243.00 3710.67 2351.30 2161.59 985.69
MAPE 10.69% 2.81% 13.06% 10.07% 7.71% 6.41% 2.55%

Average RMSE 2538.95 2128.11 4438.31 3413.30 1894.79 3128.68 1309.58
MAPE 6.93% 5.81% 11.11% 8.82% 5.36% 7.14% 3.10%

M_2

January RMSE 19,842.80 19,524.85 20,627.67 14,795.87 14,354.85 26,259.43 14,236.77
MAPE 7.35% 7.40% 6.84% 5.72% 4.63% 7.88% 3.98%

April RMSE 27,556.30 15,398.46 23,303.91 25,182.22 9013.31 17,642.97 12,309.17
MAPE 12.66% 8.15% 12.24% 12.48% 3.95% 8.96% 5.89%

July RMSE 16,635.43 16,701.64 27,650.25 11,952.33 25,465.83 38,786.52 11,323.20
MAPE 6.44% 6.57% 10.30% 4.31% 6.03% 11.15% 3.46%

October RMSE 21,994.92 22,175.38 23,600.31 17,741.42 22,103.26 38,521.87 15,420.74
MAPE 7.27% 8.87% 8.99% 5.80% 7.33% 14.59% 5.41%

Average RMSE 21,507.36 18,450.08 23,795.54 17,417.96 17,734.31 30,302.7 13,322.47
MAPE 8.43% 7.75% 9.59% 7.08% 5.49% 10.65% 4.69%

M_3

January RMSE 8842.90 9247.91 11,226.97 7602.53 7248.80 12,893.55 4412.70
MAPE 8.39% 8.96% 10.85% 6.41% 6.49% 10.62% 3.38%

April RMSE 9025.01 4065.37 8922.41 6323.51 6272.06 7509.41 3369.48
MAPE 10.70% 5.06% 10.68% 7.93% 7.52% 8.65% 3.11%

July RMSE 6041.92 6387.16 9482.09 6284.45 6153.58 11711.59 5854.18
MAPE 5.33% 6.11% 8.60% 5.31% 6.05% 9.31% 4.84%

October RMSE 11,742.86 5687.02 10,058.80 6177.57 10,115.42 7461.41 5671.70
MAPE 11.92% 7.17% 10.19% 6.44% 10.65% 8.21% 5.79%

Average RMSE 8913.17 6346.87 9922.57 6597.02 7447.47 9893.99 4827.02
MAPE 9.09% 6.83% 10.08% 6.52% 7.68% 9.20% 4.28%

Table 4 shows the comparison of the running time and memory space requirements of the
EMD-GRU model and the FS-EMD-GRU model on the M_1, M_2 and M_3 dataset, respectively. All the
models were built on a desktop PC with a 3.6 GHz Intel i7 processor and 8 GB of memory using
the tensorflow frame. It was obvious that the running time and memory space of EMD-GRU model
were much greater than that of FS-EMD-GRU model. Compared with the methods of establishing a
prediction model for each sub-series separately, the proposed method could effectively reduce the
overall complexity of the model.
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Table 4. Comparison of the running time and memory space requirements of the EMD-GRU model
and the FS-EMD-GRU model.

Dataset Model Running Time (s) Memory Requirement (MB)

M_1 EMD-GRU 836.7 496.5
FS-EMD-GRU 195.1 168.3

M_2 EMD-GRU 766.4 498.3
FS-EMD-GRU 194.8 168.1

M_3 EMD-GRU 770.2 497.1
FS-EMD-GRU 198.2 167.7

Table 5 shows the prediction results of each model for 48 time points on a certain day in July
2017 in a region of Northwest China. It can be seen from the table that compared with the other six
methods, the proposed method had the smallest MAPE and RMSE, which were 2.83% and 26,143.36,
respectively. Compared with the other six methods, the minimum MAPE and RMSE decreased by
0.33% and 347.07, respectively. Figure 12 shows the comparison curves of load forecasting values and
actual values of each model. It could be seen that the proposed method can better capture the trend of
load change and had a better fitting effect for the load series.

Table 5. Comparison of dataset prediction results in Northwest China.

Model MAPE RMSE

GRU 3.16% 26,490.43
SVR 6.04% 45,568.98
RF 8.69% 68,920.11

EMD-GRU 4.87% 34,359.27
EMD-SVR 3.83% 29,982.13
EMD-RF 5.65% 43,535.79

FS-EMD-GRU 2.83% 26,143.36

Figure 9. Comparisons of load forecasting results for a certain day in April 2006 of M_1 dataset.



Energies 2019, 12, 1140 14 of 18

Figure 10. Comparisons of load forecasting results for a certain day in July 2006 of M_2 dataset.

Figure 11. Comparisons of load forecasting results for a certain day in April 2006 of M_3 dataset.

Figure 12. Comparisons of load forecasting results for a certain day in July 2017 in a region of
Northwest China.
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5. Conclusions

This paper proposes an EMD-GRU short-term electricity load forecasting method with feature
selection. Instead of establishing a forecasting model for each component decomposed by EMD,
the decomposed time series components were selected by correlation analysis method. The components
that were highly correlated with the original load series were selected as features and input into the
GRU forecasting model together with the original load series to establish the final prediction model.
Four load data sets from the U.S. Public Utilities and a region in Northwest China were used to
evaluate the proposed method, and six comparison methods were used to verify the effectiveness of the
proposed method. The experiment results showed that the GRU network in the deep learning method
had the advantage in processing the load time series; the EMD-based hybrid prediction method was
usually better than the corresponding single structure model; and the EMD-GRU prediction method
with feature selection proposed in this paper had the best performance in all comparison methods.
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Appendix A. Correlation Coefficient Table of Load Component

Table A1. M_1 load component correlation coefficient table.

M_1 imf1 imf2 imf3 imf4 imf5 imf6 imf7 imf8 imf9 imf10 imf11 imf12 res

M_1 1.00 0.12 0.36 0.48 0.18 0.21 0.25 0.24 0.28 0.20 0.30 0.24 −0.04 0.08
imf1 0.12 1.00 −0.04 −0.03 −0.01 −0.01 −0.01 0.00 0.01 −0.02 0.02 −0.03 0.01 0.02
imf2 0.36 −0.04 1.00 0.02 −0.02 0.00 0.00 0.00 0.00 0.00 0.02 −0.01 0.01 −0.01
imf3 0.48 −0.03 0.02 1.00 −0.02 −0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01
imf4 0.18 −0.01 −0.02 −0.02 1.00 −0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
imf5 0.21 −0.01 0.00 −0.01 −0.02 1.00 0.04 −0.03 −0.02 0.00 0.00 −0.03 0.03 0.00
imf6 0.25 −0.01 0.00 0.00 0.00 0.04 1.00 0.03 0.00 −0.03 −0.02 0.01 0.01 −0.01
imf7 0.24 0.00 0.00 0.00 0.00 −0.03 0.03 1.00 0.05 −0.01 −0.02 −0.02 0.02 0.00
imf8 0.28 0.01 0.00 0.01 0.00 −0.02 0.00 0.05 1.00 0.06 0.02 −0.06 0.05 0.06
imf9 0.20 −0.02 0.00 0.00 0.00 0.00 −0.03 −0.01 0.06 1.00 0.02 0.00 −0.09 −0.02
imf10 0.30 0.02 0.02 0.01 0.00 0.00 −0.02 −0.02 0.02 0.02 1.00 −0.48 0.13 0.13
imf11 0.24 −0.03 −0.01 0.00 0.00 −0.03 0.01 −0.02 −0.06 0.00 −0.48 1.00 −0.40 −0.01
imf12 −0.04 0.01 0.01 0.00 0.00 0.03 0.01 0.02 0.05 −0.09 0.13 −0.40 1.00 −0.17

res 0.08 0.02 −0.01 0.01 0.00 0.00 −0.01 0.00 0.06 −0.02 0.13 −0.01 −0.17 1.00

Table A2. M_2 load component correlation coefficient table.

M_2 imf1 imf2 imf3 imf4 imf5 imf6 imf7 imf8 imf9 imf10 imf11 res

M_2 1.00 0.14 0.40 0.44 0.16 0.21 0.22 0.25 0.18 0.24 0.46 0.17 0.09
imf1 0.14 1.00 −0.03 −0.02 −0.01 0.00 0.01 0.00 0.01 0.00 0.01 −0.03 −0.01
imf2 0.40 −0.03 1.00 0.03 −0.03 −0.02 −0.01 0.00 0.00 0.00 0.02 −0.03 0.00
imf3 0.44 −0.02 0.03 1.00 −0.04 −0.01 0.00 0.00 0.00 0.00 0.00 −0.01 0.00
imf4 0.16 −0.01 −0.03 −0.04 1.00 0.00 −0.02 0.00 0.00 0.02 −0.01 0.01 0.01
imf5 0.21 0.00 −0.02 −0.01 0.00 1.00 0.01 −0.01 0.03 −0.03 0.00 0.00 0.00
imf6 0.22 0.01 −0.01 0.00 −0.02 0.01 1.00 0.02 0.01 −0.01 −0.04 0.00 −0.02
imf7 0.25 0.00 0.00 0.00 0.00 −0.01 0.02 1.00 −0.07 0.10 −0.05 0.06 0.04
imf8 0.18 0.01 0.00 0.00 0.00 0.03 0.01 −0.07 1.00 −0.23 0.01 −0.07 −0.02
imf9 0.24 0.00 0.00 0.00 0.02 −0.03 −0.01 0.10 −0.23 1.00 −0.03 0.12 0.02
imf10 0.46 0.01 0.02 0.00 −0.01 0.00 −0.04 −0.05 0.01 −0.03 1.00 −0.21 −0.07
imf11 0.17 −0.03 −0.03 −0.01 0.01 0.00 0.00 0.06 −0.07 0.12 −0.21 1.00 −0.05

res 0.09 −0.01 0.00 0.00 0.01 0.00 −0.02 0.04 −0.02 0.02 −0.07 −0.05 1.00
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Table A3. M_3 load component correlation coefficient table.

M_3 imf1 imf2 imf3 imf4 imf5 imf6 imf7 imf8 imf9 imf10 imf11 res

M_3 1.00 0.16 0.44 0.44 0.18 0.21 0.22 0.18 0.22 0.25 0.46 0.22 0.11
imf1 0.16 1.00 −0.05 −0.02 −0.01 −0.01 0.00 0.00 0.02 −0.02 −0.01 −0.04 0.02
imf2 0.44 −0.05 1.00 0.03 −0.05 −0.01 0.01 0.00 0.00 0.01 0.03 −0.06 −0.02
imf3 0.44 −0.02 0.03 1.00 −0.03 −0.02 0.00 0.00 0.00 0.00 0.00 −0.01 0.00
imf4 0.18 −0.01 −0.05 −0.03 1.00 0.00 −0.03 0.00 0.00 0.01 0.01 0.02 0.00
imf5 0.21 −0.01 −0.01 −0.02 0.00 1.00 0.02 −0.02 −0.02 −0.02 0.00 0.01 0.00
imf6 0.22 0.00 0.01 0.00 −0.03 0.02 1.00 −0.12 0.00 −0.07 −0.06 −0.06 0.00
imf7 0.18 0.00 0.00 0.00 0.00 −0.02 −0.12 1.00 0.13 −0.03 0.00 0.03 −0.01
imf8 0.22 0.02 0.00 0.00 0.00 −0.02 0.00 0.13 1.00 0.04 −0.04 −0.02 0.00
imf9 0.25 −0.02 0.01 0.00 0.01 −0.02 −0.07 −0.03 0.04 1.00 0.22 0.01 −0.20
imf10 0.46 −0.01 0.03 0.00 0.01 0.00 −0.06 0.00 −0.04 0.22 1.00 −0.01 −0.02
imf11 0.22 −0.04 −0.06 −0.01 0.02 0.01 −0.06 0.03 −0.02 0.01 −0.01 1.00 −0.05

res 0.11 0.02 −0.02 0.00 0.00 0.00 0.00 −0.01 0.00 −0.20 −0.02 −0.05 1.00

Table A4. C_1 load component correlation coefficient table.

C_1 imf1 imf2 imf3 imf4 imf5 imf6 imf7 imf8 imf9 imf10 imf11 imf12 imf13 res

C_1 1.00 0.28 0.16 0.13 0.23 0.49 0.56 0.07 0.09 0.16 0.16 0.21 0.22 0.19 0.33
imf1 0.28 1.00 −0.05 −0.04 −0.02 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
imf2 0.16 −0.05 1.00 0.03 −0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
imf3 0.13 −0.04 0.03 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
imf4 0.23 −0.02 −0.02 0.02 1.00 0.09 −0.03 0.01 0.00 0.01 0.03 −0.03 0.01 −0.01 0.00
imf5 0.49 −0.01 0.00 0.00 0.09 1.00 0.02 −0.03 −0.03 0.00 0.00 0.00 0.00 0.03 0.00
imf6 0.56 0.00 0.00 0.00 −0.03 0.02 1.00 −0.09 −0.02 −0.01 −0.01 0.01 −0.01 0.00 0.00
imf7 0.07 0.00 0.00 0.00 0.01 −0.03 −0.09 1.00 0.09 −0.03 −0.01 −0.01 0.00 −0.01 −0.01
imf8 0.09 0.00 0.00 0.00 0.00 −0.03 −0.02 0.09 1.00 0.01 0.00 −0.02 −0.02 0.00 −0.01
imf9 0.16 0.00 0.00 0.00 0.01 0.00 −0.01 −0.03 0.01 1.00 0.23 0.05 0.01 −0.02 0.01
imf10 0.16 0.00 0.00 0.00 0.03 0.00 −0.01 −0.01 0.00 0.23 1.00 −0.07 −0.04 −0.05 0.11
imf11 0.21 0.00 0.00 0.00 −0.03 0.00 0.01 −0.01 −0.02 0.05 −0.07 1.00 0.23 0.13 −0.12
imf12 0.22 0.00 0.00 0.00 0.01 0.00 −0.01 0.00 −0.02 0.01 −0.04 0.23 1.00 −0.05 0.00
imf13 0.19 0.00 0.00 0.00 −0.01 0.03 0.00 −0.01 0.00 −0.02 −0.05 0.13 −0.05 1.00 0.07

res 0.33 0.00 0.01 0.00 0.00 0.00 0.00 −0.01 −0.01 0.01 0.11 −0.12 0.00 0.07 1.00
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